JPH04354596A - Aerobic self-granulated material and production thereof - Google Patents

Aerobic self-granulated material and production thereof

Info

Publication number
JPH04354596A
JPH04354596A JP3129246A JP12924691A JPH04354596A JP H04354596 A JPH04354596 A JP H04354596A JP 3129246 A JP3129246 A JP 3129246A JP 12924691 A JP12924691 A JP 12924691A JP H04354596 A JPH04354596 A JP H04354596A
Authority
JP
Japan
Prior art keywords
activated sludge
aerobic
self
protozoa
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3129246A
Other languages
Japanese (ja)
Other versions
JPH0785799B2 (en
Inventor
Shigekazu Nakano
中野 重和
Haruo Takano
高野 晴男
Kazuhisa Yoshikuni
一久 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka City
Okumura Corp
Original Assignee
Osaka City
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka City, Okumura Corp filed Critical Osaka City
Priority to JP12924691A priority Critical patent/JPH0785799B2/en
Publication of JPH04354596A publication Critical patent/JPH04354596A/en
Publication of JPH0785799B2 publication Critical patent/JPH0785799B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To obtain a self-granulated material high in organic matter decomposi tion performance by entangling protozoa with aerobic filamentous bacteria and granulating them. CONSTITUTION:Self-granulated material 31 is formed by entangling filamentous bacteria 32 and protozoa 33 are incorporated therein. Since the whole body is microorganisms, organismic reactivity is superior in comparison with a mixture formed by a carrier bonding method and an microorganismic capsule produced by a comprehensive immobilization method. Further since this self- granulated material is formed of aerobic filamentous bacteria 32 and protozoa 32, organic matter decomposition performance is higher than the self-granulated material formed of the conventional anaerobic filamentous bacteria. The self- granulated material is very effective in treatment of organic drainage.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、好気性自己造粒物と
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to an aerobic self-granulated product and a method for producing the same.

【0002】0002

【従来の技術】有機性排水を効率的に処理する方法とし
てバイオテクノロジーの活用が盛んに研究開発されてい
るが、なかでも微生物の固定化は特定の菌体を選択利用
できることや高密度に微生物を保持できることから不可
欠な技術として注目されている。この微生物を高密度に
固定化させる方法としては、従来、以下のような方法が
ある。 ■担体結合法 この方法は、担体表面に物理化学的に微生物を付着させ
る方法で、一定時間固定化に適切な環境条件のもとで担
体材料と微生物を混合して形成する。 ■架橋法 この方法は、2個以上の官能基をもつ試薬を微生物に添
加して微生物を団粒状にする方法である。 ■包括固定化法 この方法は、微生物をゲルの格子内に包み込むか、又は
、ポリマーの皮膜によって被覆する方法である。微生物
と高分子樹脂を混合した後、重合反応等のゲル化反応で
固体状にする。そして、更にその表面に別の樹脂をコー
ティングしたのちに内部の固定化樹脂を溶かしてポリマ
ーの皮膜で微生物のカプセルを製造する。 ■自己固定化法 この方法は、嫌気的条件下で糸状増殖したメタノトリク
ス(Methanothrix)属メタン菌が絡み合う
集塊機能を用いて微生物を粒状にする方法である。
[Prior Art] The use of biotechnology has been actively researched and developed as a method for efficiently treating organic wastewater, but immobilization of microorganisms is particularly important because it allows the selective use of specific microorganisms and the ability to collect microorganisms at high density. It is attracting attention as an essential technology because of its ability to retain Conventional methods for immobilizing microorganisms at high density include the following methods. (2) Carrier binding method This method is a method in which microorganisms are physicochemically attached to the surface of a carrier, and is formed by mixing the carrier material and microorganisms under environmental conditions suitable for immobilization for a certain period of time. ■Crosslinking method This method is a method in which a reagent having two or more functional groups is added to microorganisms to form microorganisms into aggregates. (2) Entrapping immobilization method In this method, microorganisms are encapsulated in a gel lattice or covered with a polymer film. After mixing microorganisms and polymeric resin, it is made into a solid state through a gelation reaction such as polymerization reaction. Then, after coating the surface with another resin, the immobilized resin inside is melted to produce a microbial capsule with a polymer film. (2) Self-immobilization method This method is a method in which microorganisms are made into particles using the agglomeration function in which methane bacteria of the genus Methanothrix that have grown in filamentous growth under anaerobic conditions are entangled.

【0003】0003

【発明が解決しようとする課題】ところで、上記従来の
方法には以下のような欠点がある。すなわち、■の方法
で形成された混合物は、その内部に生物反応を持たない
不活性な材料があるので、その混合物全体を有効に使用
できない。また、微生物に比べて密度が高い材料を担体
に用いると、充填床リアクターに入れて使用した場合に
は自重で変形しやすく、また、流動床リアクターに入れ
て使用した場合には流動エネルギーが大きく動力費がか
さむ。■の方法は特殊な試薬を必要とするため製造コス
トが高くなる。■の方法で製造された微生物のカプセル
は微生物密度が低いため、前処理として操作の困難な微
生物の高密度の濃縮が必要になる。■の方法で生成され
たものは嫌気性微生物が粒状になったものであるため有
機物分解性能が低い。そこで、この発明の目的は、製造
コストが安くしかも有機性分解性能の高い自己造粒物と
その製造方法を提供することにある。
However, the conventional method described above has the following drawbacks. That is, the mixture formed by the method (2) cannot be used effectively as a whole because it contains an inert material that does not have a biological reaction. In addition, if a material with a higher density than microorganisms is used as a carrier, it will easily deform due to its own weight when used in a packed bed reactor, and the fluid energy will be large when used in a fluidized bed reactor. Power costs are high. Method (2) requires special reagents, which increases production costs. Since the microbial capsule produced by the method (2) has a low microbial density, it is necessary to concentrate the microorganisms at a high density as a pretreatment, which is difficult to manipulate. The product produced by method (2) has low organic matter decomposition performance because it is made up of granular anaerobic microorganisms. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a self-granulated product that is low in production cost and has high organic decomposition performance, and a method for producing the same.

【0004】0004

【課題を解決するための手段】上記目的を達成するため
、第1の発明の好気性自己造粒物は、好気性の糸状性細
菌と原生動物が絡まって粒状化したことを特徴としてい
る。また、第2の発明の好気性自己造粒物の製造方法は
、容器に入れた活性汚泥に空気を吹き込んで撹拌する工
程と、上記空気の吹き込みを停止して上記活性汚泥中の
微生物を沈降させる工程と、上記微生物が沈降した後の
上澄み液を除去する工程と、上記上澄み液を除去した活
性汚泥に上記微生物のための栄養分を溶かした溶液を加
える工程からなる半連続培養工程を所定期間繰り返し行
って上記活性汚泥中に好気性の糸状性細菌を発生させ、
上記好気性の糸状性細菌が発生した活性汚泥について上
記と同様の半連続培養工程を所定期間繰り返し行って上
記好気性の糸状性細菌と原生動物が絡まって粒状化した
好気性自己造粒物を発生させることを特徴としている。 また、第3の発明の好気性自己造粒物の製造方法は、容
器に入れた活性汚泥に空気を吹き込んで撹拌する工程と
、上記空気の吹き込みを停止して上記活性汚泥中の微生
物を沈降させる工程と、上記微生物が沈降した後の上澄
み液を除去する工程と、上記上澄み液を除去した活性汚
泥に上記微生物のための栄養分を溶かした溶液を加える
工程からなる半連続培養工程を所定期間繰り返し行って
上記活性汚泥中に好気性の糸状性細菌を発生させる一方
、上記容器と別の容器に入れた活性汚泥について上記溶
液の代わりに上記溶液よりも栄養分の濃度の低い溶液を
加える上記半連続培養工程を所定期間繰り返し行ってそ
の活性汚泥中の固着性原生動物を増大させ、その固着性
原生動物が増大した活性汚泥中に板状部材を挿入してそ
の板状部材に上記固着性原生動物を含む活性汚泥を付着
させ、その板状部材に付着した活性汚泥をかき取って上
記好気性の糸状性細菌が発生している活性汚泥に混ぜ、
その活性汚泥について上記と同様の半連続培養工程を所
定期間繰り返し行って上記好気性の糸状性細菌と原生動
物が絡まって粒状化した好気性自己造粒物を発生させる
ことを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the aerobic self-granulated product of the first invention is characterized in that aerobic filamentous bacteria and protozoa are entangled and granulated. Further, the method for producing an aerobic self-granulated product according to the second invention includes a step of blowing air into the activated sludge placed in a container and stirring it, and stopping the air blowing to allow microorganisms in the activated sludge to settle. A semi-continuous culturing process is carried out for a predetermined period of time, which consists of a step of allowing the microorganisms to settle, a step of removing the supernatant liquid after the microorganisms have settled, and a step of adding a solution containing nutrients for the microorganisms to the activated sludge from which the supernatant liquid has been removed. Repeatedly generate aerobic filamentous bacteria in the activated sludge,
The same semi-continuous culture process as described above is repeated for a predetermined period of time on the activated sludge in which the aerobic filamentous bacteria have been generated, and the aerobic self-granulated material in which the aerobic filamentous bacteria and protozoa are entangled and granulated is obtained. It is characterized by the fact that it occurs. Further, the method for producing an aerobic self-granulated product according to the third invention includes a step of blowing air into activated sludge placed in a container and stirring it, and stopping the air blowing to allow microorganisms in the activated sludge to settle. A semi-continuous culturing process is carried out for a predetermined period of time, which consists of a step of allowing the microorganisms to settle, a step of removing the supernatant liquid after the microorganisms have settled, and a step of adding a solution containing nutrients for the microorganisms to the activated sludge from which the supernatant liquid has been removed. The process is repeated to generate aerobic filamentous bacteria in the activated sludge, while adding a solution with lower nutrient concentration than the above solution instead of the above solution to the activated sludge placed in the above container and another container. The continuous culture process is repeated for a predetermined period of time to increase the number of sessile protozoa in the activated sludge, and a plate-like member is inserted into the activated sludge in which the number of sessile protozoa has increased, and the plate-like member is filled with the sessile protozoa. Activated sludge containing animals is attached, the activated sludge attached to the plate member is scraped off and mixed with the activated sludge in which the aerobic filamentous bacteria are generated,
The activated sludge is characterized by repeating the same semi-continuous culture process as described above for a predetermined period of time to generate an aerobic self-granulated product in which the aerobic filamentous bacteria and protozoa are entangled and granulated.

【0005】[0005]

【実施例】以下、この発明を図示の実施例により詳細に
説明する。図1はこの発明の好気性自己造粒物の製造方
法の一実施例を示すフローチャートである。この製造方
法は、まず、下水処理場で採取したMLSS5500m
g/L程度の低密度の返送汚泥を容器に入れ(ステップ
S1)、約2ケ月間半連続培養を行う(ステップS2)
。この半連続培養は以下■から■までの工程を順次繰り
返し行う。■返送汚泥に空気を吹き込んで撹拌する。(
この空気の吹き込みは1L/5L/minの量で連続し
て約16時間行う。)■空気の吹き込みを約8時間停止
し、汚泥中の微生物を沈降させる。■微生物が沈降した
後、上澄み液を除去する。■その後、基質としてのスキ
ムミルクを1.3g/Lの割合で水に溶かした溶液を、
除去した上澄み液とほぼ同量だけ加える。上記半連続培
養を約2ケ月間行うと、好気性の糸状性細菌(スフェロ
チルス;Sphaelotilusなど)が多量発生し
、原生動物も混在した汚泥となる(ステップS3)。そ
して、この糸状性細菌が多量に発生した汚泥について更
に上記と同様の半連続培養を約1週間行う(ステップS
4)と、図4に示すような好気性自己造粒物が生成され
る(ステップS5)。この自己造粒物31は、上記糸状
性細菌32が絡みあってできたもので、その中に原生動
物33を包含している。このように、返送汚泥を半連続
培養するだけの簡単な方法で好気性の自己造粒物を製造
できるので、材料費や設備費が少なくてすみ、製造コス
トを低くすることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained in detail below with reference to illustrated embodiments. FIG. 1 is a flowchart showing an embodiment of the method for producing an aerobic self-granulated product of the present invention. This manufacturing method begins with 5,500 m of MLSS collected at a sewage treatment plant.
Returned sludge with a low density of approximately g/L is placed in a container (step S1), and semi-continuous culture is performed for about 2 months (step S2).
. In this semi-continuous culture, the following steps ① to ② are repeated in sequence. ■Blow air into the returned sludge and stir it. (
This air blowing is performed continuously for about 16 hours at a rate of 1 L/5 L/min. ) ■ Stop blowing air for about 8 hours to allow microorganisms in the sludge to settle. ■After the microorganisms have settled, remove the supernatant liquid. ■After that, a solution of skim milk as a substrate dissolved in water at a rate of 1.3 g/L,
Add approximately the same amount of supernatant liquid that was removed. When the above-mentioned semi-continuous culture is carried out for about two months, a large amount of aerobic filamentous bacteria (Sphaelotilus, etc.) is generated, and sludge containing protozoa is formed (Step S3). Then, the sludge in which a large amount of filamentous bacteria has been generated is further subjected to semi-continuous culture for about one week in the same manner as above (step S
4), an aerobic self-granulated material as shown in FIG. 4 is generated (step S5). This self-granulated material 31 is formed by the above-mentioned filamentous bacteria 32 intertwined with each other, and contains protozoa 33 therein. In this way, an aerobic self-granulated product can be produced by a simple method of semi-continuously cultivating returned sludge, so material and equipment costs can be reduced, and production costs can be lowered.

【0006】図2はこの発明の好気性自己造粒物の製造
方法のもう一つの実施例を示すフローチャートである。 この製造方法は、ステップS11からステップS13に
おいて、上記実施例におけるステップS1からステップ
S3と同様にして好気性の糸状性細菌を多量発生させ、
それを沈澱(ステップS14)させておく。一方、それ
とは別に、別の容器に採取した上記と同じMLSS55
00mg/L程度の低密度汚泥(ステップS15)を1
〜2週間半連続培養する(ステップS15)。この半連
続培養は上記実施例における半連続培養よりもスキムミ
ルク溶液の濃度をうすく(例えば、0.1g/L程度)
して行い、それ以外の条件は上記実施例と同様に行う。 この半連続培養により汚泥中の固着性原生動物(エピス
チルス属;Epistylis sp.などの繊毛虫類
が多い)が増大する(ステップS17)。次に、図3に
示すように容器21にセラミックスなどの表面に小さな
凹凸のある板22を10mm間隔で吊り下げてその板の
上に上記固着性原生動物を含む活性汚泥23を付着させ
る(ステップS18)。次に、板22を容器21から取
り出して板上に付着した活性汚泥23をかき取り、かき
取った活性汚泥を上記好気性の糸状性細菌が多量に発生
している汚泥と混合(ステップS20)したのち、ステ
ップS12の半連続培養と同様の半連続培養を約1週間
行う(ステップS21)。そうすることにより、上記好
気性の糸状性細菌と固着性原生動物が絡まって図4と同
様の好気性の自己造粒物ができる。 この製造方法も、上記実施例における製造方法と同様、
返送汚泥を半連続培養するだけの簡単なものであるので
、材料費や設備費を少なくて済み、製造コストを低くで
きる。
FIG. 2 is a flowchart showing another embodiment of the method for producing an aerobic self-granulated product of the present invention. In this manufacturing method, in steps S11 to S13, a large amount of aerobic filamentous bacteria is generated in the same manner as in steps S1 to S3 in the above embodiment,
It is allowed to precipitate (step S14). On the other hand, the same MLSS55 as above collected in another container.
00mg/L of low density sludge (step S15)
Continuously culture for ~2 and a half weeks (step S15). In this semi-continuous culture, the concentration of the skim milk solution is lower (for example, about 0.1 g/L) than in the semi-continuous culture in the above example.
The other conditions were the same as in the above example. This semi-continuous culture increases the number of sessile protozoa (genus Epistylus; many ciliates such as Epistylis sp.) in the sludge (step S17). Next, as shown in FIG. 3, plates 22 made of ceramic or the like having small irregularities on the surface are hung at intervals of 10 mm in the container 21, and the activated sludge 23 containing the sessile protozoa is deposited on the plates (step S18). Next, the plate 22 is taken out from the container 21, the activated sludge 23 adhering to the plate is scraped off, and the scraped activated sludge is mixed with the sludge in which a large amount of aerobic filamentous bacteria is generated (step S20). After that, semi-continuous culture similar to the semi-continuous culture in step S12 is performed for about one week (step S21). By doing so, the aerobic filamentous bacteria and sessile protozoa become entangled to form an aerobic self-granulated material similar to that shown in FIG. 4. This manufacturing method is similar to the manufacturing method in the above example,
Since the process is as simple as semi-continuous cultivation of returned sludge, material and equipment costs can be reduced, and manufacturing costs can be lowered.

【0007】また、上記いずれの製造方法で製造された
自己造粒物も、全体が微生物であるので、担体結合法で
形成された混合物や包括固定化法で製造された微生物カ
プセルに比べて生物反応性がすぐれており、また、担体
結合法で形成された混合物に比べて密度が低いので流動
床リアクターに入れて使用した場合、動力費が安価にな
るという利点がある。またこの自己造粒物は、好気性の
糸状性細菌と原生動物とでできているので、従来の嫌気
性糸状細菌でできた自己造粒物よりも有機性分解性能が
高く、有機性排水の処理に非常に有効である。
[0007] In addition, since the self-granulated product produced by any of the above production methods is entirely composed of microorganisms, it contains fewer organisms than a mixture formed by a carrier binding method or a microbial capsule produced by an entrapping immobilization method. It has excellent reactivity and has a lower density than a mixture formed by a carrier bonding method, so it has the advantage of lower power costs when used in a fluidized bed reactor. In addition, since this self-granulated material is made of aerobic filamentous bacteria and protozoa, it has a higher organic decomposition performance than conventional self-granulated material made of anaerobic filamentous bacteria, and is effective in reducing organic wastewater. Very effective for processing.

【発明の効果】以上より明らかなように、第1の発明の
好気性自己造粒物は、好気性の糸状性細菌と原生動物が
絡まって粒状化したものであるので、有機性排水の処理
に非常に有効となる。また、第2の発明の好気性自己造
粒物の製造方法は、容器に入れた活性汚泥を所定期間半
連続培養して上記活性汚泥中に好気性の糸状性細菌を発
生させ、上記好気性の糸状性細菌が発生した活性汚泥に
ついて上記と同様の半連続培養を所定期間行って上記好
気性の糸状性細菌と原生動物が絡まって粒状化した好気
性自己造粒物を発生させるようにしているので、従来の
微生物固定化法に比べて材料や設備が少なくて済み、製
造コストを低くすることができる。また、第3の発明の
好気性自己造粒物の製造方法は、容器に入れた活性汚泥
を所定期間半連続培養して上記活性汚泥中に好気性の糸
状性細菌を発生させる一方、上記容器と別の容器に入れ
た活性汚泥について上記半連続培養に用いる栄養分の溶
液よりも濃度の低い栄養分の溶液を用いる半連続培養を
所定期間行ってその活性汚泥中の固着性原生動物を増大
させ、その固着性原生動物が増大した活性汚泥中に板状
部材を挿入してその板状部材に上記固着性原生動物を含
む活性汚泥を付着させ、その板状部材に付着した活性汚
泥をかき取って上記好気性の糸状性細菌が発生している
活性汚泥に混ぜ、その活性汚泥について上記と同様の半
連続培養工程を所定期間行って上記好気性の糸状性細菌
と固着性原生動物が絡まって粒状化した好気性自己造粒
物を発生させるようにしているので、上記第2の発明の
製造方法と同様、従来の微生物固定化法に比べて材料や
設備が少なくて済み、製造コストを低くすることができ
る。
[Effects of the Invention] As is clear from the above, the aerobic self-granulated product of the first invention is a granulated product in which aerobic filamentous bacteria and protozoa are entangled, so it is suitable for the treatment of organic wastewater. It is very effective. Further, in the method for producing an aerobic self-granulated product of the second invention, activated sludge placed in a container is semi-continuously cultured for a predetermined period of time to generate aerobic filamentous bacteria in the activated sludge, The activated sludge in which the filamentous bacteria have been generated is subjected to semi-continuous culture as described above for a predetermined period of time to generate aerobic self-granulated material in which the aerobic filamentous bacteria and protozoa are entangled and granulated. Compared to conventional microbial immobilization methods, this method requires fewer materials and equipment, and can lower manufacturing costs. Further, in the method for producing an aerobic self-granulated product according to the third invention, activated sludge placed in a container is cultured semi-continuously for a predetermined period of time to generate aerobic filamentous bacteria in the activated sludge, while Activated sludge placed in a separate container is subjected to semi-continuous culture for a predetermined period using a nutrient solution with a lower concentration than the nutrient solution used in the semi-continuous culture to increase the number of sessile protozoa in the activated sludge, A plate member is inserted into the activated sludge in which the sessile protozoa have increased, the activated sludge containing the sessile protozoa is adhered to the plate member, and the activated sludge adhering to the plate member is scraped off. The above-mentioned aerobic filamentous bacteria are mixed with the activated sludge in which they are generated, and the activated sludge is subjected to the same semi-continuous culture process as above for a predetermined period, so that the above-mentioned aerobic filamentous bacteria and sessile protozoa become entangled and form particles. Since aerobic self-granulated material is generated, similar to the production method of the second invention, less materials and equipment are required compared to the conventional microorganism immobilization method, and the production cost is reduced. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  この発明の好気性自己造粒物の製造方法の
一実施例を示すフローチャートである。
FIG. 1 is a flowchart showing one embodiment of the method for producing an aerobic self-granulated product of the present invention.

【図2】  この発明の好気性自己造粒物の製造方法の
もう一つの実施例を示すフローチャートである。
FIG. 2 is a flowchart showing another embodiment of the method for producing an aerobic self-granulated product of the present invention.

【図3】  上記もう一つの実施例において固着性原生
動物を含む汚泥が板上に付着した状態を示す図である。
FIG. 3 is a diagram showing a state in which sludge containing sessile protozoa adheres to a plate in the above-mentioned another example.

【図4】  上記製造方法により生成された好気性自己
造粒物の概略拡大図である。
FIG. 4 is a schematic enlarged view of an aerobic self-granulated product produced by the above production method.

【符号の説明】[Explanation of symbols]

21…容器、22…板、23…固着性原生動物を含む汚
泥、31…好気性自己造粒物、32…好気性の糸状性細
菌、33…原生動物。
21... Container, 22... Board, 23... Sludge containing sessile protozoa, 31... Aerobic self-granulated material, 32... Aerobic filamentous bacteria, 33... Protozoa.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  好気性の糸状性細菌と原生動物が絡ま
って粒状化した好気性自己造粒物。
[Claim 1] An aerobic self-granulated product in which aerobic filamentous bacteria and protozoa are entangled and granulated.
【請求項2】  容器に入れた活性汚泥に空気を吹き込
んで撹拌する工程と、上記空気の吹き込みを停止して上
記活性汚泥中の微生物を沈降させる工程と、上記微生物
が沈降した後の上澄み液を除去する工程と、上記上澄み
液を除去した活性汚泥に上記微生物のための栄養分を溶
かした溶液を加える工程からなる半連続培養工程を所定
期間繰り返し行って上記活性汚泥中に好気性の糸状性細
菌を発生させ、上記好気性の糸状性細菌が発生した活性
汚泥について上記と同様の半連続培養工程を所定期間繰
り返し行って上記好気性の糸状性細菌と原生動物が絡ま
って粒状化した好気性自己造粒物を発生させる好気性自
己造粒物の製造方法。
2. A step of blowing air into the activated sludge placed in a container and stirring it, stopping the air blowing to settle the microorganisms in the activated sludge, and removing a supernatant liquid after the microorganisms have settled. A semi-continuous culture process consisting of a step of removing the supernatant liquid and a step of adding a solution containing nutrients for the microorganisms to the activated sludge from which the supernatant liquid has been removed is repeated for a predetermined period to create aerobic filamentous properties in the activated sludge. Bacteria are generated, and the same semi-continuous culture process as above is repeated for a predetermined period on the activated sludge in which the aerobic filamentous bacteria have been generated, resulting in aerobic sludge in which the aerobic filamentous bacteria and protozoa are entangled and granulated. A method for producing an aerobic self-granulated product that generates a self-granulated product.
【請求項3】  容器に入れた活性汚泥に空気を吹き込
んで撹拌する工程と、上記空気の吹き込みを停止して上
記活性汚泥中の微生物を沈降させる工程と、上記微生物
が沈降した後の上澄み液を除去する工程と、上記上澄み
液を除去した活性汚泥に上記微生物のための栄養分を溶
かした溶液を加える工程からなる半連続培養工程を所定
期間繰り返し行って上記活性汚泥中に好気性の糸状性細
菌を発生させる一方、上記容器と別の容器に入れた活性
汚泥について上記溶液の代わりに上記溶液よりも栄養分
の濃度の低い溶液を加える上記半連続培養工程を所定期
間繰り返し行ってその活性汚泥中の固着性原生動物を増
大させ、その固着性原生動物が増大した活性汚泥中に板
状部材を挿入してその板状部材に上記固着性原生動物を
含む活性汚泥を付着させ、その板状部材に付着した活性
汚泥をかき取って上記好気性の糸状性細菌が発生してい
る活性汚泥に混ぜ、その活性汚泥について上記と同様の
半連続培養工程を所定期間繰り返し行って上記好気性の
糸状性細菌と原生動物が絡まって粒状化した好気性自己
造粒物を発生させる好気性自己造粒物の製造方法。
3. A step of blowing air into and stirring activated sludge placed in a container, a step of stopping the air blowing to settle the microorganisms in the activated sludge, and a supernatant liquid after the microorganisms have settled. A semi-continuous culture process consisting of a step of removing the supernatant liquid and a step of adding a solution containing nutrients for the microorganisms to the activated sludge from which the supernatant liquid has been removed is repeated for a predetermined period to create aerobic filamentous properties in the activated sludge. While generating bacteria, the above semi-continuous culture step of adding a solution with a lower concentration of nutrients than the above solution instead of the above solution to the activated sludge placed in the above container and another container is repeated for a predetermined period, and the activated sludge is incubated. sessile protozoa, inserting a plate-like member into the activated sludge in which the sessile protozoa have increased, and adhering the activated sludge containing the sessile protozoa to the plate-like member; The activated sludge adhering to the sludge is scraped off and mixed with the activated sludge in which the aerobic filamentous bacteria are generated, and the activated sludge is subjected to the same semi-continuous culture process as above for a predetermined period of time to produce the aerobic filamentous bacteria. A method for producing an aerobic self-granulated material in which bacteria and protozoa are entangled to generate aerobic self-granulated material.
JP12924691A 1991-05-31 1991-05-31 Method for producing aerobic self-granulated product Expired - Lifetime JPH0785799B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12924691A JPH0785799B2 (en) 1991-05-31 1991-05-31 Method for producing aerobic self-granulated product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12924691A JPH0785799B2 (en) 1991-05-31 1991-05-31 Method for producing aerobic self-granulated product

Publications (2)

Publication Number Publication Date
JPH04354596A true JPH04354596A (en) 1992-12-08
JPH0785799B2 JPH0785799B2 (en) 1995-09-20

Family

ID=15004820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12924691A Expired - Lifetime JPH0785799B2 (en) 1991-05-31 1991-05-31 Method for producing aerobic self-granulated product

Country Status (1)

Country Link
JP (1) JPH0785799B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015025A1 (en) * 1992-01-22 1993-08-05 Sankyo Company, Limited Granulating method by aerobic biological treatment of organic waste water and aerobic biological treatment method for organic waste water
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
JP2007136365A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Method for producing granular microbe sludge
JP2007136363A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008049283A (en) * 2006-08-25 2008-03-06 Japan Organo Co Ltd Water treatment apparatus
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water
JP2011224569A (en) * 2011-07-20 2011-11-10 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
CN111233136A (en) * 2020-01-16 2020-06-05 郑州大学 Filamentous fungus granular sludge and culture method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288597A (en) * 1990-04-03 1991-12-18 Ebara Infilco Co Ltd Concentration of sludge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288597A (en) * 1990-04-03 1991-12-18 Ebara Infilco Co Ltd Concentration of sludge

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015025A1 (en) * 1992-01-22 1993-08-05 Sankyo Company, Limited Granulating method by aerobic biological treatment of organic waste water and aerobic biological treatment method for organic waste water
JP2003033796A (en) * 2001-07-26 2003-02-04 Kurita Water Ind Ltd Biological denitration method
JP2007136365A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Method for producing granular microbe sludge
JP2007136363A (en) * 2005-11-18 2007-06-07 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
JP2007275845A (en) * 2006-04-11 2007-10-25 Sumitomo Heavy Industries Environment Co Ltd Granular microorganism sludge preparation arrangement and granular microorganism sludge producing method
JP2008049283A (en) * 2006-08-25 2008-03-06 Japan Organo Co Ltd Water treatment apparatus
JP2008284427A (en) * 2007-05-15 2008-11-27 Sumitomo Heavy Industries Environment Co Ltd Apparatus and method for treating waste water
JP2011224569A (en) * 2011-07-20 2011-11-10 Sumitomo Heavy Ind Ltd Granular microbial sludge generation method
CN111233136A (en) * 2020-01-16 2020-06-05 郑州大学 Filamentous fungus granular sludge and culture method thereof
CN111233136B (en) * 2020-01-16 2021-12-31 郑州大学 Filamentous fungus granular sludge and culture method thereof

Also Published As

Publication number Publication date
JPH0785799B2 (en) 1995-09-20

Similar Documents

Publication Publication Date Title
US10189732B2 (en) Algal-sludge granule for wastewater treatment and bioenergy feedstock generation
NL7908138A (en) METHOD FOR PREPARING AND MAINTAINING BIOMASS ON CARRIER.
CN101913710B (en) Suspended packing microbial quick film forming method
KR20060043555A (en) Method for producing immobilized microorganism, immobilized microorganism produced therefrom and a reaction apparatus using the same
JPH04354596A (en) Aerobic self-granulated material and production thereof
CN1108371C (en) Trace elements and inorganic nutritive salt spreaded type carrier for culturing thallus
Chen et al. A novel anammox reactor with a nitrogen gas circulation: performance, granule size, activity, and microbial community
JP3835314B2 (en) Carrier packing and water treatment method using the same
WO2012002798A1 (en) Agent for the treatment of wastewater, method of preparation thereof and method of treatment of wastewater
Liu et al. Investigation on the properties and kinetics of glucose-fed aerobic granular sludge
JPS6352556B2 (en)
JPS61192389A (en) Biological treatment of water
JPS62279887A (en) Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JPS61242692A (en) Biological treatment of water
JP3465419B2 (en) Wastewater treatment agent and wastewater treatment method
JPS63158194A (en) Biological treatment of organic sewage
KR102589773B1 (en) Apparatus and Method for Accelerating the Granulation of Microalgae for Wastewater Treatment with Improved Energy Consumption Efficiency
JPH02174994A (en) Treatment of waste water
JPS6154293A (en) Treatment of high concentrated organic waste water
Cai et al. Cultivation of aerobic granules in a sequential batch shaking reactor
JPH01151992A (en) Biological process for treating waste water
WO2023080877A1 (en) Production and application of gas bubbled immobilized microalgae culture in water or wastewater treatment process
Salim et al. Granular aerobic sludge cultivation in the sequencing batch reactor
CA2062843A1 (en) Process for the production of living agglomerates containing biologically active microorganisms
JPH0295496A (en) Treatment of water with immobilized product produced from microorganism, enzyme and magnetic body