JPS6154290A - Single-phase fermenting method by immobilized microbe - Google Patents

Single-phase fermenting method by immobilized microbe

Info

Publication number
JPS6154290A
JPS6154290A JP59177166A JP17716684A JPS6154290A JP S6154290 A JPS6154290 A JP S6154290A JP 59177166 A JP59177166 A JP 59177166A JP 17716684 A JP17716684 A JP 17716684A JP S6154290 A JPS6154290 A JP S6154290A
Authority
JP
Japan
Prior art keywords
methane
immobilized
methane fermentation
waste water
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59177166A
Other languages
Japanese (ja)
Inventor
Shigeru Morimura
茂 森村
Makio Kishimoto
岸本 眞希男
Kenji Kida
建次 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59177166A priority Critical patent/JPS6154290A/en
Publication of JPS6154290A publication Critical patent/JPS6154290A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

PURPOSE:To accelerate methane fermentation and to reduce remarkably the number of days for retaining waste water in a fermenter by cultivating and propagating microbes capable of fermenting methane and immobilized on a carrier, and bringing the obtained immobilized microbes into contact with waste water contg. org. materials. CONSTITUTION:When waste water contg. org. materials is methane-fermented, microbes immobilized on a carrier and capable of fermenting methane are firstly cultivated and propagated, and the obtained immobilized microbes are brought into contact with said waste water to carry out single-phase methane fermentation. Consequently, the microbe concn. in a fermenter is increased, the number of days for retaining waste water in the fermenter is remarkably reduced, and excess sludge is reduced. When sludge digested at moderate temps. is used as said seed sludge, the culture of microbes and contact with waste water are appropriately carried out at 20-45 deg.C, preferably at 35-40 deg.C, and at 6.5-8.5pH, preferably at 7.0-8.0pH. When sludge digested at high temps. is used, said process is appropriately carried out at 45-60 deg.C, preferably at 50-55 deg.C, and at 6.5- 8.5pH, preferably at 7.0-8.0pH.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、固定化微生物による単相式メタン発酵法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a single-phase methane fermentation method using immobilized microorganisms.

一般にメタン発酵法としては、メタン発酵に関与する微
生物群のうち酸生成菌とメタン生成菌を分離し、これら
をそれぞれ至適条件下に培養し、酸生成過程において酸
生成菌の働きにより有機物を分解して低級脂肪酸を得、
メタン生成過程においてメタン生成菌の働きにより酸を
分解してメタンと二酸化炭素を得る方法と、上記のよう
な微生物の分離を行なわないで1つの工程で発酵を行な
う方法とがある。この明細書では前者の方法を二相式メ
タン発酵法と称し、後者の方法を単相式メタン発酵法と
称することとする。そしてこの発明は後者すなわち単相
式メタン発酵法の改良に関するものである。
Generally, in the methane fermentation method, acid-producing bacteria and methane-producing bacteria are separated from among the microorganisms involved in methane fermentation, and each of these is cultured under optimal conditions.In the acid production process, organic matter is removed by the action of the acid-producing bacteria. decomposes to obtain lower fatty acids,
In the methane production process, there is a method in which acid is decomposed by the action of methanogenic bacteria to obtain methane and carbon dioxide, and there is a method in which fermentation is carried out in one step without separating microorganisms as described above. In this specification, the former method will be referred to as a two-phase methane fermentation method, and the latter method will be referred to as a single-phase methane fermentation method. This invention relates to the latter, that is, improvements to the single-phase methane fermentation method.

従来技術およびその問題点 メタン発酵は廃水処理と同時にメタンガスを回収するこ
とができるすぐれたエネルギー生産方法であり、特に単
相式メタン発酵法は、上述の点に加えて、廃棄物が少な
く、かつ運転が容易であるため、省エネルギータイプの
方法として有利である。しかし従来の単相式メタン発酵
法では、メタン生成菌の増殖速度が遅く、また廃水の槽
内滞留日数を短縮すると有機酸が蓄積し、これが直接的
にまたはpHを下げることから間接的にメタン生成菌の
増殖を阻古り−ることになるため、10日〜30日もの
)(を留日数が必要となった。そのためこの発酵法はエ
ネルギー生産プロセスとしては現実的なものでなく、そ
の改善が望まれていた。このJ:うな点から、メタン発
酵菌を含む汚泥に低級脂肪酸または低級アルコールを添
加して菌の増殖を促進する方法も提案されているが(特
公昭56−38117号公報参照)、未だ満足いく結果
は得られていないのが実情である。
Prior art and its problems Methane fermentation is an excellent energy production method that can recover methane gas at the same time as wastewater treatment. In particular, the single-phase methane fermentation method, in addition to the above points, produces less waste and Since it is easy to operate, it is advantageous as an energy-saving method. However, in the conventional single-phase methane fermentation method, the growth rate of methane-producing bacteria is slow, and when the number of days the wastewater stays in the tank is shortened, organic acids accumulate, which directly or indirectly lowers the pH and causes methane production. This requires a retention period of 10 to 30 days to inhibit the growth of the producing bacteria.For this reason, this fermentation method is not practical as an energy production process; Improvements were desired.In view of this point, a method has been proposed in which lower fatty acids or lower alcohols are added to sludge containing methane-fermenting bacteria to promote the growth of bacteria (Japanese Patent Publication No. 56-38117). However, the reality is that satisfactory results have not yet been obtained.

問題点を解決するための手段 この発明は、上記のような改善要望にこたえることので
きるメタン発酵法を提供することを目的としてなされた
もので、その要旨とするところは、有機物含有廃水をメ
タン発酵させるに当り、まず担・体に固定化したメタン
発酵能を有する微生物を培養して増殖させ、ついで固定
化微生物を有機物含有廃水と接触させる点にある。
Means for Solving the Problems This invention was made for the purpose of providing a methane fermentation method that can meet the above-mentioned demands for improvement. In fermentation, first, microorganisms with methane fermentation ability immobilized on a carrier are cultured and grown, and then the immobilized microorganisms are brought into contact with organic matter-containing wastewater.

種汚泥として下水処理場の中温、消化汚泥を用いる場合
には、固定化微生物の培養および固定化微生物と有機物
含有廃水との接触を温度20〜45℃好ましくは35〜
40℃、pH6,5〜8.5好ましくは7.0〜8.0
の条件下に行なう。
When medium-temperature, digested sludge from a sewage treatment plant is used as the seed sludge, the culture of immobilized microorganisms and the contact of the immobilized microorganisms with organic matter-containing wastewater are carried out at a temperature of 20-45°C, preferably 35-45°C.
40°C, pH 6.5-8.5 preferably 7.0-8.0
carried out under the following conditions.

また高温消化汚泥を用いる場合には、固定化増生物の培
養および固定化微生物と有機物含有廃水との接触を温度
45〜60℃好ましくは50〜55℃、pH6,5〜8
.5好ましくは7゜0〜8.0の条件下に行なう。
In addition, when using high-temperature digested sludge, culture of immobilized microorganisms and contact of immobilized microorganisms with organic matter-containing wastewater are carried out at a temperature of 45 to 60°C, preferably 50 to 55°C, and a pH of 6.5 to 8.
.. 5 preferably under conditions of 7°0 to 8.0°.

メタン発酵能を有する微生物の例としては、メタノコツ
カス(M ethanococcus) fj、 ニ属
スル細菌、メタノサルシナ(lyl ethanosa
rcina )属に属する細菌、メタノバクテリウムH
vlethan。
Examples of microorganisms having methane fermentation ability include Methanococcus fj, Methanococcus fj, Methanococcus spp.
Methanobacterium H, a bacterium belonging to the genus rcina)
vlethan.

bacterium )属に属する細菌などが挙げられ
る。
Examples include bacteria belonging to the genus Bacterium.

微生物の固定化は、ゲル状担体に微生物を包み込む公知
の包括法によりつぎのように行なわれる。すなわちゲル
基剤の水溶液に所定量の微生物菌体を混合した後、この
混合液を冷却するかあるいはゲル化剤と接触させ、生成
したゲルを所要サイズの粒状もしくは膜状に成型する。
Immobilization of microorganisms is carried out as follows by a known entrapping method in which microorganisms are wrapped in a gel-like carrier. That is, after a predetermined amount of microbial cells are mixed into an aqueous solution of a gel base, the mixed solution is cooled or brought into contact with a gelling agent, and the resulting gel is formed into particles or films of a desired size.

また、ゲル基質としてポリアクリルアミドを用いる場合
には、所定量の微生物菌体を含む溶液にアクリルアミド
モノマー、架橋剤、m合促進剤、重合開始剤を加えてモ
ノマーを重合させ、生成したゲルを上述のように成型す
る。ゲル基剤としては、カラギーナン、アルギン酸ソー
ダ、ポリビニルアルコール、ポリアクリルアミド、ポリ
ウレタンなどが用いられ、ゲル化剤としては塩化カリウ
ム、塩化カルシウム、塩化マグネシウムなどが用いられ
、架橋剤としてはN。
In addition, when polyacrylamide is used as a gel substrate, acrylamide monomer, a crosslinking agent, an m-merization accelerator, and a polymerization initiator are added to a solution containing a predetermined amount of microbial cells, and the monomers are polymerized. Mold it like this. Carrageenan, sodium alginate, polyvinyl alcohol, polyacrylamide, polyurethane, etc. are used as the gel base, potassium chloride, calcium chloride, magnesium chloride, etc. are used as the gelling agent, and N is used as the crosslinking agent.

N′−メチレンビスアクリルアミドなどが用いられ、重
合促進剤としてはβ−ジメチルアミノプロピオニトリル
などが用いられ、重合量始剤としては過硫酸カリウムな
どが用いられる。
N'-methylenebisacrylamide or the like is used, β-dimethylaminopropionitrile or the like is used as a polymerization accelerator, and potassium persulfate or the like is used as a polymerization initiator.

固定化微生物と有機物含有廃水の接触によるメタン発酵
は、回分発酵でも連続発酵でもよい。
Methane fermentation by contacting immobilized microorganisms with organic matter-containing wastewater may be either batch fermentation or continuous fermentation.

また発酵槽としては機械攪拌型発酵槽、固定床型発酵槽
、流動床型発酵槽などが用いられる。
Further, as the fermenter, a mechanically stirred fermenter, a fixed bed fermenter, a fluidized bed fermenter, etc. are used.

有機物含有廃水としては、都市ごみを含む廃水、下水汚
泥、バルブなどのヘドロ、アルコール蒸留廃液などの食
品加工廃水、し尿などが用いられる。
Examples of wastewater containing organic matter include wastewater containing municipal waste, sewage sludge, sludge from valves, food processing wastewater such as alcohol distillation waste, and human waste.

発明の効果 この発明のメタン発酵法によれば、メタン発酵能を有す
る微生物を担体に固定化し、この固定化微生物を増殖さ
せるので、発酵槽内の微生物菌体1[Ijを高めること
により、廃水の槽内滞留日数を大幅に短縮することがで
きる上に、固定化微生物の使用により余剰汚泥を減少さ
しることができる。したがってこの発明によるメタン発
酵法は現実的プロセスとして(セめて優れた方法である
Effects of the Invention According to the methane fermentation method of the present invention, microorganisms capable of methane fermentation are immobilized on a carrier and the immobilized microorganisms are grown. In addition to significantly reducing the number of days that sludge remains in the tank, the use of immobilized microorganisms also reduces excess sludge. Therefore, the methane fermentation method according to the present invention is an excellent practical process.

実施例 ′つぎにこの発明の実施例を示し、この発明の効果を例
証する。
EXAMPLES Next, examples of the present invention will be shown to illustrate the effects of the present invention.

実施例1 (1)固定化メタン発酵菌の調製 グルコース350//、コーンスチーブリ力−55(]
 /I 、リン酸水素二カリウム30 /l 。
Example 1 (1) Preparation of immobilized methane-fermenting bacteria
/I, dipotassium hydrogen phosphate 30/l.

リン酸二水素カリウム2a /1 、炭酸アンモニウム
5(] /l 、炭酸ナトリウム3(] /11塩化第
2鉄・6水塩19/lよりなる合成廃水を調製し、これ
を培地として用い、この培地において下水処理場の中温
層化汚泥を温度37°CでpH7〜8で馴養し、得られ
た馴養汚泥100m1を濃縮して2Qmlとした。この
濃縮汚泥を、温度40℃に保温した滅菌済み4%カラギ
ーナン水溶液180m1と混合し、混合液を1.51の
2%塩化カリウム水溶液中に滴下した。こうしてメタン
発酵菌を包括した直径約4mmのビーズ状ゲルを形成し
た。
A synthetic wastewater consisting of 2a/1 potassium dihydrogen phosphate, 5(]/l ammonium carbonate, 3(]/11 sodium carbonate, 19/l ferric chloride hexahydrate) was prepared, and this was used as a culture medium. Medium-temperature stratified sludge from a sewage treatment plant was acclimatized to pH 7 to 8 at a temperature of 37°C in a culture medium, and 100ml of the obtained acclimatized sludge was concentrated to 2Qml.This concentrated sludge was sterilized and kept at a temperature of 40°C. It was mixed with 180 ml of a 4% carrageenan aqueous solution, and the mixed solution was dropped into a 2% potassium chloride aqueous solution at a concentration of 1.51.A bead-shaped gel with a diameter of about 4 mm containing the methane-fermenting bacteria was thus formed.

ついで得られた固定化菌を上記組成の培地で温度37℃
でp)−17〜8で24時間培養し、増殖を行なった。
Then, the obtained immobilized bacteria were incubated in a medium with the above composition at a temperature of 37°C.
The cells were cultured for 24 hours at p) -17 to 8 for proliferation.

(2)メタンの生成 上記合成廃水1/と増殖した固定化メタン発酵菌とを実
容積21の機械攪拌型発酵槽に入れ、攪拌下に温度37
℃でpl−17〜8で24 It;?間回分発酵を行な
った。ついで有機物負荷が所定1直になるように、上記
合成廃水を毎日1回供給し、連続発酵を行なった。廃水
の供給は、攪拌を10分間停止した後、供給量に相当す
る■の培養液を槽から引抜き、ついで槽内に廃水を導入
することにより行なった。発酵液量は担体ビーズを含め
た総容量で11になるように調整した。
(2) Production of methane The above synthetic wastewater 1/ and the grown immobilized methane-fermenting bacteria were placed in a mechanically stirred fermenter with an actual volume of 21, and the temperature was 37°C while stirring.
24 It at pl-17~8 at °C;? Intermittent batch fermentation was performed. Then, the synthetic wastewater was supplied once a day so that the organic matter load was one predetermined shift, and continuous fermentation was performed. The wastewater was supplied by stopping the stirring for 10 minutes, then drawing out the culture solution corresponding to the supplied amount from the tank, and then introducing the wastewater into the tank. The volume of fermentation liquid was adjusted so that the total volume including carrier beads was 11.

こうして連続発酵を行なったところ、有機物負荷11 
KO/m 3  ・dayにおいても有機物は2.5!
7//L、か残留せず、またメタン金子50〜55%の
メタン含有ガスを6.51/l ・dayの発生速度で
得ることができた。
When continuous fermentation was carried out in this way, the organic matter load was 11
Even in KO/m 3 ・day, the organic matter is 2.5!
It was possible to obtain a methane-containing gas containing 50 to 55% of methane gold at a generation rate of 6.51/l/day without leaving 7//L.

実施例2 (1)固定化メタン発酵菌の調製 下水処理場の高温消化汚泥をアルコール蒸留廃液で温度
51℃でpH7〜8で馴養し、得られた馴養汚泥100
111/を濃縮して20m1とした後、この濃縮汚泥を
滅菌済み生理食塩水14Qm/中に懸濁した。アルコー
ル蒸留廃液はフィリピン産廃糖蜜280g//と尿素1
.4g//とよりなる培地を用いて24時間アルコール
発酵(醇母サツカロマイセス・けレビエシ工3 acc
haromyces  cerevisiae  I 
FQ Q 224)を行なった摂、発酵液を約4時間に
煮沸してアルコールを飛散させることにより得られた廃
液である。この廃液のBODは33000m(+/1で
あった。
Example 2 (1) Preparation of immobilized methane-fermenting bacteria High-temperature digested sludge from a sewage treatment plant was acclimatized with alcohol distillation waste liquid at a temperature of 51°C and pH 7 to 8, and the obtained acclimatized sludge 100
After concentrating 111/ to 20 ml, the concentrated sludge was suspended in sterilized physiological saline 14 Qm/. Alcohol distillation waste liquid is 280g// of Philippine molasses and 1 urea.
.. Alcohol fermentation for 24 hours using a medium consisting of 4 g//
haromyces cerevisiae I
This is a waste liquid obtained by boiling the fermented liquid after carrying out FQ Q 224) for about 4 hours to scatter the alcohol. The BOD of this waste liquid was 33000 m (+/1).

行られたメタン発酵菌懸濁液にアクリルアミドモノマー
159とN、N−メヂレンビスアクリルアミド0.89
を混合し、さらに5%β−ジメチルアミンプロピオニト
リル2Q+n1と2゜5%過硫酸カリウム20m1を添
加した。ついで混合液を10cmx 10cmのバット
4枚にそれぞれ注入し、温度25°Cで15分間放置し
、モノマーの重合によりポリアクリルアミドゲルを得、
このゲルを一辺約5mmの立方体に切断した。
Acrylamide monomer 159 and N,N-methylene bisacrylamide 0.89 were added to the suspension of methane-fermenting bacteria.
2Q+n1 of 5% β-dimethylamine propionitrile and 20 ml of 2.5% potassium persulfate were added. Next, the mixed solution was injected into four vats of 10 cm x 10 cm, and left at a temperature of 25 °C for 15 minutes to obtain a polyacrylamide gel by polymerizing the monomers.
This gel was cut into cubes with sides of about 5 mm.

こうしてメタン発酵菌を固定化した。In this way, methane-fermenting bacteria were immobilized.

ついで得られた固定化菌を上記アルコール蒸留廃液で温
度51℃でpト17〜8で24時間培養し、増殖を行な
った。
Then, the obtained immobilized bacteria were cultured in the alcohol distillation waste liquid for 24 hours at a temperature of 51 DEG C. on points 17 to 8 for proliferation.

(2)メタンの生成 発酵槽として添付図面に示す実容積11の流動床型発酵
槽を用いた。同相はジャケット(1)を有する小径の流
動部(2)と、これの上に連なる菌体沈降用の大径の沈
降部(3)とを主体とし、流動部(2)には温度および
I)Hの制御表示装置(4)が設けられ、沈降部(3)
には発生したガスを発酵液から分離させる円筒状のガス
分離部祠(5)が内装されている。そして有鵬物含有廃
水は槽底部に供給され、処理廃水は槽頂部からオーバー
フローせられる。また槽頂部の廃水の一部は槽底部に循
環され、発生したガスの含mは湿式ガスメータ(6)で
測定される。
(2) Methane production A fluidized bed fermenter with an actual volume of 11 shown in the attached drawing was used as the fermenter. The same phase mainly consists of a small-diameter flow section (2) with a jacket (1) and a large-diameter settling section (3) for bacterial cell sedimentation connected above this, and the flow section (2) has temperature and I ) H control display device (4) is provided, and the sedimentation section (3)
is equipped with a cylindrical gas separation chamber (5) for separating the generated gas from the fermentation liquid. Then, wastewater containing wastewater is supplied to the bottom of the tank, and treated wastewater is overflowed from the top of the tank. Further, a part of the waste water at the top of the tank is circulated to the bottom of the tank, and the content of the generated gas is measured with a wet gas meter (6).

上記構成の発酵槽を上記固定化メタン発酵菌と上記アル
コール蒸留廃液で満たし、温度51℃でpH7〜8で1
日回分発醇を行なった後、アルコール蒸留廃液を連続供
給して連続発酵を行なった。そしてアルコール蒸留廃液
の供給■を徐々に増して行き、反応速度の検討を行なっ
た。
The fermenter with the above configuration was filled with the immobilized methane fermenting bacteria and the alcohol distillation waste liquid, and the temperature was 51°C and the pH was 7 to 8.
After daily batch fermentation, alcohol distillation waste liquid was continuously supplied to carry out continuous fermentation. Then, the reaction rate was examined by gradually increasing the amount of alcohol distillation waste liquid supplied.

その結果、BOD負荷は最大で約15Kg/m3 ・d
ayに達することができ、この時の処理廃水のBODは
約2000mg//(原水のBODは3300Qm (
1/l )であり、BOD 1g当り約0,71のメタ
ンを回収することができた。
As a result, the maximum BOD load is approximately 15Kg/m3・d
ay, and the BOD of the treated wastewater at this time is approximately 2000mg// (the BOD of the raw water is 3300Qm (
1/l), and approximately 0.71 methane could be recovered per 1 g of BOD.

実施例3 (1)固定化メタン発酵菌の調製 下水処理場の中温消化汚泥を、実施例2で述べたBOD
53000m g/lのアルコール蒸留廃液で温度37
℃でpI−17〜8で馴五し、1!7られた馴養汚泥1
00n+1を濃縮して20m/とじた後、この濃縮汚泥
を、温度40 ’Cに保温した滅菌済み2%アルギン酸
ソーダ水溶if!218Qmlと混合し、混合液を1.
51のO,1M塩化カルシウム水溶液中に滴下した。こ
うしてメタン発酵菌を包括した直径約4mmのビーズ状
ゲルを形成した。
Example 3 (1) Preparation of immobilized methane-fermenting bacteria.
Temperature 37 with alcohol distillation waste liquid of 53000 mg/l
Acclimated sludge 1 which was acclimatized at pI-17 to 8 at ℃ and 1!7
After concentrating and binding 00n+1 to 20m/bin, this concentrated sludge was mixed with a sterilized 2% sodium alginate aqueous solution kept at a temperature of 40'C if! 218Qml, and the mixed solution was mixed with 1.
51 O, 1M calcium chloride aqueous solution. In this way, bead-shaped gels with a diameter of about 4 mm were formed that contained methane-fermenting bacteria.

ついで14られた固定化菌を上記アルコール蒸留廃液で
温度37°CでpH7〜8で24時間培養し、増殖を行
なった。
The immobilized bacteria thus obtained were then cultured in the alcohol distillation waste liquid for 24 hours at a temperature of 37° C. and a pH of 7 to 8 for proliferation.

(2)メタンの生成 実施例2でjホべた実容積11の流動床型光5酵を上記
アルコール蒸留別液と上記固定化メタン発酵菌で満たし
、温度37℃でpト17〜8で24時間回分発酵を行な
った後、上記アルコール蒸留廃液を供給し、供給量を徐
々に増して行き、BOD負荷を上げて反応速度の検討を
行なった。
(2) Production of methane In Example 2, a fluidized bed type Hikari fermentation with an actual volume of 11 was filled with the alcohol distillation separate liquid and the immobilized methane fermentation bacteria, and the temperature was 37°C and the temperature was 24. After carrying out time-batch fermentation, the above-mentioned alcohol distillation waste liquid was supplied, and the supply amount was gradually increased to increase the BOD load and the reaction rate was investigated.

その結果、BOD負荷は最大で8Kg/m3・dayに
達することができ、またメタン含量60%のメタン含有
ガスを91//・dayの発生速度で1与ることができ
た。このときの処理廃水のBODは1300+++g/
l (原水のB OD ハ33000111 g/l 
)であり、生成汚泥量は約0.04[I MLSS/(
1・BODであった。
As a result, the BOD load could reach a maximum of 8 kg/m3·day, and methane-containing gas with a methane content of 60% could be provided at a generation rate of 91//·day. The BOD of treated wastewater at this time was 1300+++g/
l (Raw water BOD Ha33000111 g/l
), and the amount of sludge produced is approximately 0.04 [I MLSS/(
It was 1.BOD.

実施例4 (1)固定化メタン発酵菌の調製 実施例3と同じ方法でメタン発酵菌を包括したゲルを形
成し、メタン発酵菌の増殖を行なった。
Example 4 (1) Preparation of immobilized methane-fermenting bacteria A gel containing methane-fermenting bacteria was formed in the same manner as in Example 3, and the methane-fermenting bacteria were grown.

(2)メタンの生成 実施例3と同じ発醇槽および操作で回分発酵を行なった
後、ペプトン0.87(1/1 、肉ニーt”スo、 
67!II /!’ 、尿No、2(] /l 、リン
酸水素二ナトリウム0.179//、塩化ナトリウム5
0mg/l、塩化カリウム201T1g/l、硫酸マグ
ネシウム201nQ/l、塩化カルシウム20mg//
よりなる合成廃水を供給し、やはり供給量を徐々に増し
て行き、80D負荷を上げて反応速度の検討を行なった
(2) Production of methane After performing batch fermentation using the same fermentation tank and operation as in Example 3, peptone 0.87 (1/1), meat nitrate,
67! II/! ', Urine No., 2(]/l, Disodium hydrogen phosphate 0.179//, Sodium chloride 5
0mg/l, potassium chloride 201T1g/l, magnesium sulfate 201nQ/l, calcium chloride 20mg//
The reaction rate was investigated by supplying a synthetic wastewater of 50% by volume, gradually increasing the supply amount, and increasing the 80D load.

その結果、BOD負荷は最大r5K(1/113・da
yに達することができ、このときメタン含量60%のメ
タン含有ガスを3.5//l)・dayの発生速度で得
ることができ、処理廃水の80Dは100+ng/l 
(原水のBODは1000n+ (] /l )であっ
た。
As a result, the BOD load is maximum r5K (1/113・da
At this time, methane-containing gas with a methane content of 60% can be obtained at a generation rate of 3.5//l) day, and 80D of treated wastewater is 100+ng/l.
(The BOD of raw water was 1000n+ (]/l).

【図面の簡単な説明】[Brief explanation of the drawing]

図面は実施例2から実施例4において用いた流動床型光
5酵層の!!断面図である。 (2)・・・流動部、(3)・・・沈降部、(5)・・
・ガス分離部材。 2 ラ記動郁 3゛渓S降部 577゛又分靭在S材
The drawing shows the fluidized bed type Hikari 5 fermentation layer used in Examples 2 to 4! ! FIG. (2)...Flowing section, (3)...Settling section, (5)...
・Gas separation member. 2 Rakido Iku 3゛ Gorge S descending section 577゛ Also divided S material

Claims (6)

【特許請求の範囲】[Claims] (1)有機物含有廃水をメタン発酵させるに当り、まず
担体に固定化したメタン発酵能を有する微生物を培養し
て増殖させ、ついで固定化微生物を有機物含有廃水と接
触させることを特徴とする固定化微生物による単相式メ
タン発酵法。
(1) In methane fermentation of organic matter-containing wastewater, immobilization is characterized by first culturing and multiplying microorganisms with methane fermentation ability immobilized on a carrier, and then bringing the immobilized microorganisms into contact with organic matter-containing wastewater. Single-phase methane fermentation method using microorganisms.
(2)温度20〜45℃、pH6.5〜8.5の条件下
に操作を行なう特許請求の範囲第1項記載のメタン発酵
法。
(2) The methane fermentation method according to claim 1, wherein the operation is carried out at a temperature of 20 to 45°C and a pH of 6.5 to 8.5.
(3)湿度35〜40℃、pH7.0〜8.0の条件下
に操作を行なう特許請求の範囲第2項記載のメタン発酵
法。
(3) The methane fermentation method according to claim 2, wherein the methane fermentation method is operated under conditions of humidity of 35 to 40°C and pH of 7.0 to 8.0.
(4)温度45〜60℃、pH6.5〜8.5の条件下
に操作を行なう特許請求の範囲第1項記載のメタン発酵
法。
(4) The methane fermentation method according to claim 1, wherein the methane fermentation method is operated under conditions of a temperature of 45 to 60°C and a pH of 6.5 to 8.5.
(5)温度50〜55℃、pH7.0〜8.0の条件下
に操作を行なう特許請求の範囲第4項記載のメタン発酵
法。
(5) The methane fermentation method according to claim 4, wherein the methane fermentation method is operated under conditions of a temperature of 50 to 55°C and a pH of 7.0 to 8.0.
(6)微生物の固定化を包括法により行なう特許請求の
範囲第1〜5項のうちいずれか1項記載のメタン発酵法
(6) The methane fermentation method according to any one of claims 1 to 5, wherein the immobilization of microorganisms is carried out by an entrapment method.
JP59177166A 1984-08-24 1984-08-24 Single-phase fermenting method by immobilized microbe Pending JPS6154290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59177166A JPS6154290A (en) 1984-08-24 1984-08-24 Single-phase fermenting method by immobilized microbe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59177166A JPS6154290A (en) 1984-08-24 1984-08-24 Single-phase fermenting method by immobilized microbe

Publications (1)

Publication Number Publication Date
JPS6154290A true JPS6154290A (en) 1986-03-18

Family

ID=16026337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59177166A Pending JPS6154290A (en) 1984-08-24 1984-08-24 Single-phase fermenting method by immobilized microbe

Country Status (1)

Country Link
JP (1) JPS6154290A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200700A (en) * 1990-11-30 1992-07-21 Kajima Corp High-temperature treatment of waste water
JP2001276880A (en) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd Waste treatment method and device therefor
JP2004195441A (en) * 2002-12-20 2004-07-15 Mitsubishi Heavy Ind Ltd Method for operating moderate temperature digestion tank
JP2010184178A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2012076000A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd One tank type anaerobic wastewater treatment apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439957A (en) * 1974-07-12 1979-03-28 Ecolotrol Method of treating waste water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439957A (en) * 1974-07-12 1979-03-28 Ecolotrol Method of treating waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04200700A (en) * 1990-11-30 1992-07-21 Kajima Corp High-temperature treatment of waste water
JP2001276880A (en) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd Waste treatment method and device therefor
JP2004195441A (en) * 2002-12-20 2004-07-15 Mitsubishi Heavy Ind Ltd Method for operating moderate temperature digestion tank
JP2010184178A (en) * 2009-02-10 2010-08-26 Japan Organo Co Ltd Method and apparatus for anaerobic biological treatment
JP2012076000A (en) * 2010-09-30 2012-04-19 Kuraray Co Ltd One tank type anaerobic wastewater treatment apparatus

Similar Documents

Publication Publication Date Title
Liu et al. Substrate concentration‐independent aerobic granulation in sequential aerobic sludge blanket reactor
Ren et al. Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production
Ueno et al. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture
Valcke et al. A practical method to estimate the acetoclastic methanogenic biomass in anaerobic sludges
Massey et al. Phase separation of anaerobic stabilization by kinetic controls
Guo et al. Enhancement of photo-hydrogen production in a biofilm photobioreactor using optical fiber with additional rough surface
Tian et al. Photo-hydrogen production rate of a PVA-boric acid gel granule containing immobilized photosynthetic bacteria cells
Adlercreutz et al. Oxygen supply to immobilized cells: 2. Studies on a coimmobilized algae—bacteria preparation with in situ oxygen generation
Lalov et al. Improvement of biogas production from vinasse via covalently immobilized methanogens
CN112094780B (en) Seawater spirulina-interstellar bacterium symbiotic system, construction method and application
CN101913710B (en) Suspended packing microbial quick film forming method
Grotenhuis et al. Hydrophobicities and electrophoretic mobilities of anaerobic bacterial isolates from methanogenic granular sludge
Vincenzini et al. Hydrogen production by immobilized cells—II. H2-photoevolution and waste-water treatment by agar-entrapped cells of Rhodopseudomonas palustris and Rhodospirillum molischianum
von Feiten et al. Production of molecular hydrogen with immobilized cells of Rhodospirillum rubrum
Fukuzaki et al. Characteristics of methanogenic granules grown on propionate in an upflow anaerobic sludge blanket (UASB) reactor
JPS6154292A (en) Two-phase mathane fermenting method by immobilized microbe
Reis et al. Sulphate removal in acidogenic phase anaerobic digestion
Chu et al. Biohydrogen production performance in a draft tube bioreactor with immobilized cell
JPS6154290A (en) Single-phase fermenting method by immobilized microbe
CN101386822A (en) Special effect phosphate accumulating organisms and waste water processing method using thereof
JPS6154291A (en) Formation of methane by immobilized microbe
JPS6156087A (en) Production of organic acid by immobilized microorganism
Menert et al. Characterization of sulfate-reducing bacteria in yeast industry waste by microcalorimetry and PCR amplification
JPH09308494A (en) Production of lactic acid
JPS6154294A (en) Treatment of high concentrated organic waste water