JP3361570B2 - Microorganism immobilization method using polymer hydrogel granules - Google Patents

Microorganism immobilization method using polymer hydrogel granules

Info

Publication number
JP3361570B2
JP3361570B2 JP17594593A JP17594593A JP3361570B2 JP 3361570 B2 JP3361570 B2 JP 3361570B2 JP 17594593 A JP17594593 A JP 17594593A JP 17594593 A JP17594593 A JP 17594593A JP 3361570 B2 JP3361570 B2 JP 3361570B2
Authority
JP
Japan
Prior art keywords
polymer
water
particles
hydrogel
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17594593A
Other languages
Japanese (ja)
Other versions
JPH0780282A (en
Inventor
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP17594593A priority Critical patent/JP3361570B2/en
Publication of JPH0780282A publication Critical patent/JPH0780282A/en
Application granted granted Critical
Publication of JP3361570B2 publication Critical patent/JP3361570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Colloid Chemistry (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、極めて実用的な方法に
よって生産される、強度の大きな高分子ヒドロゲル粒子
に微生物を固定化することを特徴とする微生物固定化方
に関し、特に微生物を固定化した高分子ヒドロゲル粒
子を著しく簡単な設備によって低コストで大量に生産で
きる方法を提供するものである。 【0002】 【従来の技術】現在最も進歩した水の生物処理法とし
て、包括固定化微生物法が注目されている。包括固定化
微生物による水処理法は、微生物菌体をポリエチレング
リコール、ポリビニルアルコール等の高分子樹脂の液状
物と混合した後、これらの高分子樹脂を塩化カルシウム
等のゲル化剤あるいは凍結によってゲル化させ、高分子
ゲルの内部に微生物を閉じ込めてから粒状に成型し、こ
の粒状物を処理対象原水と接触させるという方法であ
り、生物反応速度が大きいという特徴がある。 【0003】しかし、包括固定化微生物には、ゲル化前
の高分子樹脂と微生物を混合した後、高分子樹脂を重合
させ、この後微生物を包括固定化した高分子ゲルを適当
な粒径にカットするか、あるいは高分子樹脂と微生物の
混合物をゲル化剤液中に滴下造粒し、重合ゲル化して微
生物を包括固定化するという複雑かつ面倒な作業が必要
であるので、固定化微生物粒子の製造の時間とコストが
著しく大きく、また特別な固定化微生物製造設備が必要
であるという大きな欠点がある。従って、小規模の処理
には、ゲルが少量でよいので、固定化微生物法は実用化
できるが、数万〜百万m3 /日におよぶ下水処理などの
大規模な処理には固定化微生物法はゲルを製造するコス
トが高くなりすぎ、実質的に適用が不可能である。 【0004】 【発明が解決しようとする課題】下水等の処理は、大規
模な処理となる上、極力処理コストを低くすることが要
求されるが、従来の固定化微生物は、微生物を固定化す
る方法及び設備が煩雑過ぎ、ゲルのコストも高い等、大
規模の処理に適用するためには致命的欠点がある。本発
明者は、この欠点を根本的に解決しない限り固定化微生
物法を大規模な排水処理に実用化することはできず、そ
のためには従来の固定化微生物法で必要であった、微生
物と高分子樹脂を混合し、これをゲル化し、適当な粒径
に造粒するという作業を完全に不要とするという新しい
概念に立つべきであるという認識に達した。上記概念の
達成を課題として検討を進め、従来の固定化微生物法を
著しく合理化して、微生物の固定化用のゲル製造を極力
容易する本発明に達した。 【0005】 【課題を解決するための手段】上記課題は、以下に述べ
る手段によって達成される。本発明の手段によれば、極
めて容易に粒状ゲル製造が可能であり、かつその粒状ゲ
ルに簡単に微生物の固定化して微生物を包括固定化した
高分子ゲルが得られ、しかもその微生物固定化高分子ゲ
ルを用いて効率的に汚水を浄化するものである。すなわ
ち、本発明は、少なくとも2種類の高分子を使用し、各
々を高分子A、高分子Bと表せば、 (1)高吸水性高分子Aの粒子内部に、高分子B前駆体
の水溶液を吸収させた後、前記高分子Aの粒子内部にお
いて、前記高分子B前駆体を重合せしめて水不溶性の高
分子Bを生成させた高分子ヒドロゲル粒状物を水中で、
微生物存在下に保持し、該高分子ヒドロゲル粒状物表面
に該微生物を固定化することを特徴とする微生物固定化
方法である。 【0006】高分子B前駆体としては、種々の重合性モ
ノマーが用いられる。また、本発明のヒドロゲル粒状物
は球状ないしそれに類する形状をとることが好ましい状
態である。該高分子B前駆体として使用する重合性モノ
マーは水溶性であっても良い。また該モノマーが上記高
分子ヒドロゲル粒状物外で重合された場合には水に可溶
性の高分子となるものであっても、ヒドロゲル粒状物内
で重合した場合実質的に水に不溶性であれば良い。勿論
ヒドロゲル粒状物内で重合する場合において、生成する
重合体が架橋重合体である場合はいうまでもない。な
お、これら高分子A粒子は吸水膨潤時、すなわち担体形
成時の粒径がmmオーダーとなるものが固液分離の上か
ら好ましい。 【0007】本発明の重要な思想は、水中で膨潤して、
偏平球状、楕円状の粒状ゲルを形成する高吸水性高分子
Aの粒子内部にアクリルアミド等の高分子樹脂のモノマ
ー水溶液等の高分子B前駆体を吸収せしめてから、これ
を重合させて高吸水性高分子Aの粒子内部でポリアクリ
ルアミド等の水不溶性高分子を形成せしめることによっ
て、強度の大きなヒドロゲルを得るようにした技術およ
びこれを微生物固定用担体として使用する技術である。 【0008】高吸水性高分子Aは、従来、紙オムツなど
の衛生用に多用されている物質であり、自重の数百倍も
の水を吸収できる親水性高分子であり、球状等の定形を
維持して、弾性を示すヒドロゲルになる。該ヒドロゲル
に吸収されなかった水をろ過によって容易に分離でき、
かつ水中でピンセットによってヒドロゲルをつまむこと
ができる。しかしながら、該ヒドロゲルはゲル強度が弱
く、押すと容易につぶれてしまうという欠点がある。 【0009】このような性質を有する高分子としては、
アクリル酸−ビニルアルコール共重合体、澱粉−アクリ
ル酸グラフト重合体またはイソブチレン−無水マレイン
酸共重合体などが好例として挙げられる。本発明は、上
記のゲル強度が小さい高吸水性高分子A粒子内に、例え
ばアクリルアミド、アクリル酸、メタクリル酸アクリル
酸等の重合性モノマー(すなわち高分子B前駆体)の水
溶液を吸収させて、高吸水性高分子Aを膨潤させてから
モノマーをレドックス重合反応等によって重合させるこ
とによって、水不溶性のポリアクリルアミド、ポリアク
リル酸等の重合体を高吸水性高分子Aヒドロゲル内に形
成せしめると著しく強度が大きく、指で強く押しても破
壊しないヒドロゲル粒子が得られることをはじめて見出
して完成した。 【0010】本発明において、高吸水性高分子A粒子内
に、分子量の小さいモノマー等の高分子B前駆体を吸収
させてから重合させることが極めて重要である。高吸水
性高分子A粒子内に、分子量の小さいモノマー等の高分
子B前駆体を吸収させる方法としては、乾燥状態の、あ
るいは少し膨潤させた高吸水性高分子A粒子に、分子量
の小さいモノマー等の高分子B前駆体を水溶液として吸
収させることにより効率よく吸収させることができる。
このことも本発明の特徴の一つである。高分子量の分子
は高吸水性高分子には吸収されないことが認められた。
これは、高吸水性高分子の界面はRO膜、UF膜のよう
な一種の膜構造をもっているため、水溶性低分子の物質
しか水と共に吸収できないためであると考えられる。本
発明の粒状ヒドロゲルの製造方法は、驚くほどシンプル
な工程であり、ゲルを粒状物に成型する工程および設備
は全く不要である。本発明による高強度高分子ヒドロゲ
ルの製造の代表例を図1に示す。図1のように、本発明
では、複雑な粒状化設備は全く不要で、設備としては単
なる攪拌槽のみで済む。 【0011】高分子B前駆体(モノマー)としてアクリ
ルアミドを使う場合、架橋剤としては、メチレンビスア
クリルアミド(略称BIS)、重合触媒としてはβ−ジ
メチルアミノプロピオニトリル(略称DMAPN)が適
している。重合開始剤は、過硫酸カリウムを使う。また
モノマーとしてアクリル酸の塩を使用する場合は、モノ
マー状のアクリル酸カルシウム水溶液にエリソルビン酸
ナトリウムを加えたものを高吸水性高分子A粒子内にポ
リアクリル酸カルシウムの樹脂が形成され、偏平球状
で、高強度の透明ヒドロゲルが形成される。なお、本発
明のヒドロゲル、すなわち、高吸水性高分子粒子内部に
水不溶性樹脂を重合させて保持させたものと、従来の、
以下に記載するゲル生成法によって得られる固定化微生
物法の代表的ゲルであるポリエチレングリコールヒドロ
ゲル等の高吸水性高分子を用いないゲルとを区別するの
には、外観、赤外吸収スペクトル、水分吸収特性、水分
吸収時のゲルの膨潤度、水分乾燥時の収縮率、ゲル乾燥
速度、示差熱分析等によって、両者の相違を明らかにで
きる。なお、上記ポリエチレングリコールヒドロゲル
は、ポリエチレングリコールプレポリマー液と重合触媒
および微生物を混合したものにアルギン酸ソーダと重合
開始剤を加え、良く混合してから塩化カルシウム液に液
滴状に滴下させて粒状のゲルとしたものである。 【0012】本発明の微生物固定化法の特徴は、本発明
のヒドロゲル粒子の表面に自然に微生物を増殖させるこ
とにある。例えば、本発明の高分子ヒドロゲル粒子に好
気性微生物を固定化するには、本発明の高分子ヒドロゲ
ル粒子を好気的な条件にある水中に投入し、BOD等の
微生物への基質を供給するだけで充分であり、およそ水
温20〜25℃で10〜20日後に本発明の高分子ヒド
ロゲル粒子の表層部に自然増殖的に効果的に微生物が固
定化されることが認められた。この微生物が固定化され
た本発明の高分子ヒドロゲル粒子はゲル強度が大きいの
で、エアレーションによっても何ら破壊されなかった。
一方嫌気性微生物(酸生成菌、メタン生成菌等)を固定
化するには嫌気的な条件で上記と同様な操作を行えばよ
く、やはり20〜30日後に嫌気性微生物が本発明の高
分子ヒドロゲル粒子の表層部に自然増殖的に固定化され
た。 【0013】従って本発明では、従来の包括固定化微生
物法のような微生物のゲル粒子内への閉じ込め操作が不
要であり、著しい合理化が達成された。さらに、本発明
ではヒドロゲル粒子の表層部にのみ微生物が固定化され
るが、粒子内にも微生物を含む包括固定化微生物法とそ
の微生物活性(処理)上の効果は何ら遜色のないもので
あることを確認している。また、本発明の高分子ヒドロ
ゲル粒子は十分の強度を有するので、固定充填材として
も、流動媒体としても使用することができる。なお、本
発明の高分子ヒドロゲル粒子は、上記のように水処理、
醸造等の微生物応用技術の担体とする他、トンネル工事
等の工事材料や土質・土壌改良材、脱臭剤その他多岐に
応用可能であり、特に用途を限定するものではない。 【0014】 【実施例】このでは特に水処理分野に応用する場合を想
定した実験例を示す。しかし、以下の実施例は本発明を
限定するものではない。 実施例1 水中に投入すると自重の約150倍の水を吸収し、著し
く膨潤して、球状ないし偏平球状のヒドロゲル粒状体
(粒径3〜4mm)になる性質をもつ高吸水性高分子
(イソブチレン−無水マレイン酸共重合体)の乾燥粉末
を第1表の組成をもつアクリルアミドモノマー水溶液a
内に添加混合したところ、20分後に、高吸水性高分子
は自重の約150倍に膨潤し、内部にモノマーが重合し
た水不溶性のポリアクリルアミドを保持した極めて強度
の大きな粒状3〜6mmのヒドロゲル粒子が得られた。 【0015】 【表1】【0016】このヒドロゲル粒子の圧縮強度は6〜7k
g/cm2 と著しく大きく、従来の包括固定化微生物法
のゲルとして最も強度が大きいとされるポリエチレング
リコールヒドロゲルの圧縮強度は3〜4kg/cm2
あり、それよりも約2倍の強度をもっていた。このよう
に本発明では、ゲルを粒状に成型する工程、設備は全く
不要であり、高吸水性高分子粒子をモノマーを含んだ水
溶液内に添加し、攪拌しながら膨潤させるだけで粒状の
高強度のヒドロゲル粒子が得られることが実証された。 【0017】実施例2 次にこの本発明の高分子ヒドロゲル粒子に硝酸菌を固定
化する試験を行った。下水の活性汚泥処理水(水温25
℃、BOD5〜10mg/リットル、NH3−N20〜
25mg/リットル)を槽容積20リットル(水深0.
8m)のタンク内に20リットル/時間の水量で供給し
ながら、本発明の透明高分子ヒドロゲル粒子を6リット
ル投入し、懸濁流動させた。この条件で、通水を始めて
から20日後に処理水の水質を測定したところ、処理水
中のNH3 −Nは1.5〜2.3mg/リットルとな
り、高度の硝化がなされた。槽から高分子ヒドロゲル粒
子を取り出して観察したところ、表層部に褐色の硝化菌
が多量に固定化されていた。 【0018】 【発明の効果】本発明と従来の包括固定化微生物法との
効果の相違を第2表に示した。すなわち、本発明は第2
表の左の欄の様な効果があり、高強度の粒状高分子ヒド
ロゲルを著しく容易に、かつ大量に生産でき、しかも微
生物を効果的に本発明のヒドロゲル粒子に固定化でき
る。 【0019】 【表2】【0020】本発明によって、大規模の排水処理に、例
えば処理量50〜100万m3 /日の下水処理設備に、
固定化微生物法を工業的に実施する上で初めて妥当なコ
ストで適用できるようになった。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength polymer hydrogel particle produced by a very practical method.
Of immobilizing microorganisms on microorganisms
Method , especially polymer hydrogel particles with immobilized microorganisms
It is intended to provide a method for mass production at a low cost with extremely simple equipment. 2. Description of the Related Art At present, an entrapping immobilized microorganism method has attracted attention as the most advanced water biological treatment method. In the water treatment method using inclusive immobilized microorganisms, microbial cells are mixed with liquid substances of polymer resins such as polyethylene glycol and polyvinyl alcohol, and then these polymer resins are gelled by a gelling agent such as calcium chloride or by freezing. In this method, microorganisms are confined inside the polymer gel, then molded into granules, and the granules are brought into contact with raw water to be treated, which is characterized by a high biological reaction rate. However, the entrapping and immobilized microorganisms are prepared by mixing the microorganism with the polymer resin before gelation, polymerizing the polymer resin, and then encapsulating and immobilizing the microorganism to a polymer gel having an appropriate particle size. It is necessary to cut or granulate a mixture of polymer resin and microorganisms in a gelling agent solution and polymerize them into a gel. There are significant drawbacks in that the production time and cost of the microorganism are extremely large, and special immobilized microorganism production equipment is required. Therefore, a small amount of gel is sufficient for small-scale treatment, so that the immobilized microorganism method can be put to practical use. However, for large-scale treatment such as sewage treatment of tens of thousands to 1 million m 3 / day, immobilized microorganisms can be used. The method is too costly to produce the gel and is virtually impossible to apply. [0004] The treatment of sewage and the like is a large-scale treatment, and it is required that the treatment cost be reduced as much as possible. There are fatal drawbacks for application to large-scale processing, such as the method and equipment used are too complicated and the cost of the gel is high. The present inventor cannot practically use the immobilized microorganism method for large-scale wastewater treatment unless this disadvantage is fundamentally solved. It has been realized that the new concept of mixing a polymer resin, gelling the same, and granulating to an appropriate particle size should be completely eliminated. Investigations have been made with an aim of achieving the above concept, and the present invention has been achieved in which the conventional immobilized microorganism method has been significantly streamlined and the production of a gel for immobilizing microorganisms has been made as easy as possible. [0005] The above object is achieved by the following means. According to the means of the present invention, a granular gel can be produced very easily, and a polymer gel in which microorganisms are easily immobilized on the granular gel to entrap and immobilize microorganisms can be obtained. It purifies sewage efficiently using a molecular gel. That is, the present invention uses at least two types of polymers, each of which is represented by polymer A and polymer B. (1) The polymer B precursor is contained inside the superabsorbent polymer A particles.
After absorbing the aqueous solution of
The polymer B precursor is polymerized to increase the water insolubility.
In water, the polymer hydrogel granules that have produced molecule B are
Holding in the presence of microorganisms, the surface of the polymer hydrogel particles
Immobilizing the microorganism on a microorganism
Is the way. Various polymerizable monomers are used as the polymer B precursor. The hydrogel granules of the present invention are preferably in a spherical or similar shape. The polymerizable monomer used as the polymer B precursor may be water-soluble. Further, even if the monomer is polymerized outside the polymer hydrogel particles, it may become a water-soluble polymer, but may be substantially insoluble in water when polymerized in the hydrogel particles. . Of course, when polymerizing in the hydrogel granules, it goes without saying that the resulting polymer is a crosslinked polymer. In addition, it is preferable from the viewpoint of solid-liquid separation that the polymer A particles have a particle size at the time of water absorption swelling, that is, at the time of forming the carrier, of the order of mm. An important idea of the present invention is that it swells in water,
A polymer B precursor such as a monomer aqueous solution of a polymer resin such as acrylamide is absorbed into particles of the superabsorbent polymer A forming a flat spherical or elliptic granular gel, and then polymerized to obtain high water absorption. This is a technique in which a water-insoluble polymer such as polyacrylamide is formed inside the particles of the hydrophilic polymer A, thereby obtaining a hydrogel with high strength, and a technique using this as a carrier for immobilizing microorganisms. [0008] The superabsorbent polymer A is a substance which has been conventionally used for sanitary purposes such as disposable diapers, and is a hydrophilic polymer which can absorb water several hundred times its own weight. Maintains a hydrogel that exhibits elasticity. Water not absorbed by the hydrogel can be easily separated by filtration,
In addition, the hydrogel can be pinched with tweezers in water. However, the hydrogel has a drawback that the gel strength is weak and easily collapsed when pressed. Polymers having such properties include:
Preferred examples include an acrylic acid-vinyl alcohol copolymer, a starch-acrylic acid graft polymer, and an isobutylene-maleic anhydride copolymer. In the present invention, an aqueous solution of a polymerizable monomer (ie, a polymer B precursor) such as acrylamide, acrylic acid, or methacrylic acid acrylic acid is absorbed into the superabsorbent polymer A particles having a low gel strength, for example, By swelling the superabsorbent polymer A and then polymerizing the monomer by a redox polymerization reaction or the like, a water-insoluble polymer such as polyacrylamide or polyacrylic acid is formed in the superabsorbent polymer A hydrogel. It was found for the first time that hydrogel particles having high strength and not breaking even when pressed strongly with a finger were obtained and completed. In the present invention, it is extremely important to polymerize the polymer B after absorbing a polymer B precursor such as a monomer having a small molecular weight in the superabsorbent polymer A particles. As a method of absorbing a polymer B precursor such as a monomer having a small molecular weight in the superabsorbent polymer A particles, a monomer having a small molecular weight is added to a dry or slightly swollen superabsorbent polymer A particle. Can be efficiently absorbed by absorbing the polymer B precursor such as the above as an aqueous solution.
This is also one of the features of the present invention. It was found that high molecular weight molecules were not absorbed by the superabsorbent polymer.
This is presumably because the interface of the superabsorbent polymer has a kind of membrane structure such as an RO membrane and a UF membrane, so that only water-soluble low-molecular substances can be absorbed together with water. The method for producing a granular hydrogel of the present invention is a surprisingly simple process, and does not require any process and equipment for molding the gel into granules. A representative example of the production of a high-strength polymer hydrogel according to the present invention is shown in FIG. As shown in FIG. 1, in the present invention, complicated granulating equipment is not required at all, and only a simple stirring tank is required as equipment. When acrylamide is used as the polymer B precursor (monomer), methylene bisacrylamide (abbreviation: BIS) is suitable as a crosslinking agent, and β-dimethylaminopropionitrile (abbreviation: DMAPN) is suitable as a polymerization catalyst. As the polymerization initiator, potassium persulfate is used. When a salt of acrylic acid is used as the monomer, a mixture of an aqueous solution of monomeric calcium acrylate and sodium erythorbate is used to form a resin of calcium polyacrylate in the superabsorbent polymer A particles, and the flat spherical particles are formed. Thus, a high-strength transparent hydrogel is formed. In addition, the hydrogel of the present invention, that is, a polymer obtained by polymerizing a water-insoluble resin inside the superabsorbent polymer particles and a conventional,
Appearance, infrared absorption spectrum, water content, etc. to distinguish from gels that do not use superabsorbent polymers such as polyethylene glycol hydrogel, which is a typical gel of the immobilized microorganism method obtained by the gel formation method described below. The difference between the two can be clarified by the absorption characteristics, the degree of swelling of the gel when absorbing water, the shrinkage rate when drying the water, the gel drying rate, and the differential thermal analysis. In addition, the polyethylene glycol hydrogel is obtained by adding sodium alginate and a polymerization initiator to a mixture of a polyethylene glycol prepolymer solution, a polymerization catalyst, and microorganisms, mixing well, and then dropping the mixture in a calcium chloride solution in a droplet form to obtain a granular form. It is a gel. A feature of the method for immobilizing microorganisms of the present invention is that microorganisms naturally grow on the surface of the hydrogel particles of the present invention. For example, in order to immobilize aerobic microorganisms on the polymer hydrogel particles of the present invention, the polymer hydrogel particles of the present invention are put into water under aerobic conditions, and a substrate for microorganisms such as BOD is supplied. Alone was sufficient, and it was confirmed that the microorganism was immobilized spontaneously and effectively on the surface layer of the polymer hydrogel particles of the present invention after about 10 to 20 days at a water temperature of about 20 to 25 ° C. The polymer hydrogel particles of the present invention on which the microorganisms were immobilized had high gel strength and were not destroyed by aeration at all.
On the other hand, in order to immobilize anaerobic microorganisms (acid-producing bacteria, methane-producing bacteria, etc.), the same operation as described above may be performed under anaerobic conditions. It was immobilized spontaneously on the surface of the hydrogel particles. Therefore, according to the present invention, there is no need for the operation of confining microorganisms in gel particles as in the conventional entrapping and immobilizing microorganism method, and significant rationalization has been achieved. Furthermore, in the present invention, the microorganisms are immobilized only on the surface layer of the hydrogel particles. However, the inclusive immobilized microorganism method including the microorganisms in the particles and the effect on the microbial activity (treatment) are not inferior at all. Make sure that. Further, since the polymer hydrogel particles of the present invention have sufficient strength, they can be used both as a fixed filler and as a fluid medium. The polymer hydrogel particles of the present invention are treated with water as described above,
In addition to being used as a carrier for microbial application technology such as brewing, it can be applied to construction materials for tunnel construction and the like, soil and soil improvement materials, deodorants, and various other applications, and the use is not particularly limited. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Here, an experimental example will be described assuming a case where the present invention is applied particularly to the field of water treatment. However, the following examples do not limit the present invention. Example 1 A superabsorbent polymer (isobutylene) having a property of absorbing about 150 times its own weight when poured into water, and remarkably swelling to form spherical or flat spherical hydrogel particles (particle diameter 3 to 4 mm). -Maleic anhydride copolymer) as an aqueous solution of acrylamide monomer having the composition shown in Table 1
After 20 minutes, the superabsorbent polymer swells to about 150 times its own weight, and contains extremely strong granular 3 to 6 mm hydrogel holding water-insoluble polyacrylamide with polymerized monomer inside. Particles were obtained. [Table 1] The compressive strength of the hydrogel particles is 6 to 7 k.
g / cm 2, and the compressive strength of polyethylene glycol hydrogel, which is considered to be the strongest as a gel of the conventional entrapping immobilized microorganism method, is 3 to 4 kg / cm 2 , and has about twice the strength. Was. As described above, in the present invention, the steps and equipment for molding the gel into a granular form are completely unnecessary, and the high-absorbent polymer particles are added to the aqueous solution containing the monomer, and the particles are simply swelled with stirring to obtain a granular high strength. It was demonstrated that hydrogel particles of Example 2 Next, a test was conducted to immobilize nitric acid bacteria on the polymer hydrogel particles of the present invention. Activated sludge treated sewage (water temperature 25
℃, BOD5~10mg / liter, NH 3 -N20~
25 mg / liter) with a tank volume of 20 liters (water depth 0.
6 liters of the transparent polymer hydrogel particles of the present invention were introduced into the 8 m) tank while supplying 20 liters / hour of water into the tank, and the suspension was allowed to flow. Under these conditions, the quality of the treated water was measured 20 days after the start of the passage of water. As a result, the NH 3 —N in the treated water was 1.5 to 2.3 mg / liter, and a high degree of nitrification was achieved. When the polymer hydrogel particles were taken out of the tank and observed, a large amount of brown nitrifying bacteria was immobilized on the surface layer. The effect of the present invention and the effect of the conventional entrapping immobilized microorganism method are shown in Table 2. That is, the present invention
The effect is as shown in the left column of the table, a high-strength granular polymer hydrogel can be produced extremely easily and in large quantities, and microorganisms can be effectively immobilized on the hydrogel particles of the present invention. [Table 2] According to the present invention, for large-scale wastewater treatment, for example, for a sewage treatment facility with a treatment amount of 500 to 1,000,000 m 3 / day,
For the first time, the immobilized microorganism method can be applied at a reasonable cost for industrial implementation.

【図面の簡単な説明】 【図1】本発明による高強度の高分子ヒドロゲル粒子の
製造方法を示すフローチャートである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flowchart showing a method for producing high-strength polymer hydrogel particles according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C02F 3/10 B01J 13/02 B (56)参考文献 特開 昭63−48337(JP,A) 特開 平2−280893(JP,A) 特開 平1−243988(JP,A) 特開 昭64−48802(JP,A) 特開 平6−142674(JP,A) (58)調査した分野(Int.Cl.7,DB名) C12N 11/08 B01J 13/00 - 13/22 C02F 3/00 - 3/34 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification code FI C02F 3/10 B01J 13/02 B (56) References JP-A-63-48337 (JP, A) JP-A-2-280893 ( JP, A) JP-A-1-243988 (JP, A) JP-A-64-48802 (JP, A) JP-A-6-142674 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) C12N 11/08 B01J 13/00-13/22 C02F 3/00-3/34

Claims (1)

(57)【特許請求の範囲】 【請求項1】 高吸水性高分子Aの粒子内部に、高分子
B前駆体の水溶液を吸収させた後、前記高分子Aの粒子
内部において、前記高分子B前駆体を重合せしめて水不
溶性の高分子Bを生成させた高分子ヒドロゲル粒状物を
水中で、微生物存在下に保持し、該高分子ヒドロゲル粒
状物表面に該微生物を固定化することを特徴とする微生
物固定化方法。
(57) [Claims 1] The super-water-absorbent polymer A has a polymer inside the particles.
After absorbing the aqueous solution of the precursor B, the particles of the polymer A
Inside, the polymer B precursor is polymerized and water
The polymer hydrogel granules that produced soluble polymer B
In water, in the presence of microorganisms, the polymer hydrogel particles
Microbes characterized by immobilizing said microorganisms on the surface of a substance
Object immobilization method.
JP17594593A 1993-06-24 1993-06-24 Microorganism immobilization method using polymer hydrogel granules Expired - Fee Related JP3361570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17594593A JP3361570B2 (en) 1993-06-24 1993-06-24 Microorganism immobilization method using polymer hydrogel granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17594593A JP3361570B2 (en) 1993-06-24 1993-06-24 Microorganism immobilization method using polymer hydrogel granules

Publications (2)

Publication Number Publication Date
JPH0780282A JPH0780282A (en) 1995-03-28
JP3361570B2 true JP3361570B2 (en) 2003-01-07

Family

ID=16005006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17594593A Expired - Fee Related JP3361570B2 (en) 1993-06-24 1993-06-24 Microorganism immobilization method using polymer hydrogel granules

Country Status (1)

Country Link
JP (1) JP3361570B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075941A1 (en) * 2022-10-04 2024-04-11 인천대학교 산학협력단 Super absorbent polymer-based surface fixation technology for extracellular vesicles or cells

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787579B1 (en) 1996-02-05 2002-10-09 Teijin Limited Biaxially oriented laminate films and magnetic recording media
EP0811478B1 (en) * 1996-06-06 2002-04-24 Teijin Limited Laminate film and magnetic recording medium using the same
KR100448034B1 (en) * 1997-05-20 2005-06-01 데이진 가부시키가이샤 Biaxially oriented laminate film of wholly aromatic polyamide and magnetic recording media
EP1003156A4 (en) 1998-04-13 2000-05-24 Teijin Ltd Aromatic polyamide film for high-density magnetic recording medium
WO2004064997A1 (en) * 2003-01-23 2004-08-05 Inotech Ag New microcapsules useful as extraction means in particular for extracting water or soil contaminants
WO2004064971A2 (en) * 2003-01-23 2004-08-05 Inotech Ag Process for preparing microcapsules having an improved mechanical resistance
JP4526008B2 (en) * 2003-07-24 2010-08-18 秀樹 山本 Polyvinyl alcohol-based granular gel and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680120B2 (en) * 1986-08-19 1994-10-12 住友化学工業株式会社 Method for producing water-absorbent plastic composite material
JPS6448802A (en) * 1987-08-19 1989-02-23 Kyoritsu Yuki Co Ltd Water-absorbing resin
JPH01243988A (en) * 1988-03-24 1989-09-28 Daiso Co Ltd Method for immobilizing microorganism
JPH02280893A (en) * 1989-04-20 1990-11-16 Meidensha Corp Method for immobilizing nitrifying bacteria and water purifying treatment
JPH06142674A (en) * 1992-11-11 1994-05-24 Ebara Infilco Co Ltd Biological purification carrier for water and method and device for purifying water using its carrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075941A1 (en) * 2022-10-04 2024-04-11 인천대학교 산학협력단 Super absorbent polymer-based surface fixation technology for extracellular vesicles or cells

Also Published As

Publication number Publication date
JPH0780282A (en) 1995-03-28

Similar Documents

Publication Publication Date Title
US3725291A (en) Sorbent and method of manufacturing same
KR930012103B1 (en) Method of immobilizing microorganism
CN105087541A (en) Microbe immobilizing method
JP3361570B2 (en) Microorganism immobilization method using polymer hydrogel granules
JPH0380803B2 (en)
Karada et al. Investigation of swelling/sorption characteristics of highly swollen AAm/AMPS hydrogels and semi IPNs with PEG as biopotential sorbent
RU2715380C1 (en) Method of producing a moisture-absorbing composite polymer material with microbiological additives
JPH10136980A (en) Support for bioreactor and its production
JPH10251341A (en) Carrier and catalyst for bioreactor
CN1063759C (en) Process for producing aqueous gel, heavy-metal ion adsorbent, pigment adsorbent, microbe carrier, and carrier for enzyme immobilization
JPS6352556B2 (en)
JPS61192389A (en) Biological treatment of water
JPH0137987B2 (en)
JPH0249709B2 (en)
JPS6219083A (en) Immobilization of microorganism
CN117534204B (en) SBR sewage treatment system and process based on hydrogel balls
JP3378700B2 (en) Granular phosphorus adsorbent using tap water sludge and its production method
JPS61204091A (en) Biological treatment of liquid material
JPH0374156B2 (en)
Kakoulides et al. Synthetic macronet hydrophilic polymers as soil conditioners. I. kinetic characterization of macro‐net sulfonated polystyrene resins
JP3506264B2 (en) Water treatment agent
JPH01128787A (en) Carrier for immobilizing microbial cell and production thereof
JPH0265782A (en) Production of microorganism-immobilized granular gel
KR100596366B1 (en) Hydrophilic immobilized media for immobilizing microbe for the wastewater treatment and manufacturing method thereof
JP2004113996A (en) Water treatment system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees