JPH06184668A - Copper chromium thin wire and its production - Google Patents

Copper chromium thin wire and its production

Info

Publication number
JPH06184668A
JPH06184668A JP7674491A JP7674491A JPH06184668A JP H06184668 A JPH06184668 A JP H06184668A JP 7674491 A JP7674491 A JP 7674491A JP 7674491 A JP7674491 A JP 7674491A JP H06184668 A JPH06184668 A JP H06184668A
Authority
JP
Japan
Prior art keywords
copper
chromium
thin wire
wire
chromium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7674491A
Other languages
Japanese (ja)
Inventor
Tokushige Yokomatsu
得滋 横松
Mitsuyuki Imaizumi
三之 今泉
Shoji Murakami
省自 村上
Kiyoshi Yoshizaki
淨 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OPT D D MELCO LAB KK
Optec Dai Ichi Denko Co Ltd
Mitsubishi Electric Corp
Original Assignee
OPT D D MELCO LAB KK
Optec Dai Ichi Denko Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OPT D D MELCO LAB KK, Optec Dai Ichi Denko Co Ltd, Mitsubishi Electric Corp filed Critical OPT D D MELCO LAB KK
Priority to JP7674491A priority Critical patent/JPH06184668A/en
Publication of JPH06184668A publication Critical patent/JPH06184668A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To produce a copper chromium thin wire excellent in mechanical and electrical properties of supersaturated solid solution by cooling/solidifying a molten copper chromium alloy containing a specified amount of Cr by a method of rotation-spinning in liquid and executing age hardening after drawing. CONSTITUTION:A cooling medium liquid layer is formed by centrifugal force in a cylindrical drum rotating at high speed. A molten copper chromium alloy containing 1.2-5.0weight% Cr is jetted from a nozzle into the cooling medium liquid and is cooled and solidified. By this method, a copper chromium thin wire consisting of supersaturated solid solution is obtained. This thin wire, after subjecting to solution treatment as required, is drawn and subjected to age hardening treatment. By this method, the copper chromium thin wire, which is good in cross-sectional roundness and low in variance of a diameter in the longitudinal direction, having high tensile strength, high electric conductivity and high heat resistance, is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マグネットワイヤなど
の電子材料として有用な高強度高導電性と耐熱性を兼ね
備えた銅クロム合金細線の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper-chromium alloy thin wire having high strength, high electrical conductivity and heat resistance, which is useful as an electronic material such as a magnet wire.

【0002】[0002]

【従来の技術】銅クロム合金細線は、高い電気伝導性と
熱伝導性、更に、銅よりも高い機械的強度、耐熱性を合
わせ持っており、マグネットワイヤなどに適用されてい
る。従来は、約1重量%以下のクロムを含有する合金を
高周波溶解炉で溶解することによって得られた鋳塊を所
望の径まで伸線加工した後、クロムを銅中に固溶させる
ための熱処理とクロムを析出させるための熱処理を施す
ことによって高い機械的強度、耐熱性を得ている。しか
し、最近マグネットワイヤなどでは更に高い機械的強
度、耐熱性が要求されている。これにはクロムの析出量
を多くすることが有効であるが、この目的には、更に銅
中のクロム含有量を高くしなければならない。しかし、
銅クロム系合金では、クロムの最大固溶量は0.73重
量%(1350Kで)に制限されるため、クロムの含有量
をせいぜい1重量%程度にしないと、クロムを銅中に固
溶させるための熱処理で既にクロムが多数析出し、伸線
加工中に断線が多く発生する欠点があり、機械的強度、
耐熱性が十分ではなかった。
2. Description of the Related Art Fine wires of copper-chromium alloy have high electrical conductivity and thermal conductivity as well as higher mechanical strength and heat resistance than copper, and are applied to magnet wires and the like. Conventionally, after heat-drawing an ingot obtained by melting an alloy containing about 1% by weight or less of chromium in a high frequency melting furnace to a desired diameter, heat treatment for solid solution of chromium in copper. High mechanical strength and heat resistance have been obtained by applying heat treatment to precipitate chromium and chromium. However, recently, magnet wires and the like are required to have higher mechanical strength and heat resistance. For this purpose, it is effective to increase the amount of chromium deposited, but for this purpose, the chromium content in copper must be further increased. But,
In the copper-chromium alloy, the maximum solid solution amount of chromium is limited to 0.73% by weight (at 1350K), so if the content of chromium is not at most about 1% by weight, chromium will form a solid solution in copper. However, there is a drawback that a large amount of chromium is already deposited in the heat treatment, and many wire breaks occur during the wire drawing process.
The heat resistance was not sufficient.

【0003】このような従来の欠点を克服するために
は、クロムの含有量を1重量%以上にし、かつクロムの
析出の少ない、いわゆる過飽和固溶状態の鋳塊を得るこ
とが必要であるが、その方法として、溶融金属から直接
に細線状の鋳塊を得る方法がある。この方法では、溶融
金属から鋳塊にする際の冷却速度が極めて速いために金
属間化合物等の析出が非常に少なく過飽和固溶体を得や
すい。主なものとして、冷媒気体中に溶融金属を噴出し
て冷却固化する方法、遠心力により回転する液体冷却媒
体に溶融金属を噴出して冷却固化する回転液中紡糸法の
2つがある。第1の方法は、円形断面の細線を得ること
ができるが、凝固時の冷却速度が遅いため、製造される
細線の直径が小さく限定される欠点を持っている。第2
の方法のうち、一方の静止水中に噴出する方法は、水中
入射時の衝撃により良質の細線が得られにくい。他方の
回転液中紡糸法は特公昭60−38228号公報に記載されて
おり、静止水中に噴出する方法と比較し、遠心力と噴出
圧力の整合により冷却媒体の乱れを制御することができ
る。また、この方法によれば、〜105℃/秒オーダー
という高い冷却速度が得られるため、過飽和合金の製造
が可能である。
In order to overcome such conventional drawbacks, it is necessary to obtain a so-called supersaturated solid solution ingot having a chromium content of 1% by weight or more and less precipitation of chromium. As a method therefor, there is a method of directly obtaining a thin wire-shaped ingot from molten metal. In this method, since the cooling rate at the time of forming the ingot from the molten metal is extremely fast, precipitation of intermetallic compounds and the like is very small, and a supersaturated solid solution can be easily obtained. There are two main methods: a method of ejecting molten metal into a refrigerant gas to cool and solidify it, and a rotating submerged spinning method of ejecting molten metal to a liquid cooling medium that rotates by centrifugal force to cool and solidify it. The first method can obtain a thin wire having a circular cross section, but has a drawback that the diameter of the thin wire to be produced is small and limited because the cooling rate during solidification is slow. Second
Of the above methods, one of the methods of ejecting into still water makes it difficult to obtain a fine wire of good quality due to the impact when incident in water. On the other hand, the rotating submerged spinning method is described in Japanese Examined Patent Publication No. 60-38228, and the turbulence of the cooling medium can be controlled by matching the centrifugal force and the jet pressure as compared with the method of jetting in stationary water. Further, according to this method, a high cooling rate of the order of -10 5 ° C / sec can be obtained, so that a supersaturated alloy can be manufactured.

【0004】[0004]

【発明が解決しようとする課題】優れた機械的・電気的
特性と耐熱性をあわせ持つ銅クロム合金細線を製造する
ためには、従来の約1重量%よりも多くのクロムを含有
する銅クロム合金が必要であった。一方、このような過
飽和固溶体を得る方法として有力な溶融金属から直接に
細線状鋳塊を製造する方法がある。しかし、この方法に
より作製された細線は、長さ方向の線径むら、並びに真
円性に欠ける。また、急冷固化された細線の加工、熱処
理を行わないので、例えばマグネットワイヤ、精密機器
などに組み込まれるスプリングとして使用した場合、細
線の線径ムラヤ機械強度の不足等によって、機器の性能
を悪化させるという問題がある。
In order to produce a copper-chromium alloy thin wire having both excellent mechanical and electrical characteristics and heat resistance, copper-chromium containing more chromium than the conventional about 1% by weight is used. An alloy was needed. On the other hand, as a method of obtaining such a supersaturated solid solution, there is a method of directly producing a fine linear ingot from a powerful molten metal. However, the thin wire produced by this method lacks the unevenness of the wire diameter in the length direction and the roundness. Further, since the rapidly solidified thin wire is not processed or heat-treated, when it is used as a spring incorporated in, for example, a magnet wire or precision equipment, the wire diameter of the thin wire is inferior in mechanical strength due to lack of mechanical strength. There is a problem.

【0005】本発明は上記のような問題点を解消するた
めになされたもので、回転液中紡糸法により、約1重量
%以上の高濃度クロムを含有する銅クロム合金細線を作
製することで、過飽和固溶体が得られ、また、作製され
た細線を特定の条件で伸線加工すると、断面の真円度、
長さ方向の太さむらが改良される。更に、液体化処理及
び時効処理を選定することで優れた機械的電気的特性す
なわち高い引張り強度と高い導電率、高耐熱性をあわせ
持つ銅クロム合金細線の製造方法を得ることを目的とし
ている。
The present invention has been made in order to solve the above-mentioned problems, and by producing a copper-chromium alloy fine wire containing high concentration chromium of about 1% by weight or more by a spinning liquid spinning method. , A supersaturated solid solution is obtained, and when the produced thin wire is drawn under specific conditions, the circularity of the cross section,
The thickness unevenness in the length direction is improved. Further, it is an object of the present invention to obtain a method for producing a copper-chromium alloy fine wire having excellent mechanical and electrical characteristics, that is, high tensile strength, high electrical conductivity and high heat resistance, by selecting liquefaction treatment and aging treatment.

【0006】[0006]

【課題を解決するための手段】本発明に係る銅クロム合
金細線は、高速回転する円筒状ドラム内に遠心力で冷媒
液体層を形成し、この冷媒液体層に重量%で1.2〜5.
0のクロムを含有する溶融銅クロム合金をノズルから噴
出して冷却・固化させ、作製された銅クロム合金細線を
伸線加工した後、時効硬化処理して得られるものであ
る。
In the thin copper-chromium alloy wire according to the present invention, a refrigerant liquid layer is formed in a cylindrical drum rotating at a high speed by centrifugal force, and 1.2 to 5% by weight of the refrigerant liquid layer is formed in the refrigerant liquid layer. .
It is obtained by jetting a molten copper-chromium alloy containing 0 chromium from a nozzle to cool and solidify it, wire-drawing the produced copper-chromium alloy thin wire, and then subjecting it to an age hardening treatment.

【0007】即ち、本発明に係る銅クロム合金細線は、
1.2〜5.0重量%のクロムを含有する銅クロム合金よ
りなり、該銅クロム合金が過飽和固溶体であることを特
徴とする。
That is, the thin copper-chromium alloy wire according to the present invention is
It is characterized by comprising a copper-chromium alloy containing 1.2 to 5.0% by weight of chromium, and the copper-chromium alloy being a supersaturated solid solution.

【0008】更に、本発明に係る銅クロム合金細線の製
造方法は、高速回転する円筒状ドラム内に遠心力で冷媒
液体層を形成し、この冷媒液体層に1.2〜5.0重量%
のクロムを含有する溶融銅クロム合金をノズルから噴出
して、冷却固化させ、得られた銅クロム合金細線を伸線
加工した後、時効硬化処理を行うことを特徴とする。
Further, in the method for producing a copper-chromium alloy thin wire according to the present invention, a refrigerant liquid layer is formed in a cylindrical drum rotating at a high speed by centrifugal force, and 1.2 to 5.0% by weight of the refrigerant liquid layer is formed.
The molten copper-chromium alloy containing chromium is ejected from a nozzle to be cooled and solidified, the obtained copper-chromium alloy thin wire is drawn, and then an age hardening treatment is performed.

【0009】また、本発明に係る銅クロム合金細線の製
造方法は、高速回転する円筒状ドラム内に遠心力で冷媒
液体層を形成し、この冷媒液体層に1.2〜5.0重量%
のクロムを含有する溶融銅クロム合金をノズルから噴出
して、冷却固化させ、得られた銅クロム合金細線を溶体
化処理した後、伸線加工し、時効硬化処理を行うことを
特徴とする。
Further, in the method for producing a copper-chromium alloy thin wire according to the present invention, a refrigerant liquid layer is formed in a cylindrical drum rotating at high speed by centrifugal force, and 1.2 to 5.0% by weight of the refrigerant liquid layer is formed.
The molten copper chromium alloy containing chromium is ejected from a nozzle to be cooled and solidified, and the obtained copper chromium alloy thin wire is subjected to solution treatment, followed by wire drawing and age hardening treatment.

【0010】上記銅クロム合金細線において、クロムの
含有量を重量%で1.2〜5.0に限定したのは、1.2
重量%未満では銅中に固溶されるクロム量が不足し、機
械的特性、耐熱性の改善がされず、5.0重量%を超え
ると、冷却速度の関連で充分な過飽和固溶体が形成され
ず、また、高価となるためである。
In the above copper-chromium alloy thin wire, the content of chromium is limited to 1.2 to 5.0 by weight%, which is 1.2.
If it is less than 5% by weight, the amount of chromium solid-dissolved in copper is insufficient and the mechanical properties and heat resistance are not improved. If it exceeds 5.0% by weight, a sufficient supersaturated solid solution is formed in relation to the cooling rate. In addition, it is expensive.

【0011】また、銅クロム合金細線の直径は、30〜
500μmの範囲が好ましい。30μm未満では、均一
な連続細線が得られにくく、伸線加工を施した後の線形
が細くなりすぎるため、その用途が限定されてしまい、
500μmを超えると、冷却能が不足するため、均一な
連続細線が得られないためである。
Further, the diameter of the copper-chromium alloy thin wire is 30 to
The range of 500 μm is preferable. If it is less than 30 μm, it is difficult to obtain a uniform continuous thin wire, and the linear shape after wire drawing becomes too thin, so that its use is limited,
This is because if it exceeds 500 μm, the cooling ability becomes insufficient and a uniform continuous thin wire cannot be obtained.

【0012】細線の断面形状を円形にして、長手方向の
線径むらを極力少なくし、かつ機械的特性を向上させる
ためには、断面減少率で40〜80%の伸線加工を行う
ことが好ましい。40%未満では線径むらを完全に無く
すことができず、80%を超えると断線が生じ易く、コ
ストの上昇をもたらすためである。
In order to minimize the unevenness of the wire diameter in the longitudinal direction and to improve the mechanical properties by making the cross-sectional shape of the fine wire circular, it is necessary to perform wire drawing at a cross-section reduction rate of 40 to 80%. preferable. This is because if it is less than 40%, the unevenness of the wire diameter cannot be completely eliminated, and if it exceeds 80%, disconnection is likely to occur, resulting in an increase in cost.

【0013】更に、優れた機械的電気的特性を得るため
には、クロムを析出させるための時効硬化処理温度は4
00〜460℃で行うことが好ましく、機械的強度を優
先させた用途の場合には420〜440℃で行うことが
なお好ましい。
Furthermore, in order to obtain excellent mechanical and electrical characteristics, the age hardening treatment temperature for precipitating chromium is 4
It is preferably carried out at 00 to 460 ° C., and more preferably 420 to 440 ° C. in the case of use in which mechanical strength is prioritized.

【0014】[0014]

【作用】約1重量%以下のクロムを含有する銅クロム合
金細線では、時効硬化処理により、銅中に固溶されたク
ロムを析出させることで機械的電気的特性の改善を図っ
ている。すなわち、溶質原子であるクロムを銅中に完全
固溶させ、このような状態を常温まで維持するための溶
体化処理が時効硬化処理の前に必要とされる。しかし、
約1重量%以上のクロムを含有する銅クロム合金では、
従来の溶体化処理を施しても、常温においてはクロムを
完全にマトリックスである銅中に固溶させることはでき
ない。常温において過飽和固溶体を形成させるために
は、溶融状態から103〜105℃/秒程度の冷却速度で
急冷固化させることが必要となる。
With respect to the copper-chromium alloy fine wire containing about 1% by weight or less of chromium, the mechanical and electrical characteristics are improved by precipitating chromium dissolved in copper by age hardening treatment. That is, solution treatment for completely dissolving chromium, which is a solute atom, in copper and maintaining such a state up to room temperature is required before the age hardening treatment. But,
In a copper-chromium alloy containing about 1% by weight or more of chromium,
Even at the conventional solution treatment, chromium cannot be completely dissolved in copper as a matrix at room temperature. In order to form a supersaturated solid solution at room temperature, it is necessary to quench and solidify the molten state at a cooling rate of about 10 3 to 10 5 ° C / sec.

【0015】本発明によれば、約1.2〜5重量%以上
のクロムを含有する、銅クロム溶融合金を急冷固化させ
ることにより、常温において過飽和固溶体が得られ、ま
た、急冷固化の過程で溶体化処理がなされるので、従来
の溶体化処理工程を省略することが可能となり、伸線加
工に引き続き最適な時効硬化処理を選定することで、従
来では得られなかった優れた機械的電気的特性と耐熱性
を有する銅クロム合金細線を得ることができ、かつ断面
の真円度と長さ方向の線径むらが改良される。もちろ
ん、急冷固化された銅クロム合金の細線を改めて溶体化
処理し、続いて伸線加工と時効硬化処理を施しても、同
様に優れた機械的電気的特性と耐熱性を有する銅クロム
合金細線を得ることができ、かつ断面の真円度と長さ方
向の線径むらが改良される。これらのことは、後述の実
施例によって確認することができた。
According to the present invention, a supersaturated solid solution is obtained at room temperature by rapidly solidifying a copper-chromium molten alloy containing about 1.2 to 5% by weight or more of chromium, and in the process of rapid solidification. Since solution treatment is performed, it is possible to omit the conventional solution treatment step, and by selecting the optimum age hardening treatment after wire drawing, it is possible to obtain excellent mechanical and electrical A copper-chromium alloy thin wire having characteristics and heat resistance can be obtained, and the roundness of the cross section and the unevenness of the wire diameter in the length direction are improved. Of course, even if the rapidly solidified copper-chromium alloy thin wire is subjected to solution treatment again, followed by wire drawing and age hardening treatment, it also has excellent mechanical and electrical characteristics and heat resistance. And the roundness of the cross section and the unevenness of the wire diameter in the length direction are improved. These can be confirmed by the examples described later.

【0016】[0016]

【実施例】【Example】

実施例1〜3 重量%にて10%Cr−90%Cu組成の母合金から2
%Cr−98%Cu合金をアルゴン雰囲気中で溶製して
新たな母合金とし、回転液中紡糸法によりCr−Cu合
金細線を作製した。すなわち、上記組成の溶融合金を径
200μmのノズルよりアルゴンガス4.5kg/cm2
(ゲージ圧)で噴出させ、これを内径370mmφの回転
ドラム内に形成された深さ17mmの冷媒液体層に導入
角45°で導き、103〜105℃/秒の冷却速度で急冷
固化させ、平均直径180μmの連続細線を得た。この
時の回転ドラムの速度は9.5m/秒であり、ノズルと
冷却液面との距離は約8mmに保持した。
Examples 1 to 2 from a master alloy having a composition of 10% Cr-90% Cu at 2 wt%
% Cr-98% Cu alloy was melted in an argon atmosphere to form a new mother alloy, and a Cr-Cu alloy fine wire was produced by a spinning liquid spinning method. That is, a molten alloy having the above composition was passed through a nozzle having a diameter of 200 μm and an argon gas of 4.5 kg / cm 2
(Gauge pressure), and this is led to a refrigerant liquid layer having a depth of 17 mm formed in a rotating drum having an inner diameter of 370 mmφ at an introduction angle of 45 ° and rapidly cooled and solidified at a cooling rate of 10 3 to 10 5 ° C./sec. A continuous thin wire having an average diameter of 180 μm was obtained. At this time, the speed of the rotary drum was 9.5 m / sec, and the distance between the nozzle and the cooling liquid surface was kept at about 8 mm.

【0017】なお、過飽和固溶体形成の確認は、作製さ
れた銅クロム合金細線の横断面をEPMAを用いて面分
析し、クロムの析出状況を確認した。
In order to confirm the formation of the supersaturated solid solution, the cross section of the produced copper-chromium alloy thin wire was surface-analyzed using EPMA to confirm the state of chromium precipitation.

【0018】次に、このCr−Cu合金の細線をアルゴ
ン雰囲気中で950〜1050℃×1時間の溶体化処理
を行ったものと、As cast状態の各細線に、ダイ
ヤモンドダイスを用いて、常温で断面減少率80%の伸
線加工を施した。その後、400〜500℃×3時間の
時効硬化処理を施して真円度と長さ方向の線径むら、並
びに引張強度と導電率の測定を行った。
Next, the thin wires of this Cr--Cu alloy were subjected to solution treatment at 950 to 1050 ° C. for 1 hour in an argon atmosphere, and each thin wire in the As cast state was heated at room temperature using a diamond die. Then, wire drawing was performed with a cross-section reduction rate of 80%. After that, an age hardening treatment was performed at 400 to 500 ° C. for 3 hours to measure the roundness, the wire diameter unevenness in the length direction, and the tensile strength and the electrical conductivity.

【0019】なお、実施例中の引張強度は、試験長35
0mmの試料をクロスヘッド速度10mm/分でインス
トロン型引張試験機を用いて測定した(JIS300
3)。 導電率(%IACS)は、測定長500mmとしてダブル
ブリッジ法により抵抗値を測定し、この抵抗値から算出
した(JISC3002)。耐熱性は、440℃で時効硬
化処理した細線の試料を300〜650℃×30分の熱
処理を施した後、マイクロビッカース硬度計を用いて硬
度を測定し、軟化温度を求めた(負荷荷重25g、負荷
時間15秒)。
The tensile strength in the examples is the test length of 35.
A 0 mm sample was measured at a crosshead speed of 10 mm / min using an Instron type tensile tester (JIS300
3). The conductivity (% IACS) was calculated from the resistance value by measuring the resistance value by the double bridge method with a measurement length of 500 mm (JISC3002). The heat resistance was obtained by subjecting a thin wire sample age-hardened at 440 ° C. to heat treatment at 300 to 650 ° C. for 30 minutes and then measuring the hardness using a micro Vickers hardness meter to determine the softening temperature (load load 25 g , Load time 15 seconds).

【0020】更に、長さ方向の線径むらは、試料を10
m採取して、ランダム(10点)に直径を測定し、直径の
最大と最小との差を平均直径で割り、それを100倍し
て求めた。真円度は、同一断面の最大軸直径と最短直径
の比から求めた。
Further, the wire diameter unevenness in the longitudinal direction is 10 for the sample.
m was sampled, the diameter was measured at random (10 points), the difference between the maximum and minimum diameters was divided by the average diameter, and the value was multiplied by 100 to obtain the difference. The roundness was calculated from the ratio of the maximum axis diameter and the shortest diameter of the same cross section.

【0021】図1は、実施例1に示す2%Cr−Cu合
金細線の急冷固化状態の横断面をEPMAにより観察し
た結果で、組成像とクロムのX線像から過飽和固溶体を
形成していることが判る。なお、実施例2及び3で得ら
れた銅クロム合金細線におけるEPMAの結果も実施例
1の結果と実質上同様であった。
FIG. 1 is a result of observing a cross-section of a 2% Cr-Cu alloy thin wire in Example 1 in a rapidly solidified state by EPMA. A supersaturated solid solution is formed from a composition image and an X-ray image of chromium. I understand. The EPMA results of the thin copper-chromium alloy wires obtained in Examples 2 and 3 were also substantially the same as the results of Example 1.

【0022】表1は、引張強度と導電率及び線径むらの
測定結果を示す。表1において、実施例1〜3は本発明
における2.0%Cr−98.0%Cu(重量%)合金組成
からなる急冷細線であり、比較例1〜2は市販されてい
る1.1%Cr−98.9%Cu(重量%)合金で、従来法
により作製された細線である。比較例3は回転液中紡糸
で作製したが、伸線加工を行っていない細線である。比
較例1は引張強度を優先した用途を想定して行われた熱
処理条件の特性値であり、比較例2は導電率を向上させ
るためになされた熱処理条件のそれである。
Table 1 shows the results of measurement of tensile strength, conductivity, and wire diameter unevenness. In Table 1, Examples 1 to 3 are quenching fine wires having a 2.0% Cr-98.0% Cu (wt%) alloy composition in the present invention, and Comparative Examples 1 and 2 are commercially available 1.1. % Cr-98.9% Cu (weight%) alloy, which is a thin wire produced by a conventional method. Comparative Example 3 is a thin wire that was produced by spinning in a rotating liquid but was not drawn. Comparative Example 1 is the characteristic value of the heat treatment conditions performed assuming the use in which the tensile strength is prioritized, and Comparative Example 2 is the heat treatment condition that was performed to improve the conductivity.

【0023】[0023]

【表1】 [Table 1]

【0024】実施例1〜2は、急冷固化された細線を液
体化処理を行わずに伸線加工後、時効硬化処理を施した
試料である。これらの引張強度は60〜81kgf/m
2で比較例1と比較し、15〜56%と大幅に向上さ
せることができた。この際、導電率は440℃時効硬化
処理で若干低下するが、500℃で処理した比較例1と
ほぼ同等な値を示した。
Examples 1 and 2 are samples obtained by subjecting a rapidly solidified thin wire to wire drawing without liquefaction treatment and then age hardening treatment. These tensile strengths are 60 to 81 kgf / m
Compared to Comparative Example 1 in terms of m 2 , it was possible to improve significantly by 15 to 56%. At this time, the conductivity was slightly lowered by the age hardening treatment at 440 ° C., but showed a value almost equal to that of Comparative Example 1 treated at 500 ° C.

【0025】実施例3では、急冷固化された細線を溶体
化処理後、伸線加工と時効硬化処理を施した試料であ
る。実施例3の引張強度は73kgf/mm2で、比較
例1〜2と比較し、40〜52%改善された。この際、
導電率は約80%IACSでほぼ同等な値を示した。
Example 3 is a sample in which a rapidly solidified thin wire was subjected to solution treatment, followed by wire drawing and age hardening. The tensile strength of Example 3 was 73 kgf / mm 2 , which was improved by 40 to 52% as compared with Comparative Examples 1 and 2. On this occasion,
The electrical conductivity was about 80% IACS and showed almost the same value.

【0026】比較例3は、細線の真円度を実施例のそれ
と比較するため示したもので、この場合の真円度は良く
ないが、表1に示す実施例1〜3の細線はいずれも真円
度100%で、長さ方向の線径むらは認められなかっ
た。すなわち、実施例のように伸線加工を施すことで、
真円度と長さ方向の線径むらが改善された。
Comparative Example 3 is shown in order to compare the roundness of the thin line with that of the Example. Although the roundness in this case is not good, the thin lines of Examples 1 to 3 shown in Table 1 will eventually occur. The roundness was 100%, and no wire diameter unevenness in the length direction was observed. That is, by performing wire drawing as in the example,
The roundness and the unevenness of the wire diameter in the length direction were improved.

【0027】次に、実施例1と比較例1を用いて軟化温
度を測定した結果を図2に示す。実施例1の場合、約5
50℃までHv=260を保持し、その後、硬度は低下
し軟化が開始している。これに対して比較例1では約5
00℃を超えると軟化が始まっている。以上の結果から
実施例1の軟化温度は約50℃改善され、約620℃の
熱処理においても比較例1と同等な硬度が得られた。
Next, the results of measuring the softening temperature using Example 1 and Comparative Example 1 are shown in FIG. In the case of Example 1, about 5
Hv = 260 was maintained up to 50 ° C., after which the hardness decreased and softening started. On the other hand, in Comparative Example 1, about 5
When it exceeds 00 ° C, softening has started. From the above results, the softening temperature of Example 1 was improved by about 50 ° C., and the hardness equivalent to that of Comparative Example 1 was obtained even by the heat treatment at about 620 ° C.

【0028】実施例4〜6 重量%による組成が、3%Cr−97%Cu合金をアル
ゴン雰囲気中で溶融し、径195μmのノズルよりアル
ゴンガス4.2kg/cm2(ゲージ圧)で噴出させ、内径
370mmφの回転ドラム内に形成させた深さ17mm
の冷媒液体層に導入角45°で導き、103〜105℃/
秒の冷却速度で急冷固化させ、平均直径190μmの連
続細線を得た。この時の回転ドラムの速度は9.8m/
秒であり、ノズルと冷却液面との距離は約8mmに保持
した。
The composition according to Examples 4 to 6% by weight was obtained by melting a 3% Cr-97% Cu alloy in an argon atmosphere and jetting it with an argon gas of 4.2 kg / cm 2 (gauge pressure) from a nozzle having a diameter of 195 μm. , A depth of 17 mm formed in a rotating drum with an inner diameter of 370 mmφ
Led to the refrigerant liquid layer at 45 ° with an inlet angle of 10 3 to 10 5 ℃ /
It was rapidly solidified at a cooling rate of 2 seconds to obtain a continuous thin wire having an average diameter of 190 μm. The speed of the rotating drum at this time is 9.8 m /
Seconds, and the distance between the nozzle and the cooling liquid surface was maintained at about 8 mm.

【0029】次に、このCr−Cu合金の細線をアルゴ
ン雰囲気中で950〜1050℃×1時間の溶体化処理
を行ったものと、As cast状態の細線に、ダイヤ
モンドダイスを用いて、常温で断面減少率80%の伸線
加工をした。その後、400〜500℃×3時間の時効
処理を施して真円度と長さ方向の線径むら、並びに引張
強度と導電度の測定を行った。
Next, this Cr--Cu alloy thin wire was subjected to solution treatment at 950 to 1050 ° C. for 1 hour in an argon atmosphere, and a thin wire in the As cast state was used at room temperature using a diamond die. Wire drawing was performed with a cross-section reduction rate of 80%. Then, an aging treatment was performed at 400 to 500 ° C. for 3 hours to measure the roundness, the wire diameter unevenness in the length direction, and the tensile strength and the conductivity.

【0030】表2にその結果を示す。表2に示した実施
例4〜6の細線はいずれも真円度100%であり、長手
方向の線径むらは0%であった。また、EPMAによる
面分析の結果、過飽和固溶体を形成していることを確認
した。実施例4〜5の引張強度は従来材(表1で示した
比較例1〜2)の48〜52kgf/mm2より優れてお
り、大幅に改善することができた。そして、導電率は従
来材と比較すると若干低下しているが、強度を優先させ
た用途を想定した場合に有効である。また、溶体化処理
を行った実施例6の引張強度は約54%向上し、導電率
は75%IACSが得られた。
The results are shown in Table 2. The thin wires of Examples 4 to 6 shown in Table 2 all had a circularity of 100% and a wire diameter unevenness in the longitudinal direction of 0%. As a result of surface analysis by EPMA, it was confirmed that a supersaturated solid solution was formed. The tensile strength of Examples 4 to 5 was superior to that of the conventional material (Comparative Examples 1 and 2 shown in Table 1) of 48 to 52 kgf / mm 2 , and could be greatly improved. Although the conductivity is slightly lower than that of the conventional material, it is effective in the case where the use is prioritized for strength. In addition, the tensile strength of the solution-treated Example 6 was improved by about 54%, and the conductivity was 75% IACS.

【0031】[0031]

【表2】 [Table 2]

【0032】なお、実施例には示していないが、Crの
含有量が2.0重量%、3.0重量%以外のCr−Cu合
金においても上記実施例と同様の結果が得られた。
Although not shown in the examples, the same results as in the above examples were obtained with Cr-Cu alloys having Cr contents other than 2.0% by weight and 3.0% by weight.

【0033】[0033]

【発明の効果】以上のように、本発明によれば、高速回
転する円筒状ドラム内に遠心力で冷媒液体層を形成し、
この冷媒液体層に重量%で1.2〜5.0のクロムを含有
する溶融銅クロム合金をノズルから噴出し、急冷固化さ
せ、作製された合金細線を伸線加工した後、最適な時効
硬化処理を行うことで、また、急冷固化させ、作製され
た合金細線を溶体化処理にひき続き、伸線加工と時効硬
化処理を行うことで、断面の真円度、長さ方向の線径む
らが改良され、また、優れた機械的電気的特性すなわち
高い引張強度と高い導電率、更に、優れた耐熱性をあわ
せもつ過飽和固溶体の形態の銅クロム合金よりなる細線
の製造方法を得ることができる。
As described above, according to the present invention, the refrigerant liquid layer is formed by the centrifugal force in the cylindrical drum rotating at a high speed,
The molten copper-chromium alloy containing 1.2 to 5.0% by weight of chromium is jetted from this nozzle into this refrigerant liquid layer, quenched and solidified, and the produced alloy fine wire is wire-drawn. By subjecting the alloy thin wires produced by quenching and solidification to the solution treatment followed by wire drawing and age hardening, the circularity of the cross section and the unevenness of the wire diameter in the length direction can be obtained. In addition, it is possible to obtain a method for producing a fine wire made of a copper-chromium alloy in the form of a supersaturated solid solution, which has excellent mechanical and electrical properties, that is, high tensile strength, high electrical conductivity, and excellent heat resistance. .

【0034】なお、本発明の銅クロム合金細線は非常に
優れた機械的強度と高導電性、高耐熱性を有しており、
絶縁皮膜焼き付け時に軟化されることなく、高強度マグ
ネットワイヤなどへの適用が容易となり、応用分野の大
幅な拡大が期待される。
The copper-chromium alloy thin wire of the present invention has extremely excellent mechanical strength, high conductivity, and high heat resistance.
It is easy to apply to high-strength magnet wire, etc. without being softened when the insulation film is baked, and it is expected that the field of application will be greatly expanded.

【0035】更に、本発明では、特にバネ限界値(kb
値)の測定は行わなかったが、引張強度とバネ限界値と
の間には相関があり、優れたバネ性を有することが予想
される。このことは、精密機器用の線バネ、例えば時計
用のひげぜんまい等の適用も可能となる。
Further, in the present invention, the spring limit value (kb
Although the value) was not measured, there is a correlation between the tensile strength and the spring limit value, and it is expected to have excellent spring properties. This also makes it possible to apply wire springs for precision equipment, such as balance springs for watches.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1により得られた銅クロム合金細線の金
属組織を示すEPMAによる分析結果を示す写真であ
る。
FIG. 1 is a photograph showing an EPMA analysis result showing a metal structure of a copper-chromium alloy thin wire obtained in Example 1.

【図2】実施例1により得られた銅クロム合金細線と比
較例1の銅クロム細線の軟化特性の測定結果を示すグラ
フである。
FIG. 2 is a graph showing measurement results of softening characteristics of the copper-chromium alloy thin wire obtained in Example 1 and the copper-chromium thin wire of Comparative Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横松 得滋 東京都東久留米市八幡町一丁目2番9号 株式会社オプテックディディ・メルコ・ラ ボラトリー内 (72)発明者 今泉 三之 東京都東久留米市八幡町一丁目2番9号 株式会社オプテックディディ・メルコ・ラ ボラトリー内 (72)発明者 村上 省自 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料研究所内 (72)発明者 吉崎 淨 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社材料研究所内 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Tokushige Yokomatsu 1-2-9 Hachiman-cho, Higashi-Kurume City, Tokyo Metropolitan Co., Ltd. (72) Inventor Mitsuyuki Imaizumi Higashi-Kurume, Tokyo 1-29, Yawata-cho, Ichi, Japan, within the Optec Didy Melco Laboratory Co., Ltd. (72) Inventor, Murakami Shoji 8-1-1, Tsukaguchi Honcho, Amagasaki City Mitsubishi Electric Corporation (72) Inventor Yoshizaki Hachi, 8-1, 1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1.2〜5.0重量%のクロムを含有する
銅クロム合金よりなり、該銅クロム合金が過飽和固溶体
であることを特徴とする銅クロム合金細線。
1. A fine copper-chromium alloy wire comprising a copper-chromium alloy containing 1.2 to 5.0% by weight of chromium, the copper-chromium alloy being a supersaturated solid solution.
【請求項2】 高速回転する円筒状ドラム内に遠心力で
冷媒液体層を形成し、この冷媒液体層に1.2〜5.0重
量%のクロムを含有する溶融銅クロム合金をノズルから
噴出して、冷却固化させ、得られた銅クロム合金細線を
伸線加工した後、時効硬化処理を行うことを特徴とする
銅クロム合金細線の製造方法。
2. A refrigerant liquid layer is formed by centrifugal force in a cylindrical drum rotating at a high speed, and a molten copper chromium alloy containing 1.2 to 5.0% by weight of chromium is ejected from the nozzle into the refrigerant liquid layer. Then, it is cooled and solidified, and the obtained copper-chromium alloy thin wire is drawn, and then an age hardening treatment is carried out.
【請求項3】 高速回転する円筒状ドラム内に遠心力で
冷媒液体層を形成し、この冷媒液体層に1.2〜5.0重
量%のクロムを含有する溶融銅クロム合金をノズルから
噴出して、冷却固化させ、得られた銅クロム合金細線を
溶体化処理した後、伸線加工し、時効硬化処理を行うこ
とを特徴とする銅クロム合金細線の製造方法。
3. A refrigerant liquid layer is formed by centrifugal force in a cylindrical drum rotating at a high speed, and a molten copper chromium alloy containing 1.2 to 5.0% by weight of chromium is ejected from a nozzle in this refrigerant liquid layer. Then, it is cooled and solidified, and the obtained copper-chromium alloy thin wire is subjected to solution treatment, followed by wire drawing and age hardening treatment, and a method for producing a copper-chromium alloy thin wire.
JP7674491A 1991-03-15 1991-03-15 Copper chromium thin wire and its production Pending JPH06184668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7674491A JPH06184668A (en) 1991-03-15 1991-03-15 Copper chromium thin wire and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7674491A JPH06184668A (en) 1991-03-15 1991-03-15 Copper chromium thin wire and its production

Publications (1)

Publication Number Publication Date
JPH06184668A true JPH06184668A (en) 1994-07-05

Family

ID=13614114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7674491A Pending JPH06184668A (en) 1991-03-15 1991-03-15 Copper chromium thin wire and its production

Country Status (1)

Country Link
JP (1) JPH06184668A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301942B1 (en) * 2011-05-26 2013-08-30 한국기계연구원 MANUFACTURING METHOD Cu-Cr ALLOY WITH IMPROVED STRENGTH AND ELECTRICAL CONDUCTIVITY AND MANUFACTURED Cu-Cr ALLOY USING THAT
JP2014145128A (en) * 2013-01-30 2014-08-14 Yazaki Corp Copper chromium alloy wire rod and non-heating manufacturing method of high strength and high ductility copper chromium alloy wire rod
CN104137191A (en) * 2011-12-28 2014-11-05 矢崎总业株式会社 Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire
CN104328369A (en) * 2014-07-16 2015-02-04 国家电网公司 Heat treatment method of copper-chromium alloy used for high-voltage switch

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101301942B1 (en) * 2011-05-26 2013-08-30 한국기계연구원 MANUFACTURING METHOD Cu-Cr ALLOY WITH IMPROVED STRENGTH AND ELECTRICAL CONDUCTIVITY AND MANUFACTURED Cu-Cr ALLOY USING THAT
CN104137191A (en) * 2011-12-28 2014-11-05 矢崎总业株式会社 Ultrafine conductor material, ultrafine conductor, method for preparing ultrafine conductor, and ultrafine electrical wire
JP2014145128A (en) * 2013-01-30 2014-08-14 Yazaki Corp Copper chromium alloy wire rod and non-heating manufacturing method of high strength and high ductility copper chromium alloy wire rod
CN104328369A (en) * 2014-07-16 2015-02-04 国家电网公司 Heat treatment method of copper-chromium alloy used for high-voltage switch

Similar Documents

Publication Publication Date Title
KR20150023006A (en) Improved aluminum alloys and methods for producing the same
JPH0673513A (en) Production of aluminum-base alloy material having high strength and heat resistance
JPH0621326B2 (en) High strength, heat resistant aluminum base alloy
JPH0534411B2 (en)
JPS649908B2 (en)
JP4193171B2 (en) Method for producing Ti-containing copper alloy sheet or ingot for producing strip with excellent workability
US20040238501A1 (en) Electrode material and method for manufacture thereof
JPWO2018079047A1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
JPWO2018079048A1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered wire, and wire with terminal
JP5411826B2 (en) Copper-nickel-silicon two-phase quenched substrate
JPH0819496B2 (en) Method for manufacturing aluminum alloy parts that retains high fatigue strength even after being kept at high temperature for a long time
JP2001254160A (en) Method of manufacturing aluminum alloy wire, and aluminum alloy
CA2086063C (en) Hardenable copper alloy
JPH06184668A (en) Copper chromium thin wire and its production
TW201821624A (en) Copper alloy wire rod material and production method therefor
JP3490853B2 (en) High-strength, high-conductivity, high-chromium-containing copper alloy material and method for producing the same
JP3447830B2 (en) Invar alloy wire and method of manufacturing the same
JP4257562B2 (en) Manufacturing method of hot forging synchronizer ring made of copper alloy with excellent fatigue strength in chamfer part
Nnakwo et al. Effect of Nickel and Iron Addition on the Structure and Mechanical Properties of Tin Bronze (Cu-10wt% Sn)
JP2005526183A5 (en)
JP3307324B2 (en) Manufacturing method of chromium-zirconium based copper alloy material
JPH049253A (en) Production of copper alloy
JPS60245770A (en) Fe base alloy material superior in workability
JP2798344B2 (en) Power boat propeller and method of manufacturing the same
JP2005081371A (en) Electrode material and its production method