JPS62279887A - Surface immobilized anaerobic bacteria granule and treatment of waste water using same - Google Patents

Surface immobilized anaerobic bacteria granule and treatment of waste water using same

Info

Publication number
JPS62279887A
JPS62279887A JP61122948A JP12294886A JPS62279887A JP S62279887 A JPS62279887 A JP S62279887A JP 61122948 A JP61122948 A JP 61122948A JP 12294886 A JP12294886 A JP 12294886A JP S62279887 A JPS62279887 A JP S62279887A
Authority
JP
Japan
Prior art keywords
sludge
anaerobic
wastewater
codcr
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61122948A
Other languages
Japanese (ja)
Inventor
Nobuo Araki
信夫 荒木
Naoshi Kawai
河合 直士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP61122948A priority Critical patent/JPS62279887A/en
Publication of JPS62279887A publication Critical patent/JPS62279887A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To prevent the formation of anaerobic bacteria self-granule (hereinafter referred to as G-sludge), by coating the surface of the anaerobic bacteria self- granule formed in an anaerobic upward flow sludge blanket reaction container with a synthetic or natural polymer gel. CONSTITUTION:For example, G-sludge is formed in a UASB (anaerobic upward flow sludge blanket) reaction container using artificial waste water of which the nutrients are adjusted on the basis of sucrose. This G-sludge is drawn out from the UASB container and drained to be stirred in an aqueous solution containing an acrylamide monomer and N,N'-methylenebisacrylamide as polymerizable monomers and beta-dimethylaminopropionitrile as a polymerization promoter to allow the chemical agents to penetrate into the surface layer of G-sludge. The impregnated G-sludge is taken out and drained to be stirred in an aqueous solution of potassium persulfate being a polymerization initiator intermittently and gently and polymerization is performed to form gel beads.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野] 本発明は、特に難分解性の廃水処理に適した嫌気性微生
物造粒物及びこれを用いた廃水の処理方法に関するもの
である。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention provides an anaerobic microbial granule particularly suitable for treating persistent wastewater, and a method for treating wastewater using the same. It is related to.

〔従来の技術〕[Conventional technology]

嫌気性微生物、特にメタン菌は好気性微生物に比較して
増殖速度が遅く、短い滞留時間で反応器内に高濃度に維
持するためには、担体に自己付着させるか、又はOF膜
等のメンブレンによって流出を阻止する、といった手段
を講じなければならない。又、微生物を反応器内に高濃
度に維持する方法の一つとして、ポリアクリルアミドや
ポリビニルアルコールのような高分子ゲルによって嫌気
性菌を包括固定化して反応器内に投入する方法もあるが
、1個の固定化物内に包括できる微生物量には限度があ
り、その固定化物を投入することによって達成される反
応器内の微生物濃度はせいぜい10 g−VSS/1程
度である。これ以上の濃度を達成する固定化物は、その
形成が困難とされている。
Anaerobic microorganisms, especially methane bacteria, have a slower growth rate than aerobic microorganisms, so in order to maintain a high concentration in the reactor with a short residence time, it is necessary to make them self-adhere to a carrier or use a membrane such as an OF membrane. Measures must be taken to prevent leakage. In addition, one method of maintaining microorganisms at a high concentration in a reactor is to immobilize anaerobic bacteria using a polymer gel such as polyacrylamide or polyvinyl alcohol, and then introduce it into the reactor. There is a limit to the amount of microorganisms that can be included in one immobilized product, and the microorganism concentration in the reactor that can be achieved by charging the immobilized product is about 10 g-VSS/1 at most. It is said that it is difficult to form an immobilized product that achieves a higher concentration than this.

一方、嫌気性上向流スラッジブランケット反応器(以下
、UASB反応器と称する。)は、例えばり、W、)I
ulshoff Pot、 W、J de Zeeuw
、 C,T、M、 Velzeboer and G、
Lettingaが、Volume 15 Numbe
rs8/91983 Water 5cience a
nd Technology ANAEROBICTR
EAT門ENT  OF  WASTEWATERIN
  FIXED  FILM  REACTORSニ於
て発表したrGRANULATrON IN UASB
−REACTOR3J (P、291〜304)、G、
Lettinga、 A、F、M、van Velse
n、  S、W、)Iobma+  W、de Zee
uw、  and Klapwijkが、Biotec
hnology and Bioengineerin
g、 Vol。
On the other hand, an anaerobic upflow sludge blanket reactor (hereinafter referred to as UASB reactor), for example,
ulshoff Pot, W, J de Zeeuw
, C.T.M., Velzeboer and G.
Lettinga, Volume 15 Number
rs8/91983 Water 5science a
nd Technology ANAEROBICTR
EAT Gate ENT OF WASTEWATERIN
rGRANULATrON IN UASB announced at FIXED FILM REACTORS
-REACTOR3J (P, 291-304), G,
Lettinga, A.F.M. van Velse.
n, S, W,) Iobma+ W, de Zee
uw, and Klapwijk, Biotec
hnology and bioengineering
g, Vol.

XXII (1980)で発表した’Else of 
the Upflow、SludgeBIanket 
(IJsB)Reactor Concept for
 BiologicaI  Wastewater T
reatment、Especially  for 
 Anaerobic Treatmentj(P、6
99〜734)、原田秀樹氏がバイオマスとバイオテク
ノロジー″86(社団法人 日本能率協会講演会概要集
)に於て発表したrメタン細菌のペレ・ノド培養J (
P、3−15〜3−21 )、帆秋利洋氏らが第39回
土木学会年次学術講演会講演概要集に於て発表したr上
昇流式嫌気性スラッジペッド反応器の処理性能におよぼ
す温度の影響」等に於て開示されるように、廃水を反応
器の底部から流入し、嫌気性微生物が沈積して形成した
汚泥床を上向流で通過する過程で生物的な反応を受け、
有機物の除去と同時にメタンを生成するものである。
'Else of' announced in XXII (1980)
the Upflow, SludgeBIanket
(IJsB)Reactor Concept for
BiologicaI Wastewater T
reatment, Specially for
Anaerobic Treatment (P, 6
99-734), Pere-Nod culture of r-methane bacteria J (
P, 3-15 to 3-21), Toshihiro Hoaki et al. presented in the abstract of the 39th Annual Academic Conference of the Japan Society of Civil Engineers, the effect on the treatment performance of the r-upflow type anaerobic sludge ped reactor. As disclosed in ``Influence of Temperature'', wastewater flows from the bottom of the reactor and undergoes biological reactions as it passes upward through the sludge bed formed by the deposition of anaerobic microorganisms. ,
It removes organic matter and simultaneously generates methane.

このUASB反応器の最大の特徴は、付着担体を用いる
ことなく嫌気性微生物の自己集塊性によって、はぼ球形
状の粒径0.5〜3.0flの沈降性の優れた嫌気性微
生物自己造粒物(Granular sludge:以
下、G汚泥と称する。)を形成することにある。その結
果、反応器内の汚泥濃度は最大100g/lにも達する
。又、このG汚泥は、嫌気性微生物反応の中で律速段階
となる酢酸からのメタン生成反応を担うMethano
thrix属の菌が高密度に集積することによって形成
されることから、単位汚泥重量当たりのメタン生成活性
が高いといった特徴を有している。
The biggest feature of this UASB reactor is that it allows anaerobic microorganisms to self-agglomerate, with a ball-shaped particle size of 0.5 to 3.0 fl, and excellent sedimentation properties, without using an attached carrier. The objective is to form granular sludge (hereinafter referred to as G sludge). As a result, the sludge concentration within the reactor reaches a maximum of 100 g/l. In addition, this G sludge contains Methano, which is responsible for the methane production reaction from acetic acid, which is the rate-limiting step in the anaerobic microbial reaction.
Since it is formed by a high density of bacteria belonging to the genus Thrix, it has a characteristic of high methane production activity per unit weight of sludge.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し、これまでにG汚泥が形成したものは、廃水中の有
機物が低分子炭水化物や低級脂肪酸で占められた1 0
00〜15000g−CODcr/ j2の中高濃度の
生物的に易分解性の廃水を25〜40℃で処理した反応
器内だけである。廃水の濃度。
However, in the case of G sludge formed so far, organic matter in wastewater is dominated by low-molecular carbohydrates and lower fatty acids.
It is only in the reactor where biologically easily degradable wastewater with medium and high concentrations of 00 to 15000 g-CODcr/j2 was treated at 25 to 40 °C. Concentration of wastewater.

有機物組成、処理温度がこれに該当しない、例えば(1
)CODcrが1000mg/42以下の廃水、(2)
廃水中の蛋白質と脂質のCODcr当量が全有機物のC
ODcrの30%以上を占める廃水、及び20°C以下
の処理温度では、G汚泥は形成されないか、又は形成さ
れても長期間の培養が必要になるものと考えられる。又
、UASB反応器に(3)廃水中の浮遊性有機物のCO
Dcr当量が廃水のCODcrの30%以上を占める廃
水のように浮遊性物質を比較的多く含む廃水が流入する
と、゛反応器低部に浮遊物質が蓄積してG汚泥を系外に
洗い出す現象が発生する。又、形成したG汚泥を用いて
前述廃水を処理した場合、G汚泥が廃水中の浮遊物質を
取り込む性質があることから、長期間の処理運転ではG
汚泥は膨化し崩壊するものと考えられる。
If the organic matter composition or treatment temperature does not fall under this category, for example (1
) Wastewater with CODcr below 1000mg/42, (2)
The CODcr equivalent of proteins and lipids in wastewater is the total organic C
In wastewater that accounts for 30% or more of the ODcr and at a treatment temperature of 20° C. or less, G sludge is not formed, or even if it is formed, it is thought that long-term cultivation is required. Also, in the UASB reactor (3) CO of suspended organic matter in wastewater
When wastewater containing a relatively large amount of suspended solids, such as wastewater whose Dcr equivalent accounts for 30% or more of the CODcr of the wastewater, flows in, there is a phenomenon in which suspended solids accumulate at the bottom of the reactor and G sludge is washed out of the system. Occur. In addition, when the aforementioned wastewater is treated using the formed G sludge, the G sludge has the property of taking in suspended substances in the wastewater, so the G sludge is
It is thought that the sludge expands and collapses.

実例として、せ蔗糖圧搾廃水を処理する反応器内で得ら
れたG汚泥を用いて都市下水を嫌気的に処理することは
行なわれているが、G汚泥が沈積して形成した汚泥床の
内部や上部に浮遊物質が混在、堆積するといった問題が
発生している。又、処理効率も高活性のG汚泥を投入し
たものの、消化汚泥を投入したものに比較して2倍程度
に溜まっており、その効果が発揮されていないものであ
る。
As a practical example, urban sewage is treated anaerobically using G sludge obtained in a reactor for treating sucrose press wastewater, but the inside of the sludge bed formed by the G sludge depositing Problems such as suspended solids being mixed in and deposited on the upper part of the tank are occurring. Furthermore, although highly active G sludge was introduced, the treatment efficiency was about twice as high as when using digested sludge, and the effect was not exhibited.

〔発明の目的〕[Purpose of the invention]

本発明は斯かる従来の問題点を解決するために為された
もので、その目的は、UASB反応器内で形成される嫌
気性微生物が高密度に集合したG汚泥を嫌気的に引き抜
き、G汚泥の表面を高分子ゲルの薄膜によって被覆した
表面固定化造粒物を形成し、これを反応器内に投入して
、上述のような従来の嫌気性処理には適さず、UASB
反応器でもG汚泥が形成されない廃水又は処理条件で嫌
気的生物処理を達成することにある。
The present invention was made to solve such conventional problems, and its purpose is to anaerobically extract the G sludge in which anaerobic microorganisms formed in the UASB reactor are gathered at a high density. The surface of the sludge is coated with a thin film of polymer gel to form surface-immobilized granules, which are then introduced into a reactor.
The objective is to achieve anaerobic biological treatment of wastewater or treatment conditions in which G sludge is not formed even in a reactor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る表面固定化した嫌気性微生物造粒物は、嫌
気性上向流スラッジブランケット反応器内で形成された
嫌気性微生物自己造粒物の表面を、合成又は天然の高分
子ゲルで被覆したものである。
The surface-immobilized anaerobic microorganism granules according to the present invention cover the surface of anaerobic microorganism self-granules formed in an anaerobic upflow sludge blanket reactor with a synthetic or natural polymer gel. This is what I did.

又、本発明に係る廃水処理方法は、嫌気性上向流スラッ
ジブランケット反応器内で形成された嫌気性微生物自己
造粒物の表面を合成又は天然の高分子ゲルで被覆して成
る嫌気性微生物造粒物を、嫌気性処理反応器に充填し、
CODcrが1000■/l以下の廃水、又は廃水中の
蛋白質と脂質のCODcr当量が全有機物のCODcr
の30%以上を占める廃水、又は廃水中の浮遊性有機物
のc。
Furthermore, the wastewater treatment method according to the present invention provides anaerobic microorganisms formed by coating the surface of anaerobic microorganism self-granules formed in an anaerobic upflow sludge blanket reactor with a synthetic or natural polymer gel. Fill the granulated material into an anaerobic treatment reactor,
Wastewater with a CODcr of 1000 ■/l or less, or the CODcr equivalent of proteins and lipids in the wastewater is the CODcr of all organic matter.
Wastewater or floating organic matter in wastewater that accounts for 30% or more of c.

Dcr当量が廃水のCODcrの30%以上を占める廃
水を浄化すると共にメタンガスを回収するように構成し
たものである。
It is configured to purify wastewater whose Dcr equivalent accounts for 30% or more of the CODcr of the wastewater and to recover methane gas.

〔発明の作用〕[Action of the invention]

本発明のようにG汚泥を表面固定化することは、従来の
包括固定化物に比較してその内部の微生物量が数倍に増
大するだけでなく、表面固定化しないG汚泥に比較して
物理的な強度が増大し、又、G汚泥への浮遊物質の吸着
によるG汚泥崩壊が防止されることから、この表面固定
化造粒物を投入した反応器は比較的激しい攪拌が可能と
なり、又、長期間安定してG汚泥を反応器内に維持でき
ることから、ただG汚泥を移し換えただけで以前と同様
にUASB反応器形態をとる方法とは全く属性の異なっ
たものとなる。
Surface immobilization of G sludge as in the present invention not only increases the amount of microorganisms inside it several times compared to conventional comprehensive immobilization, but also increases the physical capacity compared to G sludge that is not surface immobilized. This increases the physical strength of the G sludge, and prevents the G sludge from collapsing due to the adsorption of suspended solids to the G sludge. Since the G sludge can be stably maintained in the reactor for a long period of time, the attributes are completely different from the method of simply transferring the G sludge and using the UASB reactor configuration as before.

その結果、CODcrが1000mg/#以下の廃水、
又は廃水中の蛋白質と脂質のCODcr当量が全有機物
のCODcrの30%以上を占める廃水、又は廃水中の
浮遊性有機物のCODcr当量が廃水のCODcrの3
0%以上を占める廃水の浄化が可能となると共に、反応
器内の温度が20℃以下で廃水を浄化する場合により効
率的な浄化が可能となり、メタンガスの回収を行なうこ
とができる。
As a result, wastewater with CODcr of 1000mg/# or less,
or wastewater in which the CODcr equivalent of proteins and lipids in the wastewater accounts for 30% or more of the CODcr of total organic matter, or the CODcr equivalent of floating organic matter in the wastewater is 3 of the CODcr of the wastewater.
It becomes possible to purify wastewater that accounts for 0% or more, and when the wastewater is purified at a temperature within the reactor of 20° C. or lower, more efficient purification becomes possible, and methane gas can be recovered.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を詳述する。 Examples of the present invention will be described in detail below.

ショ糖を主成分として栄養素を調整した5000 mg
 −CODcr/ lの人工廃水を用いて、35℃でU
ASB反応器内でG汚泥の形成を試みた。
5000 mg with adjusted nutrients using sucrose as the main ingredient
-U at 35 °C using artificial wastewater of CODcr/l
Attempts were made to form G sludge in an ASB reactor.

G汚泥は運転開始後90日で形成され、160日後のG
汚泥の性状は、平均粒径1.50 mm、平均沈降速度
1.10 m /min 、 G汚泥のSVI  (汚
泥容量指標) 20.0〜35.0 m 1 / gで
あった。
G sludge is formed 90 days after the start of operation, and G sludge is formed after 160 days.
The properties of the sludge were an average particle size of 1.50 mm, an average sedimentation rate of 1.10 m/min, and an SVI (sludge capacity index) of G sludge of 20.0 to 35.0 m 1 /g.

このG汚泥にポリアクリルアミドを用いて表面固定化を
行なった。以下にその方法について説明する。
This G sludge was surface immobilized using polyacrylamide. The method will be explained below.

G汚泥をU、ASB反応器から引き抜いた後、水切りし
、重合剤としてアクリルアミドモノマー。
After G sludge is pulled out from the U, ASB reactor, it is drained and acrylamide monomer is used as a polymerization agent.

N、N’  −メチレンビスアクリルアミド、重合促進
剤としてβ−ジメチルアミンプロピオニトリルを含む水
溶液中で攪拌し、G汚泥の表層にこれらの薬剤を浸透さ
せる。その後、G汚泥をこの水溶液から取り出して水切
りし、重合開始剤の過硫酸カリウム水溶液中で間欠的に
緩やかに攪拌することによってG汚泥表面でアクリルア
ミドを重合させ、ポリアクリルアミドのゲル薄膜によっ
てG汚泥を被覆したゲルビーズを形成した。この操作は
出来る限り嫌気的雰囲気内で行なった。
The mixture is stirred in an aqueous solution containing N,N'-methylenebisacrylamide and β-dimethylamine propionitrile as a polymerization accelerator to allow these agents to penetrate into the surface layer of G sludge. After that, G sludge is taken out from this aqueous solution, drained, and acrylamide is polymerized on the surface of G sludge by intermittent and gentle stirring in a potassium persulfate aqueous solution of a polymerization initiator. Coated gel beads were formed. This operation was carried out in an anaerobic atmosphere as much as possible.

ここでは表面固定化法としてポリアクリルアミドを用い
る方法について述べたが、本発明はこれに限定されるも
のではなく、従来の酵素や微生物の包括固定化剤として
使用されているアルギン酸ソーダ、カラギーナン等の天
然高分子材料やポリビニルアルコール等の合成高分子材
料、更には固定化が簡便である光硬化性樹脂等が利用で
きるものである。これらの材料を用いた表面固定化法は
ポリアクリルアミドを用いた方法と同様に、取り出した
G汚泥をこれら高分子材料水溶液中に投入して攪拌した
後、ゲル化剤中に移すか、或いは紫外線を照射すること
によって重合或いはゲル化させ、表面固定化物を容易に
得るものである。
Although a method using polyacrylamide as a surface immobilization method has been described here, the present invention is not limited to this. Natural polymeric materials, synthetic polymeric materials such as polyvinyl alcohol, and photocurable resins that can be easily immobilized can be used. The surface immobilization method using these materials is similar to the method using polyacrylamide, in which the removed G sludge is poured into an aqueous solution of these polymeric materials, stirred, and then transferred into a gelling agent, or exposed to ultraviolet light. It polymerizes or gels by irradiating it to easily obtain a surface-immobilized product.

UASB反応器から抜き出し、上記アクリルアミドを用
いた方法で表面固定化したG汚泥をケモスタット型反応
器に投入して上記シー!糖を主成分とした人工廃水を供
給したところ、約24時間後にメタンガスを発生し始め
た。28日間の培養後、表面固定化したG汚泥とUAS
B反応器から抜き出したままのG汚泥の両者のメタン生
成活性を、35℃に保温した5 00mlのバイアルを
用いて、上記人工廃水を基質としてバッチ実験を行なっ
た。
The G sludge extracted from the UASB reactor and surface-immobilized using the above method using acrylamide was put into a chemostat type reactor and then charged with the above Sea! When artificial wastewater containing sugar as the main component was supplied, methane gas began to be generated approximately 24 hours later. After 28 days of culture, surface-immobilized G sludge and UAS
A batch experiment was conducted to determine the methane production activity of both sludge G and sludge taken out from reactor B using the above artificial wastewater as a substrate using a 500 ml vial kept at 35°C.

後者のメタン生成速度2.011− CHa / g 
−VSS・dayに比較して前者は1.521− c 
H4/g−VSS−dayであり、表面固定化すること
によってメタン生成活性は約73%に低下するに留まっ
た。アクリルアミドは固定化を行なう際に微生物に対し
て毒性を持つことが知られており、浮遊状態で培養した
晴気性菌をアクリルアミドで包括固定化した場合には、
メタン生成活性は1/10以下に低下した報告もある。
Methane production rate of the latter 2.011- CHa/g
- Compared to VSS day, the former is 1.521- c
H4/g-VSS-day, and the methanogenic activity was only reduced to about 73% by surface immobilization. Acrylamide is known to be toxic to microorganisms during immobilization, and when airborne bacteria cultured in suspension are entrapping immobilized with acrylamide,
There are also reports that the methanogenic activity was reduced to 1/10 or less.

本発明の固定化方法では嫌気性微生物が高密度に集合し
たG汚泥の表面だけしかゲル化剤と接触しないことから
、固定化の際に起こる微生物の活性低下は最小限に抑え
ることができる。
In the immobilization method of the present invention, only the surface of the G sludge where anaerobic microorganisms are densely aggregated comes into contact with the gelling agent, so that the decrease in microorganism activity that occurs during immobilization can be minimized.

又、28日間の培養を行なったケモスタット型反応器は
、マグネチフクスターラの回転速度を10 Or、p、
m、に設定して攪拌を行なったが、表面固定化したG汚
泥は全く崩壊せず、物理的な強度に問題はない。
In addition, in the chemostat type reactor in which the culture was carried out for 28 days, the rotation speed of the magnetifukustara was set to 10 Or, p,
The G sludge fixed on the surface did not disintegrate at all, and there was no problem with its physical strength.

上述のようにアクリルアミドを用いた方法でSVI値が
35.0 m17gのG汚泥を表面固定化してSVIを
測定した値は汚泥換算で約48.5m l /gであり
、表面固定化することによって発生したSVIの上昇は
1.39倍程度であった。これは100m1のG汚泥を
表面固定化するのに39m!2の高分子ゲルを必要とし
たと概算できる。
As mentioned above, the SVI value measured by surface immobilization of G sludge with an SVI value of 35.0 ml/g using acrylamide was approximately 48.5 ml/g in terms of sludge. The increase in SVI that occurred was about 1.39 times. This is 39m to fix 100m1 of G sludge on the surface! It can be estimated that 2 polymer gels were required.

一般に微生物を包括固定化するには、濃縮微生物汚泥1
00mJに対して高分子ゲル材料は最低でも500〜1
000m/は必要であることから、本発明の表面固定化
物は、効率的に微生物を固定化するものであるかが明ら
かである。
Generally, in order to comprehensively immobilize microorganisms, concentrated microbial sludge 1
00 mJ, the polymer gel material has a minimum of 500 to 1
000 m/ is necessary, so it is clear that the surface immobilized product of the present invention can efficiently immobilize microorganisms.

尚、上記実施例では廃水について説明したが、処理水が
下水であってもよいことは勿論である。
Incidentally, although waste water was explained in the above embodiment, it goes without saying that the treated water may be sewage.

C発明の効果〕 以上のように本発明に係る表面固定化した嫌気性微生物
造粒物によれば、G汚泥を表面固定化したので、内部の
微生物量が増大すると共に物理的な強度が増大し、且つ
、G汚泥への浮遊物質の吸着によるG汚泥崩壊が防止で
きる。
Effects of the invention C] As described above, according to the surface-immobilized anaerobic microorganism granules of the present invention, since the G sludge is surface-immobilized, the amount of internal microorganisms increases and the physical strength increases. Moreover, it is possible to prevent the G sludge from collapsing due to adsorption of suspended solids to the G sludge.

又、本発明に係る廃水処理方法によれば、G汚泥が上述
のように表面固定化されているため、反応器内での比較
的激しい攪拌できると共に、長期間安定して反応器内に
維持することができ、特に難分解性の廃水処理が可能と
なる。
Furthermore, according to the wastewater treatment method of the present invention, since the G sludge is fixed on the surface as described above, it can be stirred relatively vigorously in the reactor, and it can be stably maintained in the reactor for a long period of time. This makes it possible to treat particularly persistent wastewater.

Claims (5)

【特許請求の範囲】[Claims] (1)嫌気性上向流スラッジブランケット反応器内で形
成された嫌気性微生物自己造粒物の表面を、合成又は天
然の高分子ゲルで被覆したことを特徴とする嫌気性微生
物造粒物。
(1) An anaerobic microbial granule, characterized in that the surface of the anaerobic microbial self-granulation product formed in an anaerobic upflow sludge blanket reactor is coated with a synthetic or natural polymer gel.
(2)嫌気性微生物自己造粒物は、嫌気性上向流スラッ
ジブランケット反応器内から嫌気的に引き出された後、
合成又は天然の高分子ゲルで表面が被覆されることを特
徴とする特許請求の範囲第1項記載の嫌気性微生物造粒
物。
(2) After the anaerobic microbial autogranules are anaerobically drawn out from within the anaerobic upflow sludge blanket reactor,
The anaerobic microorganism granule according to claim 1, wherein the surface is coated with a synthetic or natural polymer gel.
(3)合成又は天然の高分子ゲルが、ポリアクリルアミ
ド、アルギン酸ソーダ、ガラギーナン、ポリビニルアル
コール、光硬化性樹脂等で構成されることを特徴とする
特許請求の範囲第1項又は第2項記載の嫌気性微生物造
粒物。
(3) The synthetic or natural polymer gel is composed of polyacrylamide, sodium alginate, galrageenan, polyvinyl alcohol, photocurable resin, etc. Anaerobic microbial granules.
(4)嫌気性上向流スラッジブランケット反応器内で形
成された嫌気性微生物自己造粒物の表面を合成又は天然
の高分子ゲルで被覆して成る嫌気性微生物造粒物を、嫌
気性処理反応器に充填し、CODcrが1000mg/
l以下の廃水、又は廃水中の蛋白質と脂質のCODcr
当量が全有機物のCODcrの30%以上を占める廃水
、又は廃水中の浮遊性有機物のCODcr当量が廃水の
CODcrの30%以上を占める廃水を浄化すると共に
メタンガスを回収することを特徴とする廃水の処理方法
(4) Anaerobic microbial granules formed in an anaerobic upflow sludge blanket reactor and coated with a synthetic or natural polymer gel on the surface of the anaerobic microbial self-granules are subjected to anaerobic treatment. Fill the reactor with CODcr of 1000mg/
CODcr of wastewater or proteins and lipids in wastewater less than l
Wastewater characterized by purifying wastewater in which the CODcr equivalent of total organic matter accounts for 30% or more of the CODcr of the total organic matter, or wastewater in which the CODcr equivalent of floating organic matter in the wastewater accounts for 30% or more of the CODcr of the wastewater, and at the same time recovering methane gas. Processing method.
(5)反応器内の温度を20℃以下にすることを特徴と
する特許請求の範囲第4項記載の廃水の処理方法。
(5) The method for treating wastewater according to claim 4, characterized in that the temperature inside the reactor is kept at 20° C. or lower.
JP61122948A 1986-05-28 1986-05-28 Surface immobilized anaerobic bacteria granule and treatment of waste water using same Pending JPS62279887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122948A JPS62279887A (en) 1986-05-28 1986-05-28 Surface immobilized anaerobic bacteria granule and treatment of waste water using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122948A JPS62279887A (en) 1986-05-28 1986-05-28 Surface immobilized anaerobic bacteria granule and treatment of waste water using same

Publications (1)

Publication Number Publication Date
JPS62279887A true JPS62279887A (en) 1987-12-04

Family

ID=14848585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122948A Pending JPS62279887A (en) 1986-05-28 1986-05-28 Surface immobilized anaerobic bacteria granule and treatment of waste water using same

Country Status (1)

Country Link
JP (1) JPS62279887A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254895A (en) * 1990-03-01 1991-11-13 Nishihara Environ Sanit Res Corp Gel-reinforced self-granulated sludge
JPH04180896A (en) * 1990-11-15 1992-06-29 Kirin Brewery Co Ltd Anaerobic waste water treatment apparatus
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method
CN111606524A (en) * 2020-07-08 2020-09-01 福建新德福化工有限公司 Chemical sewage treatment process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115796A (en) * 1984-06-29 1986-01-23 Ebara Infilco Co Ltd Purification of excrements and domestic waste water
JPS6168196A (en) * 1984-09-11 1986-04-08 Hitachi Plant Eng & Constr Co Ltd Treating agent for waste water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115796A (en) * 1984-06-29 1986-01-23 Ebara Infilco Co Ltd Purification of excrements and domestic waste water
JPS6168196A (en) * 1984-09-11 1986-04-08 Hitachi Plant Eng & Constr Co Ltd Treating agent for waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254895A (en) * 1990-03-01 1991-11-13 Nishihara Environ Sanit Res Corp Gel-reinforced self-granulated sludge
JPH04180896A (en) * 1990-11-15 1992-06-29 Kirin Brewery Co Ltd Anaerobic waste water treatment apparatus
JP2002336885A (en) * 2001-05-21 2002-11-26 Kurita Water Ind Ltd Method for aerobic treatment of waste water
JP2012081403A (en) * 2010-10-08 2012-04-26 Swing Corp Organic wastewater treatment apparatus and treating method
CN111606524A (en) * 2020-07-08 2020-09-01 福建新德福化工有限公司 Chemical sewage treatment process

Similar Documents

Publication Publication Date Title
Pol et al. Anaerobic sludge granulation
JP3839136B2 (en) Microorganism-immobilized magnetic carrier, production method thereof and wastewater treatment method
NL7908138A (en) METHOD FOR PREPARING AND MAINTAINING BIOMASS ON CARRIER.
CN109956563B (en) Preparation method and application of efficient aerobic denitrification phosphorus-accumulating bacteria immobilized pellet
CN103614360A (en) Method for inhibiting photosynthetic bacteria of algae by immobilizing composite embedding medium
Zhang et al. The role of acid incubation in rapid immobilization of hydrogen-producing culture in anaerobic upflow column reactors
JPS62279887A (en) Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JPS6352556B2 (en)
Sumino et al. Immobilization of activated sludge by the acrylamide method
JPH04354596A (en) Aerobic self-granulated material and production thereof
JPS60153998A (en) Waste water treating agent and its preparation
JP3373001B2 (en) Anaerobic treatment method and apparatus for organic wastewater
JPS6154293A (en) Treatment of high concentrated organic waste water
JP3465419B2 (en) Wastewater treatment agent and wastewater treatment method
JPS6324438B2 (en)
JPH0130476B2 (en)
JPS6154290A (en) Single-phase fermenting method by immobilized microbe
JPS61204091A (en) Biological treatment of liquid material
JPS6154291A (en) Formation of methane by immobilized microbe
JPS6154294A (en) Treatment of high concentrated organic waste water
JPS6156087A (en) Production of organic acid by immobilized microorganism
JPS62186995A (en) Microorganism immobilized carrier for waste water treatment and its production
JPS61259798A (en) Nitration of ammonia by immobilized nitrifying bacteria
JPH078984A (en) Gel particle carrier for immobilization of microorganism, preparation thereof and method for water treatment by using it
JPS6261583A (en) Immobilization of nitrifying bacteria