JPH01151992A - Biological process for treating waste water - Google Patents

Biological process for treating waste water

Info

Publication number
JPH01151992A
JPH01151992A JP62310881A JP31088187A JPH01151992A JP H01151992 A JPH01151992 A JP H01151992A JP 62310881 A JP62310881 A JP 62310881A JP 31088187 A JP31088187 A JP 31088187A JP H01151992 A JPH01151992 A JP H01151992A
Authority
JP
Japan
Prior art keywords
tank
biological treatment
wastewater
bacteria
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62310881A
Other languages
Japanese (ja)
Inventor
Yoshimasa Furuhata
古畑 義正
Sumio Anzai
安斎 純雄
Yukihisa Hosaka
保坂 幸尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan Government
Original Assignee
Tokyo Metropolitan Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan Government filed Critical Tokyo Metropolitan Government
Priority to JP62310881A priority Critical patent/JPH01151992A/en
Publication of JPH01151992A publication Critical patent/JPH01151992A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To remove efficiently and stably a specific component in waste water, by incubating specific bacteria on a carrier and utilizing it. CONSTITUTION:Ammonium chloride solution 2 and caustic soda 3, as incubating liquids, are fed to an incubating tank 1 by means of a pump 4, where these liquids are circulated therethrough under aerobic conditions to cause nitrifying bacteria to attach onto the carriers such as sands so as to be grown. And then, raw water 6 (precipitated sewage) containing nitrogen ammoniated is flowed upwardly through a nitrifying tank 5 under aerobic conditions by means of a pump 7 so as to fluidize the carriers to which nitrifying bacteria, incubated in the incubating tank 1, have been attached, whereby the ammonical nitrogen in the raw water 6 is converted to nitrogen nitrite and nitrogen nitrate; following which they are reduced to nitrogen gas by denitrifying bacteria in a denitrifying tank 8 to be removed therefrom. Further, part or whole of the carriers wherein BOD oxidizing bacteria have become dominant in the nitrifying tank 5 is transferred to the incubating tank 1 to grow again a large number of nitrifying bacteria on the carriers, causing thereby the nitrifying bacteria to be reactivated, or causing the activity of the BOD oxidizing bacteria to be eliminated to be returned to the nitrifying tank 5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水、し尿あるいは産業廃水等の汚水を生物
学的に処理する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for biologically treating wastewater such as sewage, human waste or industrial wastewater.

〔従来の技術〕[Conventional technology]

従来、例えば汚水中の窒素成分を生物学的に除去する方
法としては、硝化槽の後段に脱窒槽を設けて脱窒槽に水
素供与体としてメタノール等を添加する方法、水素供与
体としては外部がらは何も与えず脱窒槽の容量を大きく
した硝化・内生脱窒法、硝化槽の前段に脱窒槽を設けて
硝化槽から流出した水を脱窒槽に循環させ、汚水中のB
ODを水素供与体として利用する循環式硝化脱窒法、さ
らにこの循環式硝化脱窒法における硝化槽の後段にメタ
ノール等を添加する第2脱窒槽を設けたパーナート(B
arnard)法などが広く知られている。
Conventionally, as a method for biologically removing nitrogen components from wastewater, for example, a denitrification tank is installed after a nitrification tank, and methanol or the like is added as a hydrogen donor to the denitrification tank. A nitrification/endogenous denitrification method in which the capacity of the denitrification tank is increased without feeding anything, and a denitrification tank is installed before the nitrification tank and the water flowing out from the nitrification tank is circulated to the denitrification tank.
Pernat (B
Arnard method and the like are widely known.

また、汚水中の窒素成分とリン成分を生物学的に同時に
除去する方法としては、前記循環式硝化脱窒法における
脱窒槽の前段に嫌気槽を設けた^20法、さらにAtO
法における硝化槽内に回転円板を設けて硝化細菌を多く
回転円板に付着させるハイブリッド生物処理法(回転円
板付活性汚泥法)なども知られている。
In addition, methods for biologically simultaneously removing nitrogen and phosphorus components in wastewater include the ^20 method in which an anaerobic tank is provided before the denitrification tank in the above-mentioned circulating nitrification-denitrification method, and the AtO
A hybrid biological treatment method (activated sludge method with a rotating disk) is also known, in which a rotating disk is provided in the nitrification tank and a large number of nitrifying bacteria are attached to the rotating disk.

ところで、従来の生物処理法は、ある一定の処理条件を
確保して、汚水中の成分を栄養源として出現する微生物
を利用することにより、汚水中の汚濁物質の除去を行っ
ていた。そのため、汚水の処理と汚水を処理する微生物
の増殖とが同一槽内で同時に行われるので、優占種にな
り得ない有用微生物によって処理できる特定成分の処理
が困難となったり、特定成分が処理されても、後段の工
程で特定成分の除去に必要な他成分がほとんど存在しな
くなってしまっていた。
By the way, in conventional biological treatment methods, pollutants in wastewater are removed by ensuring certain treatment conditions and utilizing microorganisms that appear using components in the wastewater as a nutrient source. As a result, wastewater treatment and the growth of microorganisms that treat wastewater occur simultaneously in the same tank, making it difficult to treat specific components that can be treated by useful microorganisms that cannot be the dominant species, or Even if it was removed, other components needed to remove the specific component in the subsequent process were almost completely absent.

従って、窒素除去の場合では、前述のようにRODにか
わる水素供与体としてメタノールを添加したり、硝化槽
の前段に脱窒槽を設け、汚水中のRODを水素供与体と
して利用することがなされてきた。
Therefore, in the case of nitrogen removal, as mentioned above, methanol is added as a hydrogen donor instead of ROD, or a denitrification tank is installed before the nitrification tank, and ROD in wastewater is used as a hydrogen donor. Ta.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、パーナート法を含めて、前記従来の脱窒
槽にメタノール等を添加する方法では薬剤のコストが非
常にかかり、硝化・内生脱窒法では脱窒槽の容量が大き
くなって都市の下水処理場などの大規模な処理には不向
きである。また、AtO法およびハイブリッド生物処理
法を含めて、循環式硝化脱窒法では後段に硝化槽が設置
されていることから、処理水中に亜硝酸性窒素および硝
酸性窒素が脱窒されずに残存し、硝化槽からの循環水の
量を多くしなければ窒素除去率を70%以上にすること
が非常に困難であるという問題点があった。
However, the conventional methods of adding methanol, etc. to the denitrification tank, including the Panert method, require very high chemical costs, and the nitrification/endogenous denitrification method requires a large capacity of the denitrification tank, making it difficult to use in urban sewage treatment plants. It is unsuitable for large-scale processing. In addition, in the circulating nitrification-denitrification method, including the AtO method and the hybrid biological treatment method, a nitrification tank is installed at the latter stage, so nitrite nitrogen and nitrate nitrogen remain in the treated water without being denitrified. However, there was a problem in that it was very difficult to increase the nitrogen removal rate to 70% or more unless the amount of circulating water from the nitrification tank was increased.

本発明は、前記従来の問題点を解決し、汚水中の除去す
べき特定成分を効率的に除去することができる汚水の生
物学的処理方法を提供しようとするものである。
The present invention aims to solve the above-mentioned conventional problems and provide a biological treatment method for wastewater that can efficiently remove specific components to be removed from wastewater.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、汚水中の除去すべき特定成分を処理する有用
微生物を担体上に増殖させる培養工程と、該培養工程で
増殖された有用微生物を利用して前記汚水中の特定成分
を処理する生物処理工程とからなり、該生物処理工程で
活性が減衰した前記有用微生物の活性を前記培養工程で
復活させること、または該生物処理工程で増殖した前記
有用微生物以外の微生物の活性を前記培養工程で失活さ
せることを特徴とする汚水の生物学的処理方法である。
The present invention provides a culture process in which useful microorganisms that treat specific components to be removed from wastewater are grown on a carrier, and organisms that process specific components in the wastewater using the useful microorganisms grown in the culture process. a treatment step, in which the activity of the useful microorganisms whose activity has been attenuated in the biological treatment step is restored in the cultivation step, or the activity of microorganisms other than the useful microorganisms that have grown in the biological treatment step is restored in the cultivation step. This is a biological treatment method for wastewater that is characterized by deactivation.

〔作 用〕[For production]

本発明では、汚水中の除去すべき特定成分を処理する有
用微生物を増殖させるものであるが、ここに特定成分の
処理とは、有用微生物が有害物質。
In the present invention, useful microorganisms are grown to treat specific components to be removed from wastewater, and the treatment of specific components herein means that the useful microorganisms are harmful substances.

難分解性物質を分解する微生物の場合には当該物質に馴
致し、資化あるいは分解することなどを意味し、また有
用微生物が硝化細菌である場合にはアンモニア性窒素を
亜硝酸性窒素、硝酸性窒素に酸化することを意味する。
In the case of microorganisms that decompose difficult-to-decompose substances, it means adapting to the substance and assimilating or decomposing it, and in the case of useful microorganisms being nitrifying bacteria, it converts ammonia nitrogen into nitrite nitrogen, nitrate nitrogen, etc. This means that it oxidizes to nitrogen.

本発明の作用を、以下に窒素除去を例にとって図面を参
照しながら説明する。
The operation of the present invention will be explained below with reference to the drawings, taking nitrogen removal as an example.

第1図において、培養槽1には砂、アンスラサイト、軽
量骨材、プラスチック等いずれかの固体粒子の担体が収
容されており、培養液として塩化アンモニウム溶液2お
よび苛性ソーダ3等をポンプ4で導入し、好気的条件下
で循環させて担体を上向流の循環流によって流動化し、
担体上に硝化細菌を付着、増殖させる。
In Fig. 1, a culture tank 1 contains a solid particle carrier such as sand, anthracite, lightweight aggregate, plastic, etc., and ammonium chloride solution 2, caustic soda 3, etc. are introduced as a culture solution by a pump 4. and circulated under aerobic conditions to fluidize the carrier by an upward circulating flow,
Nitrifying bacteria are attached and grown on the carrier.

5は硝化槽であって、培養槽lで培養された硝化細菌が
付着した担体を収容し、アンモニア性窒素を含む原水6
 (沈殿下水)をポンプ7で好気的条件下に上向流通水
し、硝化槽5内の担体を流動化させる。この時原水6中
のアンモニア性窒素は、担体上の硝化細菌の働きによっ
て亜硝酸性窒素および硝酸性窒素に硝化され、これらの
亜硝酸性窒素および硝酸性窒素は次の脱窒槽8で脱窒菌
によって窒素ガスに還元されて除去される。脱窒槽8で
は、残存する原水中のBOnが水素供与体として利用さ
れ、さらに残存したBODは次の曝気槽9で分解された
のち、最終沈殿池10で沈殿した汚泥の大部分を返送汚
泥12として脱窒槽8に返送し、余剰分を余剰汚泥13
として系外へ排出する。
5 is a nitrification tank, which contains carriers to which nitrifying bacteria cultivated in culture tank 1 is attached, and which contains raw water 6 containing ammonia nitrogen.
(Settled sewage) is circulated upward under aerobic conditions using a pump 7 to fluidize the carriers in the nitrification tank 5. At this time, ammonia nitrogen in the raw water 6 is nitrified to nitrite nitrogen and nitrate nitrogen by the action of nitrifying bacteria on the carrier, and these nitrite nitrogen and nitrate nitrogen are oxidized by denitrifying bacteria in the next denitrification tank 8. is reduced to nitrogen gas and removed. In the denitrification tank 8, the remaining BON in the raw water is used as a hydrogen donor, and after the remaining BOD is decomposed in the next aeration tank 9, most of the precipitated sludge is returned to the final settling tank 10 and sent to the sludge 12. The excess sludge is returned to the denitrification tank 8 as surplus sludge 13.
It is discharged out of the system as

上記の処理中において、硝化槽5に通水される原水6に
はBOD成分が多く含まれるため、BOD酸化菌が硝化
槽5内で増殖し、担体上にはBOD酸化菌が侵出化し、
硝化細菌の活性が低下する。従って、硝化槽5のBOD
酸化菌が侵出化した担体の一部又は全部を培養槽1へ移
送し、再び担体上に硝化細菌を多く増殖させて硝化細菌
の活性を復活させ、またはBOD酸化菌の活性を失活さ
せて硝化槽5へ戻す。
During the above treatment, the raw water 6 passed through the nitrification tank 5 contains a large amount of BOD components, so BOD oxidizing bacteria proliferate in the nitrification tank 5, and the BOD oxidizing bacteria leach onto the carrier.
The activity of nitrifying bacteria decreases. Therefore, BOD of nitrification tank 5
A part or all of the carrier from which oxidizing bacteria have been leached is transferred to the culture tank 1, and a large number of nitrifying bacteria are grown on the carrier again to restore the activity of the nitrifying bacteria, or the activity of the BOD oxidizing bacteria is inactivated. and return it to the nitrification tank 5.

このように、培養した硝化細菌を利用して沈殿下水中の
アンモニア性窒素を直接硝化し、しかる後、残存するB
ODを水素供与体として利用して硝化された亜硝酸性窒
素および硝酸性窒素を脱窒することにより、窒素成分を
効率よく除去することができる。そのため、従来の循環
式硝化脱窒法よりも窒素除去率が高く、またメタノール
等の薬剤コストがあまりかからない窒素除去が可能にな
る。
In this way, the cultured nitrifying bacteria are used to directly nitrify the ammonia nitrogen in the precipitated water, and then the remaining B
By denitrifying nitrified nitrite nitrogen and nitrate nitrogen using OD as a hydrogen donor, nitrogen components can be efficiently removed. Therefore, the nitrogen removal rate is higher than that of the conventional cyclic nitrification-denitrification method, and nitrogen removal can be performed without requiring much cost for chemicals such as methanol.

次に第2図は、第1図のように培養槽1に塩化アンモニ
ウム溶液2等の薬剤を使用する代りに、アンモニア性窒
素成分よりも他成分の含有が少ない汚水または処理水、
例えば通常の活性汚泥法からの二次処理水を培養液とし
て利用した例である。
Next, FIG. 2 shows that instead of using chemicals such as ammonium chloride solution 2 in the culture tank 1 as shown in FIG.
For example, this is an example in which secondary treated water from a normal activated sludge method is used as a culture solution.

すなわち、曝気槽9′と沈殿池10′からなり、沈殿池
10′から返送汚泥12′が返送される活性汚泥処理系
統の曝気槽9′に原水6の一部6′を導入し、活性汚泥
処理を受けて沈殿池10′から流出する二次処理水11
’を培養液とし、苛性ソーダ3と共に培養槽1に導入す
るもので、その他の作用は第1図の例と変わるところは
ない。
That is, a part 6' of the raw water 6 is introduced into the aeration tank 9' of the activated sludge treatment system, which consists of an aeration tank 9' and a settling tank 10', and to which return sludge 12' is returned from the settling tank 10'. Secondary treated water 11 flowing out from the settling tank 10' after being treated
' is used as a culture solution and introduced into the culture tank 1 together with caustic soda 3, and other functions are the same as in the example shown in FIG.

さらに第3図の例では、第2図の脱窒紫檀8を嫌気性流
動層を用いた嫌気槽とし、曝気槽9として好気性流動層
を用いた好気槽としたものである。
Furthermore, in the example of FIG. 3, the denitrifying rosewood 8 of FIG. 2 is an anaerobic tank using an anaerobic fluidized bed, and the aeration tank 9 is an aerobic tank using an aerobic fluidized bed.

また、前記各側においては、硝化細菌が担体上に充分に
付着し増殖していれば、培養液に必ずしもアンモニア性
窒素成分が含まれている必要はない、この場合、BOD
酸化菌が自己分解を起こして失活しさえすればよく、培
養槽1に、BOD酸化菌の増殖を抑制する薬剤溶液、汚
水または処理水、例えば、BODを含まずかつ充分硝化
の進んだ二次処理水まな高度処理水を培養液として導入
してもよい。
In addition, on each side, as long as the nitrifying bacteria are sufficiently attached to the carrier and proliferate, the culture solution does not necessarily need to contain an ammonia nitrogen component; in this case, BOD
It is only necessary for the oxidizing bacteria to self-decompose and become inactive, and the culture tank 1 is filled with a chemical solution that suppresses the growth of BOD oxidizing bacteria, waste water or treated water, for example, water that does not contain BOD and has undergone sufficient nitrification. Highly treated water, such as secondary treated water, may be introduced as a culture solution.

なお、前記各側では、培養槽1および硝化槽5において
、硝化細菌の担体として固体粒子を使用し、上向流通水
によって流動させているが、必ずしも流動化させること
なく下向流通水によることもでき、あるいはまた曝気槽
等を用いて固体粒子担体を懸濁浮遊させながら硝化細菌
の培養または硝化処理を行うことができる。
In addition, in each of the above-mentioned sides, in the culture tank 1 and the nitrification tank 5, solid particles are used as carriers for nitrifying bacteria, and they are fluidized by upward flowing water, but they are not necessarily fluidized and can be caused by downward flowing water. Alternatively, the nitrifying bacteria can be cultured or the nitrification treatment can be carried out while suspending the solid particle carrier using an aeration tank or the like.

さらに、培養槽1を複数並設し、これら培養槽1の一部
で硝化細菌の培養を行わせ、他を硝化槽として利用して
核種で硝化細菌の活性が減衰した時あるいは核種でBO
D酸化菌が増殖した時に、他の培養槽と順次切り替える
ようにし、培養槽と硝化槽を兼用させることもでき、そ
の場合の硝化細菌の担体としては固体物を槽内に固定し
たり、回転円板を利用することもできる。
Furthermore, a plurality of culture tanks 1 are installed in parallel, and some of these culture tanks 1 are used to culture nitrifying bacteria, and the other parts are used as nitrification tanks, so that when the activity of nitrifying bacteria is attenuated by the nuclide, or when the nuclide is used as a BO
When D-oxidizing bacteria proliferate, the culture tank can be switched to other culture tanks in sequence, and the culture tank and nitrification tank can also be used. A disk can also be used.

なお1.本発明は前記の窒素除去側以外にも産業廃水中
の有害物質や難分解性物質を特殊な微生物により処理す
る場合などにも応用可能である0例えば、フェノールあ
るいはポリビニルアルコールを含有している廃水が間け
つ的に排出される場合の処理に応用できる。
Note 1. In addition to the above-mentioned nitrogen removal, the present invention can also be applied to the treatment of harmful substances and difficult-to-decompose substances in industrial wastewater using special microorganisms. For example, wastewater containing phenol or polyvinyl alcohol It can be applied to the treatment when the gas is discharged intermittently.

〔実施例〕〔Example〕

次に本発明の一実施例を示す。 Next, one embodiment of the present invention will be described.

第1図の窒素除去システムにおいて、担体として有効径
0.4N、均等係数1.4以下のアンスラサイトを使用
し、培養槽内で塩化アンモニウム溶液および苛性ソーダ
により槽内のアンモニア性窒素濃度50■/l程度、+
+)17.5程度になるようにして、硝化細菌を担体上
に付着させ、培養を行った。
In the nitrogen removal system shown in Fig. 1, anthracite with an effective diameter of 0.4N and a uniformity coefficient of 1.4 or less is used as a carrier, and an ammonium chloride solution and caustic soda are added to the ammonia nitrogen concentration in the tank to 50μ/ About l, +
+) 17.5, nitrifying bacteria were attached to the carrier and cultured.

しかる後、内部曝気を行っている硝化槽にエアリフト管
により担体を移送して、沈殿下水を滞留時間1.hrで
通水した。
Thereafter, the carrier was transferred to a nitrification tank with internal aeration using an air lift pipe, and the precipitated sewage was collected for a residence time of 1. Water was passed at hr.

また、硝化槽内でBOD酸化菌が侵出化した担体を培養
槽へ移送する場合もエアリフト管を用いて行った。
Furthermore, an air lift tube was also used to transfer the carrier from which BOD oxidizing bacteria had been leached in the nitrification tank to the culture tank.

この結果は第1表に示す通りであり、本発明によれば、
80%の全窒素除去率が得られた。
The results are shown in Table 1, and according to the present invention,
A total nitrogen removal rate of 80% was obtained.

一方、比較例として従来の循環式硝化脱窒法により、循
環率を2.5倍になるようにして、沈殿下水を通水した
結果は第2表に示す通りで、全窒素除去率は62%であ
った。
On the other hand, as a comparative example, the conventional circulating nitrification and denitrification method was used to increase the circulation rate by 2.5 times, and the precipitated sewage was passed through the water. The results are shown in Table 2, and the total nitrogen removal rate was 62%. Met.

以下余白 第1表体発頭  〔■/l〕 第2表のが抄p  グ■/N) 〔発明の効果〕 以上述べたように本発明によれば、特に設備規模を著し
く大きくすることなく、特定微生物を担体上に培養しこ
れを利用することによって汚水中の特定成分を極めて効
率よく、しかも安定して除去することができ、従来法で
は期待できない効果を有するものである。
The following margins are from Table 1 [■/l] Excerpts from Table 2 are gu■/N) [Effects of the Invention] As described above, according to the present invention, there is no need to significantly increase the scale of the equipment. By culturing specific microorganisms on a carrier and utilizing this, specific components in wastewater can be removed extremely efficiently and stably, and this method has effects that cannot be expected with conventional methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ本発明の実施態様を示す系統
説明図である。 1・・・培養槽、2・・・塩化アンモニウム溶液、3・
・・苛性ソーダ、4.7・・・ポンプ、5・・・硝化槽
、6.6′・・・原水、8・・・脱窒槽、9,9′・・
・曝気槽、10・・・最終沈殿池、10’・・・沈殿池
、11・・・処理水、11’・・・二次処理水。
1 to 3 are system explanatory diagrams showing embodiments of the present invention, respectively. 1...Culture tank, 2...Ammonium chloride solution, 3.
... Caustic soda, 4.7... Pump, 5... Nitrification tank, 6.6'... Raw water, 8... Denitrification tank, 9,9'...
- Aeration tank, 10... Final settling tank, 10'... Sedimentation tank, 11... Treated water, 11'... Secondary treated water.

Claims (12)

【特許請求の範囲】[Claims] (1)汚水中の除去すべき特定成分を処理する有用微生
物を担体上に増殖させる培養工程と、該培養工程で増殖
された有用微生物を利用して前記汚水中の特定成分を処
理する生物処理工程とからなり、該生物処理工程で活性
が減衰した前記有用微生物の活性を前記培養工程で復活
させること、または該生物処理工程で増殖した前記有用
微生物以外の微生物の活性を前記培養工程で失活させる
ことを特徴とする汚水の生物学的処理方法。
(1) A culture process in which useful microorganisms that treat specific components to be removed in sewage are grown on a carrier, and a biological treatment that uses the useful microorganisms grown in the culture process to treat the specific components in the sewage. and restoring the activity of the useful microorganisms whose activity has been attenuated in the biological treatment step in the culturing step, or losing the activity of microorganisms other than the useful microorganisms that have grown in the biological treatment step in the culturing step. A biological treatment method for wastewater, which is characterized by activating wastewater.
(2)前記培養工程に前記特定成分を含有する薬剤溶液
を培養液として導入するものである特許請求の範囲第1
項記載の汚水の生物学的処理方法。
(2) A drug solution containing the specific component is introduced as a culture solution into the culture step, as claimed in claim 1.
Biological treatment method for sewage as described in Section.
(3)前記培養工程に前記特定成分よりも他成分の含有
が少ない汚水または処理水を培養液として導入するもの
である特許請求の範囲第1項記載の汚水の生物学的処理
方法。
(3) The biological treatment method for wastewater according to claim 1, wherein wastewater or treated water containing less other components than the specific component is introduced into the culture step as a culture solution.
(4)前記培養工程に前記有用微生物以外の微生物の増
殖を抑制する薬剤溶液、汚水または処理水を培養液とし
て導入するものである特許請求の範囲第1項記載の汚水
の生物学的処理方法。
(4) The biological treatment method for wastewater according to claim 1, wherein a chemical solution, wastewater, or treated water that inhibits the growth of microorganisms other than the useful microorganisms is introduced as a culture solution into the culturing step. .
(5)前記培養工程と生物処理工程間に前記有用微生物
の担体の一部を交互に移動させるものである特許請求の
範囲第1〜4項のいずれか一つの項記載の汚水の生物学
的処理方法。
(5) Biological treatment of sewage according to any one of claims 1 to 4, wherein a part of the useful microorganism carrier is alternately transferred between the cultivation step and the biological treatment step. Processing method.
(6)前記培養工程を並列に複数配置し、これら工程の
一部を前記生物処理工程に順次切り替えるものである特
許請求の範囲第1〜4項のいずれか一つの項記載の汚水
の生物学的処理方法。
(6) Biology of wastewater according to any one of claims 1 to 4, wherein a plurality of the culture steps are arranged in parallel, and some of these steps are sequentially switched to the biological treatment step. processing method.
(7)前記有用微生物の担体が固体粒子である特許請求
の範囲第5項又は第6項記載の汚水の生物学的処理方法
(7) The biological treatment method for wastewater according to claim 5 or 6, wherein the carrier of the useful microorganisms is a solid particle.
(8)前記有用微生物の担体を流動化させて培養または
処理を行うものである特許請求の範囲第7項記載の汚水
の生物学的処理方法。
(8) The biological treatment method for sewage according to claim 7, wherein the carrier of the useful microorganisms is fluidized and cultured or treated.
(9)前記有用微生物の担体を懸濁浮遊させて培養また
は処理を行うものである特許請求の範囲第7項記載の汚
水の生物学的処理方法。
(9) The biological treatment method for sewage according to claim 7, wherein the carrier of the useful microorganisms is suspended and cultured or treated.
(10)前記有用微生物の担体が固定されているもので
ある特許請求の範囲第6項記載の汚水の生物学的処理方
法。
(10) The biological treatment method for sewage according to claim 6, wherein the useful microorganism carrier is immobilized.
(11)前記有用微生物の担体が、回転円板である特許
請求の範囲第6項記載の汚水の生物学的処理方法。
(11) The biological treatment method for wastewater according to claim 6, wherein the carrier for the useful microorganisms is a rotating disk.
(12)前記特定成分がアンモニア性窒素成分であり、
前記有用微生物が硝化細菌である特許請求の範囲第1〜
11項のいずれか一つの項記載の汚水の生物学的処理方
法。
(12) the specific component is an ammonia nitrogen component,
Claims 1 to 3, wherein the useful microorganism is a nitrifying bacteria.
The method for biological treatment of sewage according to any one of paragraphs 11 to 12.
JP62310881A 1987-12-10 1987-12-10 Biological process for treating waste water Pending JPH01151992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310881A JPH01151992A (en) 1987-12-10 1987-12-10 Biological process for treating waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310881A JPH01151992A (en) 1987-12-10 1987-12-10 Biological process for treating waste water

Publications (1)

Publication Number Publication Date
JPH01151992A true JPH01151992A (en) 1989-06-14

Family

ID=18010506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310881A Pending JPH01151992A (en) 1987-12-10 1987-12-10 Biological process for treating waste water

Country Status (1)

Country Link
JP (1) JPH01151992A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370096A (en) * 2001-06-14 2002-12-24 Washi Kosan Co Ltd Polluted water cleaning apparatus using bacteria carrier
KR100419620B1 (en) * 2001-12-21 2004-02-25 재단법인 포항산업과학연구원 A method for simultaneous removal of nitrogen and phenol in wastewater
CN100429158C (en) * 2006-01-23 2008-10-29 浙江大学 Method and equipment for removing organic chloride from wastewater
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002370096A (en) * 2001-06-14 2002-12-24 Washi Kosan Co Ltd Polluted water cleaning apparatus using bacteria carrier
KR100419620B1 (en) * 2001-12-21 2004-02-25 재단법인 포항산업과학연구원 A method for simultaneous removal of nitrogen and phenol in wastewater
CN100429158C (en) * 2006-01-23 2008-10-29 浙江大学 Method and equipment for removing organic chloride from wastewater
JP2016107219A (en) * 2014-12-08 2016-06-20 株式会社日立製作所 Nitrogen treatment method and nitrogen treatment apparatus

Similar Documents

Publication Publication Date Title
JP3776315B2 (en) Method for treating wastewater containing ammonia
US5182021A (en) Biological process for enhanced removal of ammonia, nitrite, nitrate, and phosphate from wastewater
JP4224951B2 (en) Denitrification method
JP5629448B2 (en) Wastewater treatment method
JP2002224688A (en) Denitrifying method and denitrifying apparatus
CN1143942A (en) Process and device for simultaneous biological elimination of phosphorus and nitrogen from waste water
JP4426105B2 (en) Treatment process of wastewater containing specific components such as ammonia
JP3252888B2 (en) Biological nitrogen removal equipment
US10384965B2 (en) Sewage treatment system using granule
JP5306296B2 (en) Waste water treatment apparatus and waste water treatment method
CN100445365C (en) Nitrobacteria culture promoter
CN100445366C (en) Nitrobacteria culture promoter
KR100378558B1 (en) Nitrogen and phosphorus removal process from sewage and waste water by 2A/O RBC with internal settler
JPH01151992A (en) Biological process for treating waste water
JPH07290088A (en) Method for biologically denitrifying organic waste water
JP2000061494A (en) Biological treatment of ammonia nitrogen
JPH09299988A (en) Nitrificating and denitrificating method and device therefor
JPH09225494A (en) Sewage treating device
JPH0739899A (en) Method and device for removing, nitrogen from waste water
KR100433096B1 (en) Equipment and Method of Nitrogen Removal with Down-flow Biofilm System using the Granule Sulfur
JPS62225296A (en) Biological nitrification and denitrification device
JP3222014B2 (en) Biological water treatment method for wastewater containing ammonia nitrogen
KR100422238B1 (en) Biological nutrient removal method using the separated currents of the anaerobic and anoxic tank and its device
JPS63232891A (en) Batch type activated sludge waste water treating device
JPH0768291A (en) Nitrogen removing apparatus