JPH0265782A - Production of microorganism-immobilized granular gel - Google Patents

Production of microorganism-immobilized granular gel

Info

Publication number
JPH0265782A
JPH0265782A JP21457488A JP21457488A JPH0265782A JP H0265782 A JPH0265782 A JP H0265782A JP 21457488 A JP21457488 A JP 21457488A JP 21457488 A JP21457488 A JP 21457488A JP H0265782 A JPH0265782 A JP H0265782A
Authority
JP
Japan
Prior art keywords
aqueous solution
gel
polymerization
microorganism
colloidal silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21457488A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Katagai
信義 片貝
Kazuo Morimoto
森元 和男
Baku Maekawa
麦 前川
Kazuhiko Obara
和彦 小原
Rie Suzuki
理恵 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP21457488A priority Critical patent/JPH0265782A/en
Publication of JPH0265782A publication Critical patent/JPH0265782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

PURPOSE:To obtain the subject gel useful for purification of waste water by dropping suspended aqueous solution comprising mixture of polymerizable compound, polymerization agent, gelling agent, colloidal silica and microorganism into specific mixed aqueous solution and polymerizing. CONSTITUTION:A water-soluble polymerizable compound is mixed with either one of polymerization accelerator such as calcium persulfate- dimethylaminopropionitrile or polymerization initiator, microorganism such as bacteria, gelling agent composed of salt of at least divalent metal such as calcium chloride and colloidal silica to form suspended aqueous solution. Next, said suspended aqueous solution is dropped into mixed aqueous solution containing sodium alginate and remained one of polymerization accelerator and polymerization initiator of said polymerizable compound to form strong liquid drop, then said polymerizable compound is polymerized within the liquid drop to afford the aimed spherical gel with simple process.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排水の浄化に有用な微生物固定粒状ゲルの製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a microorganism-immobilized granular gel useful for purifying wastewater.

〔従来の技術〕[Conventional technology]

微生物の固定化方法には、包括形が多く用いられており
、包括形固定化材料としては、天然高分子や合成高分子
からの親水性ゲルがある。担体の耐久性をみると、天然
高分子は十分でないため、合成高分子が有利とされてい
る。これまでの適用例をみるとポリアクリルアミドゲル
、ポリビニルアルコールゲル、ウレタンプレポリマーゲ
ル、光架橋樹脂ゲル、ポリエチレングリコールメタクリ
レートゲルなど多くの担体が挙げられる。
Entrapping methods are often used to immobilize microorganisms, and examples of entrapping immobilization materials include hydrophilic gels made from natural polymers and synthetic polymers. When looking at the durability of the carrier, synthetic polymers are considered to be advantageous because natural polymers are insufficient. Examples of past applications include many carriers such as polyacrylamide gel, polyvinyl alcohol gel, urethane prepolymer gel, photocrosslinked resin gel, and polyethylene glycol methacrylate gel.

これら親水性ゲルに微生物を固定し、微生物固定化担体
として用いる場合、種々の形状が考えられ、例えば球2
円柱、角柱などの粒子状、フィルム、シートなどの比較
的大きな板状がある。これら担体をリアクタに充填して
排水の処理を行うとき、その反応効率を考慮すると、担
体の形状としては、比表面積(cmz/cI113・ゲ
ル)の大きいほうが、一般的に有利であることから、粒
子状担体が好ましい。
When immobilizing microorganisms on these hydrophilic gels and using them as microorganism immobilization carriers, various shapes can be considered, such as spheres, etc.
There are particle shapes such as cylinders and prisms, and relatively large plate shapes such as films and sheets. When treating wastewater by filling a reactor with these carriers, considering the reaction efficiency, it is generally advantageous for the shape of the carrier to have a larger specific surface area (cmz/cI113/gel). Particulate carriers are preferred.

親水性合成高分子ゲルを粒状に成形することは、なかな
か雅しいが、特開昭59−11182号公報には光硬化
樹脂の粒状化方法、特開昭63−2=1886号公報に
はポリアクリルアミドゲルの粒状化方法、特開昭60−
1537!]・1号公報にはアクリルアミドとアルギン
酸塩混合物の粒状化方法が提案されている。
Molding a hydrophilic synthetic polymer gel into granules is quite elegant, but JP-A-59-11182 discloses a method for granulating a photocurable resin, and JP-A-63-2/1886 describes a method for granulating a photocurable resin. Method for granulating acrylamide gel, JP-A-60-
1537! ] - Publication No. 1 proposes a method for granulating a mixture of acrylamide and alginate.

特開昭59−11182 号公報に記載の方法は、光硬
化樹脂プレポリマー、光増感剤、アルギン酸ナトノウム
などの天然多糖類、及び酸素を含んだ懸濁水溶液をゲル
化する手段において、光硬化樹脂プレポリマーだけでは
粒子状にゲル化できないため、金属塩によって容易にゲ
ル化する天然多糖類の助けを借りている。
The method described in JP-A No. 59-11182 is a method for gelling a suspended aqueous solution containing a photocurable resin prepolymer, a photosensitizer, a natural polysaccharide such as sodium alginate, and oxygen. Since resin prepolymers alone cannot gel into particles, they rely on natural polysaccharides that easily gel with metal salts.

すなわち、アルギン酸ナトリウムが塩化カルシウム水溶
液にノズルから滴下されるとナトリウムとカルシウムイ
オンとの置換を生じ容易に球状のゲル体が形成されると
いう性質を利用し、前記に懸濁水溶液をノズルから塩化
カルシウム水溶液に滴下して、アルギン酸ナトリウムの
ゲル化によって球状の1次粒子を形成し、この球状粒子
に活性光線である紫外線を照射し、光増感剤の励起によ
り、光硬化樹脂プレポリマーを重合させ、2次粒子を形
成する。
That is, by utilizing the property that when sodium alginate is dropped into an aqueous calcium chloride solution from a nozzle, sodium and calcium ions are substituted and a spherical gel body is easily formed. Dropped into an aqueous solution, sodium alginate gels to form spherical primary particles, and the spherical particles are irradiated with ultraviolet rays, which are actinic rays, and the photocurable resin prepolymer is polymerized by excitation of the photosensitizer. , forming secondary particles.

特開昭63−24886号公報に記載の方法は、ポリア
クリルアミドゲルに微生物を固定した粒状担体を得るこ
とにあり、アクリルアミドモノマー、橋かけ剤、レドッ
クス系重合剤及び微生物を含んだ@濁水溶液を有機溶媒
中にノズルから液滴状に落下させ、該有機溶媒中でゲル
化させるものである。
The method described in JP-A No. 63-24886 is to obtain a granular carrier in which microorganisms are immobilized on a polyacrylamide gel. The liquid is dropped into an organic solvent from a nozzle in the form of droplets and gelled in the organic solvent.

すなわち、前記懸濁水溶液を液滴状とするために疎水性
の有機溶媒を用いており、その連続的製造として有機溶
媒及び液滴を移動させ、ゲル化した時点で粒状ゲルを有
機溶Wc層から取りだすものである。
That is, a hydrophobic organic solvent is used to make the suspended aqueous solution into droplets, and the organic solvent and the droplets are moved during continuous production, and when gelatinized, the granular gel is transferred to the organic solution Wc layer. It is taken from.

特開昭60−153794号公報に記載の方法は、ポリ
アクリルアミドゲルに微生物を固定した粒状担体を得る
ことにあり、アクリルアミドモノマ、橋かけ剤、レドッ
クス系重合剤、アルギン酸塩及び微生物を含んだ懸濁水
溶液をカルシウム塩やアルミニウム塩の水溶液に液滴状
に滴下し、形成される一次粒子を有機溶媒中に移し、ア
クリルアミドの重合を行って球状のゲルを得るものであ
る。
The method described in JP-A-60-153794 is to obtain a granular carrier in which microorganisms are immobilized on a polyacrylamide gel. A turbid water solution is dropped into an aqueous solution of calcium salt or aluminum salt in the form of droplets, the primary particles formed are transferred into an organic solvent, and acrylamide is polymerized to obtain a spherical gel.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記特開昭59−11182号公報に記載の方法は、光
硬化樹脂プレポリマーを球状でゲル化をさせるための特
別な物質すなわち天然多糖類の添加が必要である。
The method described in JP-A-59-11182 requires the addition of a special substance, that is, a natural polysaccharide, to make the photocurable resin prepolymer spherical and gelatinous.

また、該方法は粒状形成と重合が別工程になっており、
工程が複雑である。
In addition, in this method, particle formation and polymerization are separate steps,
The process is complicated.

前記特開昭63−24886 号公報に記載の方法は、
微生物にとって何害な有機溶媒を用いる必要がある。こ
の欠点を低減するために有機溶媒の一部または全部に換
えて食用油を使用することが考えられるが、この場合に
は、得られた担体粒子表面に油が付着し、これを完全に
除去することは困難である。
The method described in JP-A-63-24886 is as follows:
It is necessary to use an organic solvent that is harmful to microorganisms. In order to reduce this drawback, it may be possible to use edible oil in place of some or all of the organic solvent, but in this case, the oil will adhere to the surface of the resulting carrier particles and must be completely removed. It is difficult to do so.

1111記特開昭60−153794号公報に記載の方
法は、特開昭63−24886号公報に対して一吋粒子
を形成させるためにアルギン酸ソーダを加える点が異な
っている。即ちアルギン酸ソーダをカルシウムやアルミ
ニウムとの置換により、アルギン11皮膵がある。この
ようにやはり微生物にとって有害な有機溶媒を用いる必
要がある。また該方法は粒状形成と重合が別工程になっ
ており、工程が複zFである。
The method described in JP-A-60-153794 is different from JP-A-63-24886 in that sodium alginate is added to form 1-inch particles. That is, by replacing sodium alginate with calcium or aluminum, there is an alginine-11 skin pancreas. Thus, it is necessary to use organic solvents that are harmful to microorganisms. Further, in this method, particle formation and polymerization are separate steps, and the steps are multiple zF.

また天然高分子ゲルの粒状化方法として特開昭62−1
95284号公報では、アルギン酸塩の粒状化方法に、
従来とは異なった方法を記載している。即ち、カルシウ
ムイオンを存在させた微生物懸濁液をアルギン酸ソーダ
水溶液に滴下し、アルギン酸カルシウムの皮膜を形成す
る粒状化方法である。
In addition, as a method for granulating natural polymer gel, JP-A No. 62-1
No. 95284 discloses a method for granulating alginate,
It describes a method that is different from conventional methods. That is, this is a granulation method in which a microbial suspension containing calcium ions is dropped into an aqueous sodium alginate solution to form a film of calcium alginate.

これによると粒状化は容易であるが、排水処理に用いる
場合、含まれるリン酸イオンによってカルシウムイオン
が離脱し、ゲルが崩壊する問題がある。
According to this, granulation is easy, but when used for wastewater treatment, there is a problem that calcium ions are released by the phosphate ions contained and the gel collapses.

このように、微生物固定化担体を粒子状で得るための従
来方法は、微生物固定化担体にとって好ましくない有機
溶媒等が必要であること、工程が複雑であること、耐久
性が悪い等の問題があった。
As described above, conventional methods for obtaining microorganism-immobilized carriers in particulate form have problems such as the need for organic solvents that are unfavorable for microorganism-immobilized carriers, complicated processes, and poor durability. there were.

そして、本発明は、このような欠点がなく、8弓に微生
物を固定した粒状のゲル担体を製造する方法を提供する
ものである。
The present invention is free from such drawbacks and provides a method for producing a granular gel carrier in which microorganisms are immobilized on eight arches.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は水溶性の重合性化合物、これの重合促進剤と重
合開始剤のうちどちらか一方、コロイダルシリカ、二価
以上の金属の塩からなるゲル化剤及び微生物を混合して
なる懸濁水溶液をアルギン酸ソーダ及び上記重合性化合
物の重合促進剤と重合開始剤の残った一方を含む混合水
溶液に滴下し。
The present invention provides a suspension aqueous solution containing a water-soluble polymerizable compound, one of a polymerization accelerator and a polymerization initiator thereof, colloidal silica, a gelling agent consisting of a salt of a divalent or higher metal, and a microorganism. was added dropwise to a mixed aqueous solution containing sodium alginate and the remaining one of the polymerization accelerator and polymerization initiator of the above polymerizable compound.

形成される液滴内で上記重合性化合物の重合を行つうこ
とを特徴とする微生物固定粒状ゲルの製造方法に関する
The present invention relates to a method for producing a microorganism-immobilized granular gel, characterized in that the polymerizable compound is polymerized within the formed droplets.

得られる微生物固定粒状ゲルは微生物を包括固定する。The resulting microorganism-immobilized granular gel entraps microorganisms.

上記重合性化合物はレドックス系重合剤によってラジカ
ル重合を生じ、親水性ゲルを形成するものであればよく
、単官能性モノマー、多官能性モノマー、不飽和プレポ
リマーなどがある。単官能性七ツマ−としては、アクリ
ルアミド、メタクリルアミド、ヒドロキシエチルメタグ
リレート、ヒドロキシエチルアクリレート、ヒドロキシ
プロピルメタクリレート、ポリエチレングリコールモノ
メタクリレート、メトキシポリエチレングリコールメタ
クリレート、メトキシポリエチレングリコールアクリレ
ート、グリセロールモノメタクリレート等があり、多官
能性モノマーとしては、エチレングリコールジメタクリ
レート、エチレングリコールジアクリレート、ブタンジ
オールジメタクリレート、ブタンジオールジアクリレー
ト、グリセロールジメタクリレート、N、N’ −メチ
レンビスアクリルアミド、N、N’ −ジアリル−L−
酒石酸ジアミド、トリアクリルホルマール等があり、不
飽和プレポリマーには、ポリエチレングリコールジメタ
クリレート、ポリエチレングリコールジアクリレート、
ポリプロピレングリコールジメタクリレート、ポリプロ
ピレングリコールジメタクリレート、ポリビニールアル
コールのアクリル酸またはメタクリル酸の多価エステル
、キシリレンジイソシアネート、ポリエチレングリコー
ル及び2−ヒドロキシエチルメタクリレートをウレタン
化反応させて得られるものなどがある。
The above-mentioned polymerizable compound may be one that undergoes radical polymerization with a redox polymerization agent to form a hydrophilic gel, and includes monofunctional monomers, polyfunctional monomers, unsaturated prepolymers, and the like. Examples of monofunctional seven-mers include acrylamide, methacrylamide, hydroxyethyl methacrylate, hydroxyethyl acrylate, hydroxypropyl methacrylate, polyethylene glycol monomethacrylate, methoxypolyethylene glycol methacrylate, methoxypolyethylene glycol acrylate, glycerol monomethacrylate, etc. Examples of polyfunctional monomers include ethylene glycol dimethacrylate, ethylene glycol diacrylate, butanediol dimethacrylate, butanediol diacrylate, glycerol dimethacrylate, N,N'-methylenebisacrylamide, N,N'-diallyl-L-
There are tartaric acid diamide, triacrylic formal, etc., and unsaturated prepolymers include polyethylene glycol dimethacrylate, polyethylene glycol diacrylate,
Examples include those obtained by subjecting polypropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polyvalent esters of acrylic acid or methacrylic acid of polyvinyl alcohol, xylylene diisocyanate, polyethylene glycol and 2-hydroxyethyl methacrylate to a urethane reaction.

以上のような不飽和基を有する水溶性の重合性化合物に
おいて、単官能性七ツマ−はそれのみを高分子化しても
三次元釣橋かけがないため、ゲルは形状保持性に乏しい
。そのため単官能性モノマーは多官能性モノマーと共に
使用される。多官能性モノマー、プレポリマーはそれら
単体のみで、あるいは数種混合して使用される。
Among the water-soluble polymerizable compounds having an unsaturated group as described above, monofunctional heptamers do not have three-dimensional bridge formation even if only they are made into polymers, resulting in gels with poor shape retention. Monofunctional monomers are therefore used together with polyfunctional monomers. The polyfunctional monomers and prepolymers may be used alone or in combination.

重合剤は、重合開始剤と重合促進剤からなるレドックス
系重合剤である。レドックス系重合剤としては、過硫酸
カルシウム−ジメチルアミノプロピオニトリル、過硫酸
カリウム−亜硫酸水素ナトノウム、過硫酸アンモニウム
−亜硫酸水素ナトリウム、過硫酸アンモニウム−チオ硫
酸ソーダ2過酸化水素−塩化第1鉄、過酸化素索−アス
コルビン酸、過硫酸カリウム−ヒドラジン等の組合せの
ものがある。
The polymerization agent is a redox polymerization agent consisting of a polymerization initiator and a polymerization accelerator. Redox polymerization agents include calcium persulfate-dimethylaminopropionitrile, potassium persulfate-sodium hydrogen sulfite, ammonium persulfate-sodium hydrogen sulfite, ammonium persulfate-sodium thiosulfate, hydrogen peroxide-ferrous chloride, and peroxide. There are combinations such as ascorbic acid and potassium persulfate and hydrazine.

前記微生物としては、細菌類(Bacteria)、菌
類(Fungi) + g生動物[:Protozoa
、後生動物(Metazoa)を含む〕、藍藻等これら
の混合体からなる活性汚泥、などがあり、好気性菌でも
嫌気性菌でもよい。
The microorganisms include Bacteria, Fungi + Protozoa.
, metazoa], blue-green algae, and activated sludge consisting of a mixture of these, and may be aerobic or anaerobic bacteria.

前記二価以上の金属の塩からなるゲル化剤としては塩化
カルシウム、硝酸カルシウム、塩化アルミニウム、硫酸
アルミニウム、硝酸アルミニウム等があり、これらは水
和物の形態で用いてもよい。
Examples of the gelling agent made of a salt of a divalent or higher-valent metal include calcium chloride, calcium nitrate, aluminum chloride, aluminum sulfate, and aluminum nitrate, and these may be used in the form of hydrates.

これらは、コロイダルシリカ及びアルギン酸ソーダのゲ
ル化剤となる。ゲル化剤としては、微生物に対して阻害
性の少ない点を考慮すると塩化カルシウムが好ましい。
These serve as gelling agents for colloidal silica and sodium alginate. Calcium chloride is preferred as the gelling agent in view of its low inhibitory effect on microorganisms.

上記二価以上の金属の塩に、塩化ナトリウム。Sodium chloride is added to the above divalent or higher metal salt.

塩化カリウム等の一価の金属の塩を併用してもよい。た
だし、−価の金属の塩は、コロイダルシリカのゲル化剤
として機能するだけである。
A monovalent metal salt such as potassium chloride may be used in combination. However, the -valent metal salt only functions as a gelling agent for colloidal silica.

前記コロイダルシリカは懸濁水溶液をアルギン酸ソーダ
を含む混合水溶液中に滴下した液滴が分散して砕けない
ように液滴を強固にして、粒状に(特に球状に)ゲル化
させる目的に添加をするものである。即ち、コロイダル
シリカは二価以上の金属塩によって瞬時にゲル化をして
粘稠な沈殿ゲルを形成する。そのため、前記)G濁水溶
液は、液全体が粘稠性のある懸濁液になる。
The colloidal silica is added for the purpose of solidifying the droplets so that they do not disperse and break when the suspended aqueous solution is dropped into the mixed aqueous solution containing sodium alginate, and gelling them into particles (particularly spherical shapes). It is something. That is, colloidal silica instantly gels with a divalent or higher valent metal salt to form a viscous precipitated gel. Therefore, the entire liquid in the above-mentioned G turbid aqueous solution becomes a viscous suspension.

前記懸濁水溶液は、アルギン酸ソーダと前記重合性化合
物の重合剤の残った一方を含む混合水溶液に滴下すると
分散しない程度に又は不定形にならない程度に強固な液
滴を形成し、液滴表面にアルギン酸塩の不溶ゲル皮膜を
作ると同時に、前記混合水溶液中の重合剤の一方が拡散
浸透して行き、液滴内部での重合性化合物の重合を重合
剤のもう一方とあいまって行なわすものである。またコ
ロイダルシリカは次のような効果も期待できる。
When the suspension aqueous solution is dropped into a mixed aqueous solution containing sodium alginate and the remaining one of the polymerization agents of the polymerizable compound, it forms droplets that are strong enough not to disperse or become irregularly shaped, and to form droplets on the surface of the droplets. At the same time that an insoluble gel film of alginate is formed, one of the polymerizing agents in the mixed aqueous solution diffuses and permeates, and the polymerizable compound is polymerized inside the droplet together with the other polymerizing agent. be. Colloidal silica can also be expected to have the following effects:

親水性合成高分子ゲルを形成させる場合、懸濁水溶液中
の重合性化合物の濃度が低すぎるとゲルの機械的強度が
低くなり、逆に濃度が高すぎるとゲルはマトリックスが
密になるため、物質透過性で低下しやすくなる。このた
めに、重合性モノマの1度はゲルの機械的強度と物質透
過性を調整するように決定する必要があるが、該ゲル中
に、コロイダルシリカからの沈殿ゲルを存在させること
により、この調整を容易にすることができる。
When forming a hydrophilic synthetic polymer gel, if the concentration of the polymerizable compound in the suspended aqueous solution is too low, the mechanical strength of the gel will be low, and conversely, if the concentration is too high, the gel will have a dense matrix. It tends to decrease due to substance permeability. For this purpose, the degree of polymerizable monomer needs to be determined to adjust the mechanical strength and substance permeability of the gel, but by having a precipitated gel from colloidal silica in the gel, this can be achieved. Adjustment can be made easier.

前記レドックス系重合剤は微生物を含んだ)W15水溶
液に重合促進剤と重合開始剤が同時に存在すると、ラジ
カル重合が直ちに開始され、ゲル化が進行する。そのた
めアルギン酸ソーダ水溶液中に滴下する操作段階でゲル
化し、液滴化操作が難しい。
When a polymerization accelerator and a polymerization initiator are simultaneously present in the W15 aqueous solution (the redox polymerization agent contains microorganisms), radical polymerization is immediately initiated and gelation progresses. Therefore, it gels during the step of dropping it into a sodium alginate aqueous solution, making it difficult to form droplets.

この可使時間対策として、微生物を含んだj?濁水溶液
には重合促進剤か重合開始剤のうちどちらか一方を添加
しておき、残った一方をアルギン酸ソーダを含む水溶液
に添加しておけば解決できる。
As a measure against this pot life, j? This problem can be solved by adding either a polymerization accelerator or a polymerization initiator to the turbid water solution, and adding the remaining one to the aqueous solution containing sodium alginate.

次に、前記懸濁水溶液の組成割合について説明する。Next, the composition ratio of the aqueous suspension will be explained.

重合性化合物として単官能性七ツマ−を使用する場合、
これは前記懸濁水溶液に対して一般的には5〜30重量
%用いられ、この場合、橋かけ剤として用いる多官能性
モノマーは一般的に0.5〜5重量%使用される。これ
らはともに少なすぎるとゲル強度が小さくなる傾向があ
り、担体としての形状保持が難しい。またこれらは、多
すぎるとゲル強度は大きくなるが、ゲル内の物質透過性
が低くなるため、反応効率(処理)が低下する傾向があ
る。単官能性モノマーを使用しない場合、多官能性モノ
マーは前記懸濁水溶液に対して一般的に5〜30重量%
用いられ、前記同様にこれが少なすぎるとゲル強度が弱
くなる傾向があり、多すぎると物質透過性が低下する傾
向がある。不飽和プレポリマーも多くの場合、多官能性
七ツマ−と同様の組成割合で用いられる。
When using a monofunctional hexamer as a polymerizable compound,
It is generally used in an amount of 5 to 30% by weight based on the aqueous suspension, and in this case, the polyfunctional monomer used as a crosslinking agent is generally used in an amount of 0.5 to 5% by weight. If both of these are too small, the gel strength tends to decrease, making it difficult to maintain the shape as a carrier. Moreover, if these amounts are too large, the gel strength increases, but the permeability of substances within the gel decreases, so that reaction efficiency (processing) tends to decrease. If no monofunctional monomer is used, the polyfunctional monomer is generally 5 to 30% by weight of the aqueous suspension.
Similarly to the above, too little amount tends to weaken the gel strength, while too much amount tends to reduce substance permeability. Unsaturated prepolymers are also often used in similar composition proportions as polyfunctional heptamers.

レドックス系重合剤の量は、七ツマ−の種類、ゲル開始
時間等を考慮して適宜決定される。前記懸濁水溶液中に
は、レドックス系重合剤の成分である重合開始剤と重合
促進剤のうち一方を含有させるが、重合開始剤は前記懸
濁水溶液に対して0.1〜0.4重量%5重合促進剤は
前記懸濁水溶液に対して0.2〜0.8重量%含有させ
るのが好ましい。
The amount of the redox polymerization agent is appropriately determined in consideration of the type of 7-mer, gel initiation time, etc. The aqueous suspension solution contains one of a polymerization initiator and a polymerization accelerator, which are components of the redox polymerization agent, and the amount of the polymerization initiator is 0.1 to 0.4% by weight relative to the aqueous suspension solution. %5 The polymerization accelerator is preferably contained in an amount of 0.2 to 0.8% by weight based on the aqueous suspension.

前記懸濁水溶液に含有させたレドックス系重合剤の成分
に対し、もう一方の成分はアルギン酸ソーダを含む混合
水溶液に含有させるが、重合開始剤は該混合水溶液に対
して0.1 〜5重景%含有させるのが好ましく、重合
促進剤は該混合水溶液に対して0.2〜5重量%含有さ
せるのが好ましい。
In contrast to the component of the redox polymerization agent contained in the aqueous suspension solution, the other component is contained in the mixed aqueous solution containing sodium alginate, and the polymerization initiator is added in an amount of 0.1 to 5 times higher relative to the mixed aqueous solution. %, and the polymerization accelerator is preferably contained in an amount of 0.2 to 5% by weight based on the mixed aqueous solution.

微生物は適宜の量で使用されるが、懸濁水溶液に対して
0.5〜3重量%(活性汚泥の場合はM L S Sで
表わす)使用されるのが好ましい。
The microorganisms are used in an appropriate amount, but preferably in an amount of 0.5 to 3% by weight (in the case of activated sludge, expressed as MLSS) based on the suspended aqueous solution.

コロイダルシリカは、二酸化ケイ素分で懸濁水溶液に対
して、1〜20重量%用いられ、これが少なすぎるとア
ルギン酸ソーダを含む混合水溶液中に液滴が分散された
り、分散されなくても液滴が不定形になってゲル形状は
同様に不定形できれいな粒状になりにくい。形状として
は球形が対摩耗性を考慮すると最もよい形状といえる。
Colloidal silica is used at a silicon dioxide content of 1 to 20% by weight based on the suspended aqueous solution; if this is too small, droplets may be dispersed in the mixed aqueous solution containing sodium alginate, or even if they are not dispersed, the droplets may remain. The shape of the gel becomes amorphous and the shape of the gel is similarly amorphous and difficult to form into clean particles. As for the shape, a spherical shape can be said to be the best shape considering wear resistance.

コロイダルシリカが多すぎると重合性化合物の重合反応
が抑制され、得られるゲルの強度が低下する場合がある
。この量が少なすぎるとアルギン酸ソーダを含む混合水
溶液中に滴下し、だ液滴表面にアルギン酸塩のゲルの皮
膜の形成が十分でないため、液滴が分散し、不定形な形
状でゲル化したり、あるいは粒状ゲルが得られない場合
もある。
If there is too much colloidal silica, the polymerization reaction of the polymerizable compound may be suppressed, and the strength of the resulting gel may decrease. If this amount is too small, the droplet will drop into a mixed aqueous solution containing sodium alginate, and the alginate gel film will not be formed on the surface of the droplet, causing the droplet to disperse and gel in an irregular shape. Alternatively, a granular gel may not be obtained.

アルギン酸ソーダは低粘度から高粘度にわたる種ぐの特
性をもつものが市販されているが、0.2〜2重量%で
使用されるのが好ましい。少なすぎると前記懸濁水溶液
の液滴表面でのアルギン酸塩のゲル皮膜の形成が弱く、
形成される微生物固定ゲルのゲル形状が不定形になった
り、滴液が分散する。多すぎる場合は、混合水溶液の粘
度が高くなり、液滴同志が付着したり、アルギン酸塩の
ゲル皮膜が厚くなり、微生物固定ゲルを取りだしたとき
に持ち出されるアルギン酸分が多くなり、無駄になる量
が大きい。
Sodium alginate is commercially available with seed properties ranging from low viscosity to high viscosity, but it is preferably used in an amount of 0.2 to 2% by weight. If the amount is too small, the formation of a gel film of alginate on the surface of the droplets of the suspended aqueous solution will be weak.
The gel shape of the formed microorganism-immobilized gel becomes amorphous, or the droplets become dispersed. If the amount is too high, the viscosity of the mixed aqueous solution will increase, causing droplets to stick to each other, the alginate gel film will become thicker, and when the microorganism-immobilized gel is taken out, a large amount of alginic acid will be taken out, resulting in wasted amount. is large.

本発明のゲル化剤は、コロイダルシリカの二酸化ケイ十
分とゲル化剤中の金属分の合計量に対して、二価の金属
塩の場合は金属分で0.3〜6重量%、三価の金属塩の
場合は金属分で0.1〜3重量%が好ましい。本発明の
ゲル化剤は、wIi水溶液中でコロイダルシリカをゲル
化させて沈殿ゲルを生成するに十分な量加えられるが、
この場合、該S濁水溶液をアルギン酸ソーダを含む混合
水溶液に滴下した場合、液滴の表面にアルギンm塩のゲ
ル皮膜が有効に形成される。本発明のゲル化剤に一価の
金属塩を併用してもよいが、本発明のゲル化剤は、上記
のアルギン酸塩のゲル皮膜を形成するに充分な量使用さ
れ、場合により、本発明のゲル化剤のみを使用する場合
に比し、その量を減らすことができる。
The gelling agent of the present invention has a metal content of 0.3 to 6% by weight in the case of a divalent metal salt, and a trivalent metal content of 0.3 to 6% by weight based on the total amount of silicon dioxide in the colloidal silica and metal content in the gelling agent. In the case of metal salts, the metal content is preferably 0.1 to 3% by weight. The gelling agent of the present invention is added in an amount sufficient to gel the colloidal silica in the wIi aqueous solution to produce a precipitated gel;
In this case, when the S cloudy aqueous solution is dropped into a mixed aqueous solution containing sodium alginate, a gel film of the algine m salt is effectively formed on the surface of the droplet. The gelling agent of the present invention may be used in combination with a monovalent metal salt, but the gelling agent of the present invention is used in an amount sufficient to form the above-mentioned alginate gel film, and in some cases, the gelling agent of the present invention may be used in combination with a monovalent metal salt. The amount of gelling agent can be reduced compared to when only one gelling agent is used.

次に本発明の製造法の手順を説明する。Next, the steps of the manufacturing method of the present invention will be explained.

前記懸濁水溶液は、任意の順序で各成分を混合すればよ
いが1重合性化合物を先ずl水にとかし、コロイダルシ
リカを加えてよく撹拌しくコロイダルシリカはアルカリ
性であるため、微生物に対して好ましくない場合は、予
め中性付近にpH調整するためのp H1ffi剤を加
えてもよい)、次いで重合剤のうち一方の重合促進剤(
または重合開始剤)を加え、これに微生物(活性汚泥で
はその濃縮液を使用するのが好ましい)を加えてよく懸
濁し、ざらに二価以上の金属塩、必要に応じてさらに一
価の金属塩(これらは、水溶液の形態で使用してもよい
)を加えてよく撹拌するのが好ましい。
The aqueous suspension solution may be prepared by mixing the components in any order, but first dissolve the monopolymerizable compound in water, add colloidal silica, and stir well. Colloidal silica is alkaline, so it is preferable for microorganisms. If not, a pH1ffi agent may be added in advance to adjust the pH to around neutrality), then a polymerization accelerator for one of the polymerization agents (
microorganisms (it is preferable to use their concentrated solution for activated sludge), suspend them well, add roughly divalent or higher metal salts, and if necessary further monovalent metals. It is preferable to add the salt (which may be used in the form of an aqueous solution) and stir well.

このとき、コロイダルシリカは直ちにゲル化して液全体
が粘稠性のある微生物を含んだ懸濁水溶液となる。
At this time, the colloidal silica immediately gels, and the entire liquid becomes a viscous suspended aqueous solution containing microorganisms.

別にアルギン酸ソーダと重合剤の残った一方の重合開始
剤(または重合促進剤)の混合水溶液を用意する。
Separately, a mixed aqueous solution of sodium alginate and the remaining polymerization initiator (or polymerization accelerator) is prepared.

ト記混合水溶液はマグネティック・スターラなどで撹拌
しておき、これに上記懸濁水溶液を滴下する。滴下は粒
状ゲルの大きさに従って適当な口径の孔を有するノズル
、多孔板等によって行なうことができる。
The above mixed aqueous solution is stirred using a magnetic stirrer or the like, and the above suspended aqueous solution is added dropwise thereto. Dropping can be carried out using a nozzle, perforated plate, etc. having holes of a suitable diameter according to the size of the granular gel.

滴下された懸濁水溶液は瞬時にアルギン酸塩のゲル皮膜
で包まれたきれいな粒状の液滴となる。
The dropped aqueous suspension instantly turns into fine granular droplets surrounded by an alginate gel film.

同時にアルギン酸ソーダを含む水溶液中の重合剤の一方
が液滴内へ拡散浸透していき1重合性化合物の重合が開
始する。重合性化合物が十分に重合する間、撹拌するの
が好ましい。その後1粒状ゲルを取りだせば微生物固定
粒状ゲルが得られる。
At the same time, one of the polymerization agents in the aqueous solution containing sodium alginate diffuses into the droplet, and polymerization of one polymerizable compound begins. Stirring is preferably performed while the polymerizable compound is sufficiently polymerized. If one granular gel is then taken out, a microorganism-immobilized granular gel can be obtained.

なお、この粒状ゲルはアルギン酸塩のゲル皮膜でおおわ
れているため、排水処理に用いる場合は、この皮膜をリ
ン酸バッファ液で取り除いてから使用するのがよい。排
水にはリン酸イオンが多く含まれているため、アルギン
酸塩のゲル皮膜が溶解し、排水中に離脱するからである
。以上の操作によって合成高分子ゲルとコロイダルシリ
カの沈殿ゲルからなる複合体ゲルに微生物を包括固定し
た粒状のゲルを容易に製造することができる。
Note that this granular gel is covered with a gel film of alginate, so when using it for wastewater treatment, it is recommended to remove this film with a phosphate buffer before use. This is because the wastewater contains a large amount of phosphate ions, which causes the alginate gel film to dissolve and separate into the wastewater. By the above operations, it is possible to easily produce a granular gel in which microorganisms are entrapped and immobilized in a composite gel consisting of a synthetic polymer gel and a precipitated gel of colloidal silica.

〔実施例〕〔Example〕

実施例1 ポリアクリルアミドゲルに活性汚泥を固定した粒状担体
を作製した。アクリルアミドモノマ及びN、N’ −メ
チレンビスアクリルアミドを溶解させた水溶液に活性汚
泥濃縮液を加えてよく混合した。これに重合促進剤のジ
メチルアミノプロピオニトリル(以下、DMAPNと略
す5重量%水溶液)を添加した。この懸濁水溶液にコロ
イダルシリカ〔スノーテックス−40(日産化学工業(
株)商品名〕を加えたもの及び加えないものとして二種
類を調整し、さらに塩化カルシウムニ水塩を両者に添加
し、よく混合した。コロイダルシリカが存在する方は直
ちにシリカの沈殿ゲルを生成し。
Example 1 A granular carrier in which activated sludge was immobilized on polyacrylamide gel was prepared. The activated sludge concentrate was added to an aqueous solution in which the acrylamide monomer and N,N'-methylenebisacrylamide were dissolved and mixed well. Dimethylaminopropionitrile (hereinafter abbreviated as DMAPN), a 5% by weight aqueous solution, as a polymerization accelerator was added to this. Colloidal silica [Snowtex-40 (Nissan Chemical Industry Co., Ltd.) was added to this suspended aqueous solution.
Two types were prepared, one with and without the addition of Calcium chloride dihydrate, and mixed well. If colloidal silica is present, a silica precipitate gel is immediately generated.

液全体が粘稠性を持った懸濁液となった。コロイダルシ
リカが存在しない方は、活性汚泥の粘性だけで粘稠性が
少なかった。別にアルギン酸ソーダ(SIGMA製、N
O,A−2158,底粘度)と重合開始剤の過硫酸カリ
ウム(以下、KzSzOg)とからなる混合水溶液を用
意した。ただし、上カ′得られた懸濁水溶液に対してア
クリルアミドモノマ18重量%、N、N’ −メチレン
ビスアクリルアミド1重量%、活性汚泥2重量%、DM
APNo、5重量%とじた。コロイダルシリカは二酸化
ケイ素置で7.6重量%、塩化カルシウムニ水塩は二酸
化ケイ素とカルシウム分との合計量に対してカルシウム
分が5重量%になるように加えた。
The entire liquid became a viscous suspension. In the case where colloidal silica was not present, the viscosity was low due to only the viscosity of activated sludge. Separately, sodium alginate (manufactured by SIGMA, N
A mixed aqueous solution consisting of potassium persulfate (hereinafter referred to as KzSzOg) as a polymerization initiator was prepared. However, with respect to the obtained suspension aqueous solution, 18% by weight of acrylamide monomer, 1% by weight of N,N'-methylenebisacrylamide, 2% by weight of activated sludge, DM
AP No., 5% by weight. Colloidal silica was added in an amount of 7.6% by weight based on silicon dioxide, and calcium chloride dihydrate was added so that the calcium content was 5% by weight based on the total amount of silicon dioxide and calcium.

また得られた混合水溶液に対してアルギン酸ソーダは0
.8 重量%、KzSzOa42重量%とじた。
Also, the amount of sodium alginate in the mixed aqueous solution obtained was 0.
.. 8% by weight and 42% by weight of KzSzOa.

前記懸濁水溶液をガラス製スポイト(口径i ohm)
を用いて、前記混合水溶液をマグネティック・スタータ
で撹拌しているところへ、−滴ずつ滴下した。
The suspended aqueous solution was poured into a glass dropper (diameter I ohm).
The above-mentioned mixed aqueous solution was dropped drop by drop using a magnetic starter.

コロイダルシリカが存在している方は液滴は瞬時にアル
ギン酸カルシウムゲル皮膜で形成された球状になり、撹
拌状態で10分間放置した。その後、取りだした球状ゲ
ルはアルギン酸カルシウムゲル皮膜の透明層でおおわれ
た白褐色ゲルであった。これをリン酸バッファー水溶液
に入れて10分間撹拌して、アルギン酸カルシウムゲル
皮膜を溶かした。
In the case where colloidal silica was present, the droplets instantly became spherical with a calcium alginate gel film, and were left under stirring for 10 minutes. Thereafter, the spherical gel taken out was a whitish-brown gel covered with a transparent layer of calcium alginate gel film. This was added to an aqueous phosphate buffer solution and stirred for 10 minutes to dissolve the calcium alginate gel film.

この白褐色球状ゲルを切断して内部を観察したところ、
十分にゲル化をしており、ポリアクリルアミドゲル及び
コロイダルシリカの沈殿ゲルからなる複合体ゲルに包括
固定した活性汚泥固定球状ゲルが得られた。なお球状ゲ
ルの直径は約3.5m1llであった。
When we cut this whitish brown spherical gel and observed the inside, we found that
An activated sludge-fixed spherical gel was obtained which was sufficiently gelled and was comprehensively fixed in a composite gel consisting of polyacrylamide gel and colloidal silica precipitation gel. The diameter of the spherical gel was approximately 3.5ml.

一方、コロイダルシリカが存在していない方は。On the other hand, for those who do not have colloidal silica.

液滴の一部が混合水溶液中へ分散し、液が白濁した。残
った液滴はゲル化をしたが球形にならず不定形な粒状に
なった。
Some of the droplets were dispersed into the mixed aqueous solution, and the liquid became cloudy. The remaining droplets gelled, but did not become spherical, but instead became irregularly shaped particles.

活性汚泥を固定した粒状担体を作製した。ポリエチレン
グリコールジメタクリレート〔23G新中村化学工業(
株)商品名〕を溶解した水溶液に活性汚泥濃縮液を加え
てよく混合した。これに重合促進剤のDMAPN (5
重量%水溶液)を添加した。この懸濁水溶液にコロイダ
ルシリカ(スノーテックス40)を加えたもの及び加え
ないものを二種類を調整し、さらに塩化カルシウムニ水
塩を両者に添加し、よく混合した、コロイダルシリカが
存在する方は直ちにシリカの沈殿ゲルを生成し、液全体
が粘稠性を持った懸濁液となった。コロイダルシリカが
存在しないほうは、活性汚泥の粘性だけで粘稠性が少な
かった。別にアルギン酸ソーダと重合開始剤K z S
 206とからなる混合水溶液を用意した。
A granular carrier with activated sludge fixed thereon was prepared. Polyethylene glycol dimethacrylate [23G Shin Nakamura Chemical Industry (
Activated sludge concentrate was added to an aqueous solution in which the product was dissolved, and the activated sludge concentrate was mixed well. This is added to the polymerization accelerator DMAPN (5
wt% aqueous solution) was added. Two types were prepared with and without colloidal silica (Snowtex 40) added to this suspended aqueous solution, and calcium chloride dihydrate was added to both and mixed well. A silica precipitate gel was immediately formed, and the entire liquid became a viscous suspension. In the case where colloidal silica was not present, the viscosity was only that of activated sludge and was less viscous. Separately, sodium alginate and polymerization initiator KzS
A mixed aqueous solution consisting of 206 was prepared.

ただし、上記で得られた懸濁水溶液に対してポリエチレ
ングリコールジメタクリレート10重量%、活性汚泥2
重量%、DMAPN0.5 重量%とした。コロイダル
シリカは二酸化ケイ素置で7.6重量%、塩化カルシウ
ムニ水塩は二酸化ケイ素とカルシウム分との合計量に対
してカルシウム分が5重量%〆になるように加えた。ま
た上記で得られた混合水溶液に対してアルギン酸ソーダ
は0.8 重量%、KzSZ○6床2重量%とじた。
However, with respect to the suspension aqueous solution obtained above, 10% by weight of polyethylene glycol dimethacrylate and 2% of activated sludge were added.
DMAPN0.5% by weight. Colloidal silica was added in an amount of 7.6% by weight based on silicon dioxide, and calcium chloride dihydrate was added so that the calcium content was 5% by weight based on the total amount of silicon dioxide and calcium. In addition, 0.8% by weight of sodium alginate and 2% by weight of KzSZ○6 bed were added to the mixed aqueous solution obtained above.

前記懸濁水溶液をガラス製スポイト(口径1mm)を用
いて前記混合水溶液をマグネティック・スタータで撹拌
しているところへ一滴ずつ滴下した。
The suspended aqueous solution was dropped drop by drop using a glass dropper (diameter 1 mm) onto the mixed aqueous solution being stirred with a magnetic starter.

以下実施例1と同様にした。その結果、コロイダルシリ
カを入れた方は球状ゲルとなり、アルギン酸カルシウム
ゲル皮膜をリン酸バッファで除いた後、内部を観察した
ところ、十分にゲル化をしていた。白褐色のポリエチレ
ングリコールジメタクリレートゲルと沈殿ゲルからなる
複合体ゲルに包括固定した活性汚泥固定球状ゲルが得ら
れ、球状ゲルの直径は約2 、8 mraであった。
The following procedure was carried out in the same manner as in Example 1. As a result, the gel containing colloidal silica became a spherical gel, and after removing the calcium alginate gel film with a phosphate buffer, the inside was observed, and it was found that the gel had sufficiently gelled. An activated sludge-fixed spherical gel was obtained which was comprehensively fixed in a composite gel consisting of a white-brown polyethylene glycol dimethacrylate gel and a precipitated gel, and the diameter of the spherical gel was about 2.8 mra.

一方、コロイダルシリカが存在していない方は。On the other hand, for those who do not have colloidal silica.

液滴の一部が混合水溶液中へ分散し、液が白濁した。残
った液滴はゲル化をしたが、球形にならす不定形な粒状
になった。
Some of the droplets were dispersed into the mixed aqueous solution, and the liquid became cloudy. The remaining droplets gelled, but became irregularly shaped particles with a spherical shape.

実施例3 実施例1又は実施例2と同様にして活性汚泥r固定ゲル
を作製した。但し、活性汚泥を含んだ各組成からなる懸
濁水溶液はコロイダルシリカを存在させたもののみにつ
いて行った。また重合促進剤D M A P Nの代り
に重合開始剤に2S20δ(2,5重量%水溶液使用)
を懸濁水溶液に添加した。従って混合水溶液には、重合
開始剤KzSzOsの代わりに重合促進剤DMAPNを
加えた。前懸濁水溶液中のに2S20♂は0.25 重
量%とじ、その他は実施例1又は実施例2の各組成と同
一にした。
Example 3 Activated sludge r fixation gel was produced in the same manner as in Example 1 or Example 2. However, as for the suspended aqueous solutions of each composition containing activated sludge, only those in which colloidal silica was present were tested. In addition, 2S20δ (using 2.5% by weight aqueous solution) was used as a polymerization initiator instead of the polymerization accelerator D M A P N.
was added to the aqueous suspension. Therefore, the polymerization accelerator DMAPN was added to the mixed aqueous solution instead of the polymerization initiator KzSzOs. The amount of 2S20♂ in the pre-suspension aqueous solution was 0.25% by weight, and the other compositions were the same as in Example 1 or Example 2.

前記混合水溶液中のアルギン酸濃度は0.8 重量%、
D MA P Nは2重量%とじた。
The alginic acid concentration in the mixed aqueous solution is 0.8% by weight,
D MA P N was added in an amount of 2% by weight.

両者の重犯懸濁水溶液をガラス製スポイト(口径1mm
)を用いて前記混合水溶液をマグネテイツクスターラで
撹拌しているところへ一滴ずつ滴下した。以下実施例1
と同様にした。
A glass dropper (diameter 1mm
) was used to drop the mixed aqueous solution drop by drop onto the area being stirred with a magnetic stirrer. Example 1 below
I did the same thing.

その結果、アクリルアミドモノマーを用いた場合もポリ
エチレングリコールジメタクリレートモノマーを用いた
場合も、活性汚泥を包括固定した良好な球状ゲルが得ら
れた。リン酸バッファ液によるアルギン酸カルシウムゲ
ル皮膜を除いた後の球状ゲルの直径はアリクルアミドモ
ノマーを用いた場合約31、ポリエチレングリコールジ
メタクリレートモノマーを用いた場合約2.7mi+で
あった。
As a result, good spherical gels in which activated sludge was entrapped and fixed were obtained in both cases of using acrylamide monomer and polyethylene glycol dimethacrylate monomer. The diameter of the spherical gel after removing the calcium alginate gel film with the phosphate buffer solution was about 31 mi+ when using the aliclamide monomer, and about 2.7 mi+ when using the polyethylene glycol dimethacrylate monomer.

試験例1 実施例1で得られた活性汚泥固定球状ゲル及び実施例2
で得られた活性汚泥固定球状ゲルをそれぞれ5.3gず
つ、別々に用いて酸素利用速度(mg −02/ Q−
h )を下水道試験法に準じて測定した。なお球状ゲル
は3日間合成下水で馴養した後、測定に用いた。
Test Example 1 Activated sludge fixed spherical gel obtained in Example 1 and Example 2
5.3 g each of the activated sludge-fixed spherical gel obtained in
h) was measured according to the sewerage test method. The spherical gel was used for measurement after being acclimated with synthetic sewage for 3 days.

各球状ゲルを同一個数(230ケ)に合せて測定した結
果、酸素利用速度は実施例1で得られたものが28a+
g −02/ Q−h、実施例2のものが3Qmg−0
2/Q−hを示した。
As a result of measuring the same number of spherical gels (230 pieces), the oxygen utilization rate obtained in Example 1 was 28a+
g-02/Q-h, Example 2 is 3Qmg-0
2/Qh.

試験例2 コロイダルシリカ(スノーテックス40)及びポリエチ
レングリコールジメタクリレートを適当な濃度になるよ
うに適宜水を加えて混合した混合液に、5重量%DMA
PN水溶液を加え、よく混合し、た後、塩化カルシウム
水溶液(塩化カルシウム1度10 w / v%)を添
加してよく撹拌した6コロイダルシリカがゲル化すると
粘稠な沈殿ゲルとなった。これに2.5 重量%過@酸
カリウム水溶液を加えて最終混合液を調整し、よく撹拌
した後、速やかに円筒状の管に入れて静置した。ポリエ
チレングリコールジメタクリレートが重合して高分子凝
膠体ゲルとなった後、これを管から押し出して直径13
mm、長さ15mg+のペレットとした。
Test Example 2 5% by weight of DMA was added to a mixture of colloidal silica (Snowtex 40) and polyethylene glycol dimethacrylate with water added to an appropriate concentration.
After adding a PN aqueous solution and mixing well, a calcium chloride aqueous solution (calcium chloride 1 degree 10 w/v%) was added and well stirred. When the 6 colloidal silica gelled, it became a viscous precipitated gel. A 2.5% by weight potassium peroxide aqueous solution was added to this to prepare a final mixed solution, which was thoroughly stirred and then immediately placed in a cylindrical tube and allowed to stand still. After the polyethylene glycol dimethacrylate polymerizes into a polymer aggregate gel, it is extruded from a tube with a diameter of 13 mm.
It was made into a pellet with a length of 15 mg+.

このペレットを使用してテンシロンによる圧縮破壊強度
を測定した。この結果を第1図に示す。
Using this pellet, the compressive fracture strength by Tensilon was measured. The results are shown in FIG.

なお、コロイダルシリカの使用量は、最終混合液に対し
て二酸化ケイ素置で0重量%、4重量%。
The amount of colloidal silica used was 0% by weight and 4% by weight based on silicon dioxide based on the final mixed liquid.

8重量゛島及び16重量%となるように変動させ、それ
ぞれの場合に、ポリエチレングリコールジメタクリレー
ト(モノマー)の使用量は最t4混合液に対して5重量
%、10重量%、15重景%及び20重量%になるよう
に変動させた。これらの場合において、塩化カルシウム
はコロイダルシリカ中の二酸化ケイ素置に対して7.6
重量%(二酸何 化ケイ素ヂと塩化カルシウムニ水塩中のカルシウムとの
合計量に対するカルシウムの割合は2重量%)になるよ
うに加えた。またDMAPN及び過amカリウムはそれ
ぞれ最終混合液に対して0.4重量%及び0.2 重量
%になるように使用した。
In each case, the amount of polyethylene glycol dimethacrylate (monomer) used was 5% by weight, 10% by weight, and 15% by weight based on the T4 mixture. and 20% by weight. In these cases, calcium chloride has a ratio of 7.6 to silicon dioxide in colloidal silica.
% by weight (the ratio of calcium to the total amount of silicon dioxide and calcium in calcium chloride dihydrate was 2% by weight). Further, DMAPN and peramic potassium were used in amounts of 0.4% by weight and 0.2% by weight, respectively, based on the final mixed solution.

第1図において、グラフ1,2.3及び4は。In FIG. 1, graphs 1, 2, 3 and 4 are.

それぞれ、コロイダルシリカを二酸化ケイ素置で、最終
混合液に対し、0重量%、4重景%、8重景%及び16
重破%になるように用いた場合におけるポリエチレング
リコールジメタクリレ−1へ(七ツマ−)の使用量(最
終混合液に対する重量%)と圧縮破壊強度(kg/am
2)との関係を示すグラフである。
Colloidal silica was added to silicon dioxide at 0% by weight, 4% by weight, 8% by weight, and 16% by weight, respectively.
The amount of polyethylene glycol dimethacrylate-1 (seven tsum) used (weight % relative to the final mixed solution) and compressive fracture strength (kg/am
2) is a graph showing the relationship with 2).

第1図において、二酸化ケイ素O%、即ちポリエチレン
グリコールジメタアクリレートのホモポリマーゲル(グ
ラフ1)に比べて二酸化ケイ素が入ると明らかに強度が
大きくなっており、その効果は二酸化ケイ素が1重量%
以上で見られた(図示はしていない)。また二酸化ケイ
素が16重景気(グラフ4)になると樹脂量の少ない所
では効果が大きいものの、樹脂量が多くなると効果は向
−h t、ない。これは二酸化ケイ素量が多くなると、
ポリエチレングリコールジメタアクリレートの重々 塗が抑制されることによるものと考えられる。
In Figure 1, the strength is clearly increased when silicon dioxide is added, compared to the homopolymer gel of polyethylene glycol dimethacrylate (graph 1), which has 0% silicon dioxide, and this effect is due to the addition of 1% silicon dioxide by weight.
As seen above (not shown). Furthermore, when silicon dioxide reaches the 16th economic downturn (graph 4), the effect is large where the amount of resin is small, but the effect is not significant when the amount of resin is large. This is because when the amount of silicon dioxide increases,
This is thought to be due to the suppression of multiple coatings of polyethylene glycol dimethacrylate.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、微生物阻害性の大きい有機溶媒を使用
せず、また簡単な操作で球状の微生物固定粒状ゲルを得
ることができる。また、得られた微生物固定粒状ゲルは
、良好な強度を有する。
According to the present invention, a spherical microorganism-immobilized granular gel can be obtained without using an organic solvent that is highly inhibiting to microorganisms, and with simple operations. Moreover, the obtained microorganism-immobilized granular gel has good strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試験例2の結果を示すグラフである。 1・・・5iOzO%のときのグラフ、2・・・5iO
z・1%のときのグラフ、3・・・5iOz8%のとき
の第
FIG. 1 is a graph showing the results of Test Example 2. Graph when 1...5iOzO%, 2...5iO
The graph when z・1%, the graph when 3...5iOz8%

Claims (1)

【特許請求の範囲】 1、水溶性の重合性化合物、これの重合促進剤と重合開
始剤のうちどちらか一方、コロイダルシリカ、二価以上
の金属の塩からなるゲル化剤、及び微生物を混合してな
る懸濁水溶液をアルギン酸ソーダ及び上記重合性化合物
の重合促進剤と重合開始剤の残つた一方を含む混合水溶
液に滴下し、形成される液滴内で、上記重合性化合物の
重合を行なうことを特徴とする微生物固定粒状ゲルの製
造方法。 2、懸濁水溶液中の二酸化ケイ素含有量が1〜20重量
%である特許請求の範囲第1項記載の微生物固定粒状ゲ
ルの製造方法。
[Claims] 1. A water-soluble polymerizable compound, either one of its polymerization accelerator and polymerization initiator, colloidal silica, a gelling agent consisting of a salt of a divalent or higher metal, and a microorganism are mixed. The suspension aqueous solution made of the above is dropped into a mixed aqueous solution containing sodium alginate and the remaining one of the polymerization accelerator and the polymerization initiator of the above polymerizable compound, and the above polymerizable compound is polymerized within the formed droplets. A method for producing a microorganism-immobilized granular gel, characterized by: 2. The method for producing a microorganism-immobilized granular gel according to claim 1, wherein the content of silicon dioxide in the aqueous suspension is 1 to 20% by weight.
JP21457488A 1988-08-29 1988-08-29 Production of microorganism-immobilized granular gel Pending JPH0265782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21457488A JPH0265782A (en) 1988-08-29 1988-08-29 Production of microorganism-immobilized granular gel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21457488A JPH0265782A (en) 1988-08-29 1988-08-29 Production of microorganism-immobilized granular gel

Publications (1)

Publication Number Publication Date
JPH0265782A true JPH0265782A (en) 1990-03-06

Family

ID=16657968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21457488A Pending JPH0265782A (en) 1988-08-29 1988-08-29 Production of microorganism-immobilized granular gel

Country Status (1)

Country Link
JP (1) JPH0265782A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122591C1 (en) * 1991-07-08 1993-02-18 Roland 8012 Ottobrunn De Bodmeier Producing microcapsules of water insoluble polymer and active agent - includes dissolving or dispersing active agent in aq. polymer contg. gellable assistants
CN100445377C (en) * 2006-12-21 2008-12-24 天津大学 Bionic preparing process of silica-alginic acid microcapsule for immobilized beta-glucurosidase
CN104439270A (en) * 2014-09-04 2015-03-25 河南城建学院 Method for preparing sodium alginate/beta-cyclodextrin collaborative immobilized nanometer zero-valent iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122591C1 (en) * 1991-07-08 1993-02-18 Roland 8012 Ottobrunn De Bodmeier Producing microcapsules of water insoluble polymer and active agent - includes dissolving or dispersing active agent in aq. polymer contg. gellable assistants
CN100445377C (en) * 2006-12-21 2008-12-24 天津大学 Bionic preparing process of silica-alginic acid microcapsule for immobilized beta-glucurosidase
CN104439270A (en) * 2014-09-04 2015-03-25 河南城建学院 Method for preparing sodium alginate/beta-cyclodextrin collaborative immobilized nanometer zero-valent iron

Similar Documents

Publication Publication Date Title
US4791061A (en) Immobilization of microorganisms by entrapment
US6133004A (en) Bioreactor carrier gel prepared from a crosslinked N-vinylcarboxamide resin
JP4358413B2 (en) Microorganism-immobilized carrier mixture and bioreactor using the same
JPH0265782A (en) Production of microorganism-immobilized granular gel
JP3361570B2 (en) Microorganism immobilization method using polymer hydrogel granules
JPH0137987B2 (en)
JPH02190186A (en) Continuous production of granular gel having immobilized microorganism and apparatus therefor
US20240076221A1 (en) Hydrogels for the entrapment of bacteria
JP2003062594A (en) Method and apparatus for treating organic waste water containing high concentration suspended substance
JPS60153794A (en) Immobilization of microbial cell with acrylamide
JPH03258398A (en) Production of platelike carrier with fixed micro-organism
JPH01256387A (en) Production of microorganism-immobilized carrier
JP4384338B2 (en) Enzyme or microorganism-immobilized carrier composition
JP3355037B2 (en) Dephosphorizing material, method for producing and using the same
JP3065868B2 (en) Filter media using inorganic fibers and method for producing the same
JPS649073B2 (en)
JPS62279887A (en) Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JP3474232B2 (en) Water swellable polymer particles having a large particle size, a method for producing the same and a method for using the same
CN111977764B (en) Composite phosphorus removal agent for sewage treatment and preparation method thereof
JPH03249991A (en) Production of microorganism-fixed plate carrier and carrier unit
JPH0427837B2 (en)
JPH01281086A (en) Microorganism immobilized gel and production thereof
JP3388966B2 (en) Granular phosphorus adsorbent
JPH10152511A (en) Regulation of specific gravity of granular molding product for immobilizing enzyme or microbial cell
JP4346206B2 (en) Enzyme or microorganism-immobilized carrier mixture and water treatment method using the same