JPS62168593A - Sewage treatment - Google Patents

Sewage treatment

Info

Publication number
JPS62168593A
JPS62168593A JP890086A JP890086A JPS62168593A JP S62168593 A JPS62168593 A JP S62168593A JP 890086 A JP890086 A JP 890086A JP 890086 A JP890086 A JP 890086A JP S62168593 A JPS62168593 A JP S62168593A
Authority
JP
Japan
Prior art keywords
microorganisms
treatment
filler
sewage treatment
network structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP890086A
Other languages
Japanese (ja)
Inventor
Tatsuo Takechi
武智 辰夫
Masazumi Inoue
井上 正純
Toshiaki Tsubone
俊明 局
Yuji Yoshii
吉井 裕二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP890086A priority Critical patent/JPS62168593A/en
Publication of JPS62168593A publication Critical patent/JPS62168593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Biological Wastes In General (AREA)

Abstract

PURPOSE:To contrive a high-speed treatment and more compact facilities by utilizing a chemical synthesis macromolecule forming a solid network to receive and accommodate microbes as at least part of filling material. CONSTITUTION:To treat sewage with microbes adsorbed to a filling material, a chemical synthesis macromolecule forming such networks as polyacrylamide, acrylamide-acrylic acid copolymer, acrylamide-hydroxyethyl methacrylate copolymer, polystyrene, polyvinyl acetate, polyurethane and the like are utilized as part of filling material. By said process, microbes for sewage treatment are maintained in the treatment facilities at a high density to enhance treatment efficiency, and offer a high-speed treatment and more compact facilities.

Description

【発明の詳細な説明】 「発明の目的」 本発明は汚水処理方法に係り、汚水処理微生物を処理槽
内に高密度で保持せしめ、処理の高速化と処理槽のコン
パクト化を図り、又安定した処理を行わしめ得る汚水処
理方法を提供しようとするものでおる。
Detailed Description of the Invention ``Object of the Invention'' The present invention relates to a sewage treatment method, which maintains sewage treatment microorganisms in a treatment tank at a high density, speeds up the treatment, makes the treatment tank more compact, and provides stable treatment. The purpose of the present invention is to provide a method for treating wastewater that can carry out such treatment.

産業上の利用分野 生物による汚水処理技術。Industrial applications Biological wastewater treatment technology.

従来の技術 汚水を微生物などによって浄化処理することについては
従来から種々の提案がなされ且つ実用化されている。即
ちこのような汚水処理方法として従来採用されているも
のとしては、■例えば固定層もしくは流動層の生物濾過
層を用いる粒状充填材方式、■回転円板などを用いる平
板状充填材方式、■ハニカムチューブ充填接触酸化法、
リング充填散水炉床法のような中空モジュール状充填材
方式などがある。
BACKGROUND OF THE INVENTION Various proposals have been made and put into practical use for purifying wastewater using microorganisms and the like. In other words, the methods conventionally adopted as such wastewater treatment methods include: (1) granular filler method using a biological filtration bed, such as a fixed bed or fluidized bed, (2) flat filler method using a rotating disk, etc., and (2) honeycomb method. Tube filling catalytic oxidation method,
There are hollow modular filling methods such as the ring-filled watering hearth method.

又これらの充填材の材質としては、砂、アンスラサイト
、塩化ビニル、ポリエチレン等があり、これら充填材の
形状を工夫し、汚水処理微生物が付着し易く、又付着微
生物膜が剥離し難くなり、光填容積当りの生物付着表面
積が大となるように充填材表面を粗くシ、充填材に突起
部を設けるなどの改良が重ねられて来た。
In addition, the materials for these fillers include sand, anthracite, vinyl chloride, polyethylene, etc., and the shapes of these fillers are designed to make it easier for sewage treatment microorganisms to adhere to them, and to make it difficult for the attached microorganism film to peel off. Improvements have been made, such as roughening the surface of the filler and providing protrusions on the filler so as to increase the surface area for bioadhesion per light filled volume.

発明が解決しようとする問題点 然し上記のような従来法によるものにおいてはなおそれ
なりの問題点を有している。即ち上記したような改良工
夫にも拘わらず、従来の充填材においては汚水処理微生
物がその表面に付着するのみで、充填材の内部に入り込
むことがなく、付着汚泥量は充填材表面積によって制限
される不利がある。又従来の充填材においてはその微生
物膜が微生物自身の生産する粘性物質、糸状物質などに
よって充填材表面に付着しているものでおるから汚水の
性状、負荷量、水温等の条件やその変動によっては一旦
付着した微生物膜が剥離し、更に処理層目詰り解消のた
めの空気、水などを送った洗浄操作に際しても剥離せし
められ、生物膜が再び付着、成長するまでの期間におい
て実質的に処理効果が大きく低減することから処理水の
水質が相当に悪化せざるを得ない。
Problems to be Solved by the Invention However, the conventional methods described above still have their own problems. In other words, despite the improvements mentioned above, with conventional fillers, sewage treatment microorganisms only adhere to the surface of the filler and do not penetrate inside the filler, and the amount of adhered sludge is limited by the surface area of the filler. There is a disadvantage. In addition, in conventional fillers, the microbial film is attached to the surface of the filler by viscous substances, filamentous substances, etc. produced by the microorganisms themselves. Once the attached microbial film is peeled off, it is also removed during the cleaning operation in which air, water, etc. are sent to eliminate clogging of the treatment layer, and the biofilm is essentially treated during the period until it re-attaches and grows. Since the effectiveness is greatly reduced, the quality of the treated water has to deteriorate considerably.

なおこのような不利を解消すべく、汚水処理微生物を寒
天、K−カラギーナン、アクリルアミド等による含水ゲ
ル中に包括固定化し、これを充填材として汚水処理する
ことも提案されているが、この方法においては固定化剤
のゲル化に際して微生物の一時的な加熱、毒物との接触
等が僻けられず、汚水処理活性の低下を来すことになる
。又実質的に水に不溶で、有機溶媒に可溶な樹脂を固定
化剤として用いることも考えられるが、この場合には有
機溶媒の毒性が強すぎるため微生物の固定化には使用で
きない。
In order to overcome these disadvantages, it has been proposed to entrapping and immobilizing sewage treatment microorganisms in a water-containing gel made of agar, K-carrageenan, acrylamide, etc., and to treat sewage using this as a filler. When the immobilizing agent gels, temporary heating of microorganisms, contact with poisonous substances, etc. cannot be prevented, resulting in a decrease in sewage treatment activity. It is also possible to use a resin that is substantially insoluble in water and soluble in an organic solvent as an immobilizing agent, but in this case, the organic solvent is too toxic and cannot be used for immobilizing microorganisms.

「発明の構成」 問題点を解決するだめの手段 汚水を充填材に附着した微生物によって処理するに当り
、前記充填材の少くとも一部に微生物の進入、格納し得
る立体的な網状構造を形成した化学合成高分子を使用し
、該立体的網状構造物を成形するに際しては微生物を包
括、固定化させないことを特徴とし、微生物を前記網状
構造物に進入、格納せしめた条件下で汚水処理する汚水
処理方法である。
"Structure of the Invention" Means for Solving the Problems When wastewater is treated by microorganisms attached to a filler, a three-dimensional network structure is formed in at least a portion of the filler that allows microorganisms to enter and be stored therein. The three-dimensional network structure is formed using a chemically synthesized polymer that does not entrap or immobilize microorganisms, and the sewage treatment is carried out under conditions in which microorganisms are allowed to enter and be contained in the network structure. It is a wastewater treatment method.

作用 汚水処理をなす微生物が、網状構造物に進入、格納され
た条件下で処理するので処理槽内に高密度に保持され、
処理の高速化、設備のコンパクト化をもたらす。
The microorganisms that perform sewage treatment enter the network structure and are treated under the conditions in which they are stored, so they are retained at high density within the treatment tank.
This results in faster processing and more compact equipment.

前記網状構造物が化学合成高分子によって形成されるこ
とによりそのゲル成形物が微生物作用で崩壊せしめられ
ることがなく、長期使用に耐える。
Since the network structure is formed from a chemically synthesized polymer, the gel molded product is not destroyed by microbial action and can withstand long-term use.

更にゲル形成時に微生物体の包括、固定化をしないので
微生物の活性低下を来すことがなく、又ゲル成形時に残
留した毒性物質−を充分に洗い落すことができる。
Furthermore, since microorganisms are not entrained or immobilized during gel formation, the activity of microorganisms does not decrease, and toxic substances remaining during gel formation can be sufficiently washed away.

前記のように網状構造物に進入、格納された微生物は処
理条件の変動によっても微生物膜が剥離することがなく
、安定した処理効果を維持せしめる。
As mentioned above, the microorganisms that have entered and been stored in the network structure do not have their microbial membranes peeled off even when the processing conditions change, allowing stable processing effects to be maintained.

実施例 上記したような本発明について更に説明すると、本発明
においては充填材の少くとも一部に微生物の通人格納し
得る立体的な網状構造を形成した化学合成高分子を使用
し、しかもこの立体的な網状構造物を形成せしめるに際
しては微生物を包括、固定化させないことを特質とし、
このように微生物の進入し得る立体的な網状構造物を形
成せしめるための化学合成高分子としては、ポリアクリ
ルアミド、アクリルアミド−アクリル酸コポリマー、ア
クリルアミド−ヒドロキシエチルメタクリラートコポリ
マー、ポリスチレン、ポリ酢酸ビニル、ポリビニルアル
コール、ポリウレタン、ポリエチレングリコール−メタ
クリル酸コポリマー、ポリエチレングリコール−ヒドロ
キシエチルアクリレート−イソホロンジイソシネ−トコ
ポリマー、ポリブロピレングリコールーヒドロキシェチ
ルアクリレートーイソホロンジイソシネートコボリマー
などを用いることができ、高分子形成のための出発物質
としては、モノマーでも、プレポリマー(オリゴマー)
でもよい。これらの高分子を形成するに当って架橋剤(
例えば、’N、N’−メチレンビスアクリルアミド)、
重合促進剤(例えば、N、N、N’ 、N’−テトラメ
チルエチレンジアミン、β−ジメチルアミンプロピオニ
トリル)、重合開始剤(例えば、K、2820B + 
(NU(+)z820g)、光などを必要に応じて使用
する。
EXAMPLE To further explain the present invention as described above, in the present invention, a chemically synthesized polymer having a three-dimensional network structure capable of containing microorganisms is used in at least a part of the filler. When forming a three-dimensional network structure, it is characterized by not enclosing or immobilizing microorganisms,
Examples of chemically synthesized polymers for forming a three-dimensional network structure into which microorganisms can enter include polyacrylamide, acrylamide-acrylic acid copolymer, acrylamide-hydroxyethyl methacrylate copolymer, polystyrene, polyvinyl acetate, and polyvinyl methacrylate. Alcohol, polyurethane, polyethylene glycol-methacrylic acid copolymer, polyethylene glycol-hydroxyethyl acrylate-isophorone diisocyanate copolymer, polypropylene glycol-hydroxyethyl acrylate isophorone diisocyanate copolymer, etc. can be used. Starting materials for the formation of molecules can be monomers or prepolymers (oligomers).
But that's fine. In forming these polymers, a crosslinking agent (
For example, 'N,N'-methylenebisacrylamide),
Polymerization accelerators (e.g. N, N, N', N'-tetramethylethylenediamine, β-dimethylamine propionitrile), polymerization initiators (e.g. K, 2820B +
(NU(+)z820g), use light, etc. as necessary.

父、塞天、K−カラギーナン、アルギン酸などの天然高
分子素材を併用し、熱変性もしくはCa@化等の操作に
よって天然高分子の1次ゲルを形成し、しかる後に合成
高分子ゲルの形成操作を行うことも可能である。
A primary gel of natural polymers is formed by heat denaturation or Ca@ conversion using a combination of natural polymer materials such as fluorophore, K-carrageenan, and alginic acid, and then a synthetic polymer gel is formed. It is also possible to do this.

本発明方法において、化学合成高分子を使用することと
した所以は、天然高分子ゲル成形物が微生物作用によっ
て崩壊するため天然高分子のみから成るゲル成形物は汚
水処理用の充填材としての長期使用に耐えないからであ
る。
The reason for using chemically synthesized polymers in the method of the present invention is that because natural polymer gel moldings disintegrate due to microbial action, gel moldings made only of natural polymers have a long-term use as fillers for sewage treatment. This is because it cannot withstand use.

上記のような高分子は立体的な網状の構造をなし、その
網目の空間部に微生物体もしくは微生物フロックが進入
し格納可能となる。高分子の網目長さは汚水の性状、通
水条件等にもよるが、1〜15μm程度であることが好
ましい。又汚水との接触、微生物の成長に伴って高分子
の網目空間部に通人格納された微生物と共にゲル表面上
に形成された生物膜が汚水処理の作用を行うため従来の
充填材に比し微生物濃度を高く保持することが可能でア
リ、処理の高速化、処理反応槽のコンパクト化が可能と
なる。
The above-mentioned polymer has a three-dimensional network structure, and microorganisms or microbial flocs can enter and be stored in the spaces of the network. Although the length of the polymer network depends on the properties of wastewater, water flow conditions, etc., it is preferably about 1 to 15 μm. In addition, when it comes into contact with sewage, the biofilm formed on the gel surface along with the microorganisms that are stored in the polymer mesh space as the microorganisms grow performs the action of sewage treatment, compared to conventional fillers. It is possible to maintain a high concentration of microorganisms, speed up the processing, and make the processing reaction tank more compact.

更に高分子による網の1空間部に侵入格納された微生物
は、洗浄操作等に伴う剪断力が作用しても脱落し難いこ
とは明かで、高分子の繊維を介して粘性物質あるいは微
生物系によって生物膜が形成されるため、該微生物膜は
剥離し難いものとなり、良好な処理水が安定して得られ
る。
Furthermore, it is clear that microorganisms that enter and are stored in one space of a polymeric net are difficult to fall out even if shearing force is applied during cleaning operations, and that microorganisms that enter and are stored in one space of a polymeric net are difficult to fall out even if the shearing force associated with cleaning operations is applied. Since a biofilm is formed, the microbial film is difficult to peel off, and good quality treated water can be stably obtained.

アクリルアミドモノマー、N 、 N’−メチレンビス
アクリルアミドやポリプロピレングリコール可溶化のた
めの有機溶媒などは毒性を有するためそのゲル化時に微
生物体を同時に包括、固定化せんとすれば微生物活性の
低下を来すと共に素早い熟練した技巧を必要とするが、
本発明方法においてはゲル形成時に微生物体の包括、固
定化を行わないためこのような間頑点がないものであり
、またゲル成形終了時に残留した毒性物質を充分に時間
をかけて洗い落すことができる。又ゲル化と同時に微生
物を包括・固定化する場合、比較的大型の処理装置にお
いては大量の微生物を培養維持し、これを用いて大量の
充填材を作成し、包括・固定された大量の微生物につい
て生理活性が低下しないように注意を払いつつ処理装置
に充填する必要があるが、不発明方法においては含水ゲ
ルの作成時には大量の微生物を準備、維持する必要がな
く、大型処理装置への対応が容易である。
Acrylamide monomers, N,N'-methylenebisacrylamide, and organic solvents for solubilizing polypropylene glycol are toxic, so if they do not envelop and immobilize microorganisms at the same time during gelation, microbial activity will decrease. It also requires quick and skilled technique,
In the method of the present invention, microorganisms are not entrained or immobilized during gel formation, so there is no such rigidity, and toxic substances remaining at the end of gel formation must be washed away with sufficient time. I can do it. In addition, when entrapping and immobilizing microorganisms at the same time as gelling, a large amount of microorganisms is cultured and maintained in a relatively large processing device, and a large amount of filling material is created using this, and a large amount of entrained and immobilized microorganisms is However, in the uninvented method, there is no need to prepare and maintain a large amount of microorganisms when creating a hydrogel, making it compatible with large-scale processing equipment. is easy.

上述したようにゲルを充填材として使用する場合の形態
としては、高分子ゲル単独で、球状もしくは方形状とな
し、固定床もしくは流動床の反応器として使用すること
、斯かる高分子ゲルを活性炭、プラスチック等による繊
維状、網状、板状もしくはリング状の担体表面に形成し
、回転円板反応器、ハニカムチューブ充填型接触酸化反
応器、リング充填型散水河床反応器などとして使用する
ことができる。汚水処理の用途としては、BOD、CO
D除去用、硝化脱窒用、脱リン用、消化用等の生物反応
による処理プロセスに対してはフロー、負荷量などの工
夫によりすべて適用可能である。
As mentioned above, when gel is used as a filler, the polymer gel alone can be made into a spherical or rectangular shape, used as a fixed bed or fluidized bed reactor, and the polymer gel can be used as a filler with activated carbon. It can be formed on the surface of a fibrous, net-like, plate-like, or ring-like carrier made of plastic, etc., and used as a rotating disk reactor, a honeycomb tube-filled catalytic oxidation reactor, a ring-filled watered river bed reactor, etc. . For sewage treatment purposes, BOD, CO
It can be applied to all biological reaction-based treatment processes such as D removal, nitrification and denitrification, dephosphorization, and digestion by adjusting the flow and load amount.

本発明によるものの具体的な操業例について説明すると
、以下の如くである。
A specific example of operation according to the present invention will be described below.

操業例I KUU& POLACK  (1983、Blotec
hnolo−gy and B!oengineer1
ng 、 Vol + XXV + P、1995〜2
006 )の方法によって、3%寒天により1次ゲルを
形成した後、109gアクリルアミドモノマー、0.5
%N、N’−メチレンビスアクリルアミド、0.5チN
 、 N 、 N’ 、 N’−テトラメチレンジアミ
ン、0.5%に、S、O,を用いて2次ゲルを形成し、
1昼夜流水(水道水)洗澱し7た直径3鴫の球状ゲル1
8tを作成した。
Operation example I KUU & POLACK (1983, Blotec
hnolo-gy and B! oengineer1
ng, Vol + XXV + P, 1995-2
After forming a primary gel with 3% agar by the method of 006), 109 g of acrylamide monomer, 0.5
%N, N'-methylenebisacrylamide, 0.5tiN
, N, N', N'-tetramethylenediamine, 0.5%, S, O, to form a secondary gel,
A spherical gel with a diameter of 3 mm that was washed with running water (tap water) for 1 day and night.
8t was created.

一方これに対する比較対象材としては、直径3膿のガラ
ス球18Aを準備した。
On the other hand, as a comparative material for this, a glass bulb 18A having a diameter of 3 mm was prepared.

これらの充填材を30を容の各別の反応槽に固定槽とし
て充填し、滞留時間を3時間として、pH6,8〜7.
7で、BODが約150号ケ(142〜173 H1/
L )の給食センター油分除去廃水を上向流で36日間
連続通水運転し、処理水の分析を行った。
30 of these fillers were packed as a fixed tank into separate reaction tanks with a volume of 30, and the residence time was set to 3 hours, and the pH was 6.8 to 7.
7, BOD is about 150 (142-173 H1/
The oil-removed wastewater of the school lunch center (L) was operated continuously in an upward flow for 36 days, and the treated water was analyzed.

反応槽底部には夫々散気管を設け、反応槽上部の溢流水
Doが2 mft、以上を保つように曝気し、又実験期
間の後半においては約1週間に1度ずつ計3回それぞれ
の反応槽を夫々の処理水を用いて20 rr?/rr?
/ hr 、 5分間の洗浄を行った。実験期間の水温
は、20.4〜23,1℃の範囲であり、処理水BOD
の分析結果は第1図に示す通りであり、比較方法による
ものの処理水BODの下限は40〜45 mv’L程度
であり、水洗浄に伴って生物膜が著しく剥離し、水洗浄
仮数日間の処理水BODは50〜70 trq/Lに達
した。
An aeration pipe was installed at the bottom of each reaction tank to aerate the overflow water Do at the top of the reaction tank to maintain it at 2 mft or more.In the second half of the experiment period, each reaction was carried out once a week for a total of three times. 20 rr using each treated water in the tank? /rr?
/hr, 5 minutes of washing was performed. The water temperature during the experiment ranged from 20.4 to 23.1℃, and the treated water BOD
The analysis results are as shown in Figure 1, and the lower limit of treated water BOD using the comparative method is about 40 to 45 mv'L, and the biological film is significantly peeled off with water washing, and the number of days after water washing is The treated water BOD reached 50-70 trq/L.

これに比し本発明方法によるポリアクリルアミド球を充
填材として用いたものの処理水BODは5〜f Omv
’Lと比較法によるものに比し10分の1程度も良好で
アリ、水洗浄操作にも拘わらず処理水は安定していた。
In comparison, the BOD of treated water using the method of the present invention using polyacrylamide spheres as a filler is 5~f Omv
The treated water was about 1/10 better than those obtained by the 'L and comparative methods, and the treated water was stable despite the water washing operation.

目視的には水洗浄操作に伴う著しい生物膜の剥離は認め
られなかった。
Visually, no significant detachment of the biofilm was observed due to the water washing operation.

操業例2 繊維太さが1mmで1閣メツシユのポリエチレンネット
による直径40cmの円板状網材を骨材(支持材)とし
て、これに40チポリ工チレングリコールーメタクリル
酸混合溶液10容と、7 % N 、 N’−メチレン
ビスアクリルアミド3容、5%3−ジメチルアミノプロ
ピオニトリル3容、2.5%に、5tO83容とを混ぜ
、紫外線照射によって含水ゲルを形成し、これによって
厚さ3111I++の高分子ゲルによる円板を作成した
。このような円板33枚を用い、3ステージ(1ステー
ジ当り円板11枚)の回転円板処理装置を形成し、円板
間隔を12閣とすると共に円板面積の58チが水面上に
ある:うに円板を設置した。
Operation example 2 A disc-shaped net material with a diameter of 40 cm made of polyethylene net with a fiber thickness of 1 mm and a mesh size was used as an aggregate (supporting material), and 10 volumes of a 40-tylene polyethylene glycol-methacrylic acid mixed solution was added to this, and 7 % N, N'-methylenebisacrylamide 3 volumes, 5% 3-dimethylaminopropionitrile 3 volumes, 2.5% were mixed with 83 volumes of 5tO to form a hydrogel by ultraviolet irradiation, thereby forming a hydrated gel with a thickness of 3111I++. A disc made of polymer gel was created. Using 33 such disks, a 3-stage (11 disks per stage) rotating disk processing device was formed, with the disk spacing being 12 inches, and 58 inches of the disk area being above the water surface. Yes: A sea urchin disk was installed.

一方比較法と同様の形状を有する硬質灰色塩化ビニル板
による回転円板処理装置を用いた。
On the other hand, a rotating disk processing device using a hard gray vinyl chloride plate having the same shape as in the comparative method was used.

これらの装置に対してp)I6.8〜7.5で、BOD
が約120 rrlt (102〜154 W/l )
の生活廃水をBOD而槓面荷が約155’/771’/
日となるように38日間連続通水した。水温は21.4
〜24.6℃の範囲にあり、斯うして処理された水のB
OD分析結果は第2図に示す通りであった。
p) I6.8-7.5 for these devices, BOD
is approximately 120 rrlt (102~154 W/l)
The domestic wastewater of BOD is approximately 155'/771'/
Water was passed continuously for 38 days so that the number of days reached 100 days. Water temperature is 21.4
~24.6°C and B of the water thus treated.
The OD analysis results were as shown in FIG.

即ち運転日数20日以後において比較法による処理水B
ODが約25〜30 mV’Lであったのに対し、本発
明方法による処理水のBODは約5〜10 mlLと相
当に良好な結果を示している。
That is, after 20 days of operation, treated water B by the comparative method
While the OD was about 25-30 mV'L, the BOD of the water treated by the method of the present invention was about 5-10 ml, which is a fairly good result.

「発明の効果」 以上説明したような本発明によるときは汚水処理微生物
を処理設備内に高密度に保持することができ、処理効率
を高めて処理の高速化および処理設備のコンパクト化を
図り、又汚水処理微生物が脱離し難く、処理設備内に的
確に保持され、安定した処理を実施し得るなどの効果を
有しており、工業的にその効果の大きい発明である。
"Effects of the Invention" According to the present invention as explained above, sewage treatment microorganisms can be held at a high density in the treatment equipment, and the treatment efficiency can be increased to speed up the treatment and make the treatment equipment more compact. In addition, the sewage treatment microorganisms are difficult to detach, are accurately retained in the treatment equipment, and stable treatment can be carried out.This invention is industrially highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を示すものであって、第1図は
本発明方法による操業例1についてその比較法との処理
結果について処理水のBODに関する経日変化を示した
図表、第2図は操業例2についての本発明方法と比較方
法の処理水BODの経日変化を示した図表である。
The drawings show embodiments of the present invention, and FIG. 1 is a chart showing the daily change in BOD of treated water regarding the treatment results of Operation Example 1 according to the method of the present invention and the comparative method, and FIG. is a chart showing the daily changes in treated water BOD of the method of the present invention and the comparative method for Operation Example 2.

Claims (1)

【特許請求の範囲】 1、汚水を充填材に附着した微生物によって処理するに
当り、前記充填材の少くとも一部に微生物の進入、格納
し得る立体的な網状構造を形成した化学合成高分子を使
用し、該立体的網状構造物を成形するに際しては微生物
を包括、固定化させないことを特徴とし、微生物を前記
網状構造物に進入、格納せしめた条件下で汚水処理する
汚水処理方法。 2、充填材が高分子ゲルのみ又は高分子ゲルと粒状、繊
維状、網状、板状、筒状またはリング状の骨材とから成
っているものを用いる特許請求の範囲第1項に記載の汚
水処理方法。
[Claims] 1. A chemically synthesized polymer that forms a three-dimensional network structure in which microorganisms can enter and be stored in at least a portion of the filler when wastewater is treated by microorganisms attached to the filler. A sewage treatment method, characterized in that microorganisms are not trapped or immobilized when forming the three-dimensional network structure, and the sewage is treated under conditions in which microorganisms are allowed to enter and be stored in the network structure. 2. The filler according to claim 1, in which the filler is composed of only a polymer gel or a polymer gel and a granular, fibrous, net-like, plate-like, cylindrical or ring-shaped aggregate. Sewage treatment method.
JP890086A 1986-01-21 1986-01-21 Sewage treatment Pending JPS62168593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP890086A JPS62168593A (en) 1986-01-21 1986-01-21 Sewage treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP890086A JPS62168593A (en) 1986-01-21 1986-01-21 Sewage treatment

Publications (1)

Publication Number Publication Date
JPS62168593A true JPS62168593A (en) 1987-07-24

Family

ID=11705553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP890086A Pending JPS62168593A (en) 1986-01-21 1986-01-21 Sewage treatment

Country Status (1)

Country Link
JP (1) JPS62168593A (en)

Similar Documents

Publication Publication Date Title
Cohen Biofiltration–the treatment of fluids by microorganisms immobilized into the filter bedding material: a review
JP3965006B2 (en) Foam carrier for microbial immobilization treatment, and waste water such as organic waste water and eutrophication water using the same
JP3608913B2 (en) Bioreactor carrier and production method
JP3835314B2 (en) Carrier packing and water treatment method using the same
JPS6329997B2 (en)
US6133004A (en) Bioreactor carrier gel prepared from a crosslinked N-vinylcarboxamide resin
JP2559592B2 (en) Wastewater treatment biofilm carrier
JP3361570B2 (en) Microorganism immobilization method using polymer hydrogel granules
JP2008272610A (en) Nitrous acid type nitrification carrier and its manufacturing method, and wastewater treatment method and apparatus using it
JP4006750B2 (en) Immobilized microorganism carrier and environmental purification method using the same
JP2001246397A (en) Method for removing nitrogen in waste water
JP2003000238A (en) Pva-inclusively immobilized microbe carrier, method for manufacturing the same and method for purifying environment by using the carrier
JPS62168593A (en) Sewage treatment
JP3203026B2 (en) Biocatalyst immobilized gel
JPS61271090A (en) Treating device for waste water using immobilized microorganism
JP2007268368A (en) Entrapping immobilization carrier and wastewater treatment system using it
JPS61192389A (en) Biological treatment of water
JP3465419B2 (en) Wastewater treatment agent and wastewater treatment method
JPH0636917B2 (en) Wastewater treatment method
JPS62279887A (en) Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JPS62166889A (en) Immobilized microorganism, production thereof and treatment of water using said immobilized microorganism
JPS62168592A (en) Waste water treatment unit
JP2003000237A (en) Inclusively immobilized microbe carrier and method for manufacturing the same
JPS61204091A (en) Biological treatment of liquid material
JPH08155476A (en) Nitration treatment method for seawater containing ammonical nitrogen