JP4346206B2 - Enzyme or microorganism-immobilized carrier mixture and water treatment method using the same - Google Patents

Enzyme or microorganism-immobilized carrier mixture and water treatment method using the same Download PDF

Info

Publication number
JP4346206B2
JP4346206B2 JP2000112128A JP2000112128A JP4346206B2 JP 4346206 B2 JP4346206 B2 JP 4346206B2 JP 2000112128 A JP2000112128 A JP 2000112128A JP 2000112128 A JP2000112128 A JP 2000112128A JP 4346206 B2 JP4346206 B2 JP 4346206B2
Authority
JP
Japan
Prior art keywords
carrier
microorganism
immobilized carrier
enzyme
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000112128A
Other languages
Japanese (ja)
Other versions
JP2001292765A (en
Inventor
直紀 宮田
仁 泉田
敏之 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2000112128A priority Critical patent/JP4346206B2/en
Publication of JP2001292765A publication Critical patent/JP2001292765A/en
Application granted granted Critical
Publication of JP4346206B2 publication Critical patent/JP4346206B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Biological Treatment Of Waste Water (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流動床型バイオリアクタなどの水中における浮上、流出が防止された酵素又は微生物固定化担体混合物、及び該固定化担体混合物を用いた水処理システムに関する。
【0002】
【従来の技術及びその課題】
排水などの水処理方法において、微生物固定化担体を用いることにより省スペース化、処理能力向上、低温期の処理安定性の向上などが可能であるということは従来からよく知られている。しかしながら、特に小型の水処理設備では、処理水と微生物固定化担体とを分離するに際して、担体が浮上し流出し易いという問題点があり、その解決が求められている。その解決策の1つとして、例えば、微生物固定化担体の沈降速度を大きくすることによって担体の浮上・流出を抑制することが考えられるが、この方法では、水中での担体の流動性が低下するという問題が生ずる。
【0003】
微生物固定化担体を用いた水処理において、微生物固定化担体の流出を防止する手法としては、ネットやウェッジワイヤースクリーン等を用いる方法があるが、ネットを用いる方法では汚泥や夾雑物の目詰まりの問題があり、また、ウェッジワイヤースクリーンを用いる方法では、ウェッジワイヤースクリーンが高価なため、システムのトータルコストが高くなるという欠点があった。
【0004】
本発明の主たる目的は、流動床型バイオリアクタなどの水中における酵素又は微生物固定化担体の浮上・流出防止を可能にするとともに、酵素又は微生物固定化担体の水中での流動性を確保することができる固定化担体を提供すること、及び酵素又は微生物固定化担体の浮上・流出防止を可能にするとともに、微生物固定化担体の水中での流動性を確保できる水処理方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者等は、上記の目的を達成すべく鋭意検討を重ねた結果、今回、沈降速度が0.4cm/秒以上異なる特定の2種類以上の酵素又は微生物固定化担体の混合物を用いると、流動槽内で分布に勾配を持たせることによって、酸化担体の担体の浮上・流出を防止しながら十分な流動性を確保することができることを見出し、本発明を完成するに至った。
【0006】
かくして、本発明に従えば、(A)水中における沈降速度が4.2〜10cm/秒の酵素固定化担体又は微生物固定化担体と、(B)水中における沈降速度が0.8〜3.0cm/秒であり、かつ該酵素固定化担体又は微生物固定化担体(A)の沈降速度より0.4cm/秒以上小さい酵素固定化担体又は微生物固定化担体の混合物からなり、該固定化担体(A)と該固定化担体(B)との担体体積比が(A)/(B)で20/80〜90/10の範囲内にあることを特徴とする水中における浮上、流出が防止された酵素固定化担体又は微生物固定化担体混合物が提供される。
【0007】
また、本発明に従えば、(A)水中における沈降速度が4.2〜10cm/秒の酵素固定化担体又は微生物固定化担体と、(B)水中における沈降速度が0.8〜3.0cm/秒であり、かつ該酵素固定化担体又は微生物固定化担体(A)の沈降速度より0.4cm/秒以上小さい酵素固定化担体又は微生物固定化担体の混合物からなり、該固定化担体(A)と該固定化担体(B)との担体体積比が(A)/(B)で20/80〜90/10の範囲内にある担体混合物を水処理用担体として使用することを特徴とする酵素固定化担体又は微生物固定化担体を用いた水処理方法が提供される。
【0008】
以下、本発明の固定化担体混合物及び水処理方法についてさらに詳細に説明する。
【0009】
【発明の実施の形態】
本発明において方法で用いられる酵素又は微生物固定化担体(以下、「担体」と略称することがある)は、沈降速度の制御が可能なものである限りその素材、形状などに特に制限は無く、例えば、▲1▼エチレングリコールゲルやポリビニルアルコールゲルなどの親水性高分子物質のゲル;▲2▼(a)一分子中に少なくとも2個のエチレン性不飽和結合を有する親水性光硬化性樹脂、(b)光重合開始剤及び(c)アルカリ金属イオン又は多価金属イオンとの接触によりゲル化する能力のある水溶性高分子多糖類を含んでなる水性液状組成物を、アルカリ金属イオン又は多価金属イオンを含有する水性媒体中に滴下して該組成物を粒状にゲル化させ、次いで得られる粒状ゲルに活性光線を照射して該粒状ゲル中の光硬化性樹脂を硬化させてなる光硬化ゲル;▲3▼これらのゲル中に(d)無機質粉粒体、(e)無機質系微小中空ビーズなどの比重調整剤を含有させてなるものを挙げることができる。
【0010】
これらのうち、なかでも光硬化ゲル▲2▼、及び光硬化ゲル▲2▼中に比重調整剤を含有させてなるものを好適に使用することができる。
【0011】
以下、上記好適に使用することができる光硬化ゲル▲2▼、及び光硬化ゲル▲2▼中に比重調整剤を含有させてなる担体について説明する。
【0012】
親水性光硬化性樹脂(a)
光硬化ゲル(2)を製造するための(a)成分である親水性光硬化性樹脂は、一分子中に少なくとも2個のエチレン性不飽和結合を有する親水性光硬化性樹脂であり、数平均分子量が300〜30,000、好ましくは500〜20,000の範囲内で、水に分散するに十分なイオン性又は非イオン性の親水基、例えば水酸基、カルボキシル基、リン酸基、スルホン酸基、アミノ基、エーテル結合等を分子中に有し、且つ波長が約200〜600nmの範囲内の活性光線を照射したとき、硬化して実質的に水に不溶性の樹脂に変わるものが好適に使用される。
【0013】
このような光硬化性樹脂としては、酵素又は微生物菌体の固定化担体用として既知のものを使用することができ(例えば、特公昭55−40号公報、特公昭55−20676号公報、特開平10−152511号公報等参照)、その代表的な例としては、高酸価不飽和ポリエステル類、高酸価不飽和エポキシド類、アニオン性不飽和アクリル樹脂類、カチオン性不飽和アクリル樹脂類、ポリエチレングリコール及び/又はポリプロピレングリコールと(メタ)アクリル酸とのポリエステル類、ポリエチレングリコール及び/又はポリプロピレングリコールと(メタ)アクリル酸2−ヒドロキシエチルとをトリレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネートなどのジイソシアネート化合物を介して結合させたウレタン化付加物類、不飽和セルロース類、不飽和ポリアミド類等が挙げられる。以上に例示した如き光硬化性樹脂はそれぞれ単独で使用することができ、或いは2種もしくはそれ以上組み合わせて使用してもよい。これら光硬化性樹脂のうち、本発明において特に好適に使用しうるものとしてはポリエチレングリコール及び/又はポリプロピレングリコールと(メタ)アクリル酸2−ヒドロキシエチルとのウレタン化付加物類を挙げることができる。
【0014】
光重合開始剤(b)
光重合開始剤(b)は、上記親水性光硬化性樹脂(a)の光重合反応を促進する目的で配合される。使用しうる光重合開始剤は、光照射により分解してラジカルを発生し、このものが重合開始種となって光硬化性樹脂間に橋かけ反応を起こさせるものであり、例えば、ベンゾイン、アセトインなどのα−カルボニルアルコール類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、アニソインエチルエーテル、ピバロインエチルエーテルなどのアシロインエーテル類;ナフトール、ヒドロキシアントラセンなどの多環芳香族化合物類;メチルベンゾイン、α−メトキシベンゾインなどのα−置換アシロイン類;2−シアノ−2−ブチルアゾホルムアミドなどのアゾアミド化合物類;塩化第2鉄などの金属塩類;メルカプタン類、ジスルフィド類、ハロゲン化合物類、染料類等を挙げることができる。
【0015】
水溶性高分子多糖類(c)
水溶性高分子多糖類(c)は、水溶性であり、かつ水性媒体中でアルカリ金属イオン又は多価金属イオンと接触したときに水に不溶性又は難溶性のゲルに変化する能力のある高分子多糖類であって、一般に約3,000〜2,000,000、特に5,000〜1,000,000の範囲内の数平均分子量を有し、また、アルカリ金属イオン又は多価金属イオンと接触させる前の水溶性の状態で通常少なくとも約10g/l(25℃)の溶解度を示すものが好適に使用される。
【0016】
かかる特性をもつ水溶性高分子多糖類の具体例には、アルギン酸のアルカリ金属塩、カラギーナン等が包含される。
【0017】
これら水溶性高分子多糖類は、水性媒体中に溶解した状態で、カラギーナンの場合は、カリウムイオン又はナトリウムイオン等のアルカリ金属イオンと接触することによって、また、アルギン酸のアルカリ金属塩の場合は、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等のアルカリ土類金属イオン;或いはアルミニウムイオン、セリウムイオン、ニッケルイオン等の他の多価金属イオンのうちの少なくとも1種の多価金属イオンと接触することによってゲル化しうるものである。
【0018】
光硬化ゲル(2)の調製
光硬化ゲル(2)の調製は、例えば、前記の(a)、(b)及び(c)成分を含有する水性液状組成物を、アルカリ金属イオン又は多価金属イオンを含有する水性媒体中に滴下して粒状化し、それを硬化させることによって行うことができる。
【0019】
上記(a)、(b)及び(c)成分の相互の使用割合は厳密に制限されるものではなく、各成分の種類等に応じて広範にわたって変えることができるが、一般には、(a)成分の親水性光硬化性樹脂100重量部に対し、(b)及び(c)成分は下記の割合で使用するのが適当である。
【0020】
光重合開始剤(b):0.5〜5重量部、好ましくは1〜3重量部、
水溶性高分子多糖類(c):0.5〜15重量部、好ましくは1〜8重量部。
【0021】
以上に述べた(a)〜(c)の各成分は水性媒体中に溶解ないし分散させることにより、水性液状組成物が調製される。この液状組成物の固形分濃度は一般に5〜30重量%、特に8〜25重量%の範囲内が適当である。担体が光硬化ゲル▲2▼中に、(d)無機質粉粒体、(e)無機質系微小中空ビーズなどの比重調整剤を含有させてなるものである場合には、上記(a)〜(c)成分を含有する水性液状組成物中に、さらに比重調整剤を含有させておけばよい。
【0022】
このようにして調製される水性液状組成物は、次いで、前述した如き種類のアルカリ金属イオン又は多価金属イオンを含有する水性媒体中に滴下することにより、該液状組成物が粒状でゲル化せしめられる。ゲル化が起るアルカリ金属イオン又は多価金属イオンの濃度は水溶性高分子多糖類の種類等により異なるが、一般には0.01〜5mol/l、好ましくは0.05〜3mol/lの範囲内である。
【0023】
アルカリ金属イオン又は多価金属イオンを含有する水性媒体中への水性液状組成物の滴下は、例えば、注射器の先端から該液状組成物を滴下する方法、遠心力を利用して該液状組成物を粒状に飛散させる方法、スプレーノズルの先端から該液状組成物を霧化して粒状とし滴下する方法などの方法により行なうことができる。滴下する液滴の大きさは、酵素又は微生物固定化用の担体に望まれる粒径に応じて自由に変えることができるが、通常は直径が約0.1mm〜約5mm、好ましくは約0.5mm〜約4mmの範囲内の液滴として滴下させるのが好都合である。
【0024】
上記の如くして生成せしめた粒状ゲルは、そのまま水性媒体中に分散させた状態で、或いは水性媒体から分離した後、活性光線を照射することにより、該粒状ゲル中の親水性光硬化性樹脂を硬化せしめる。これにより粒状ゲルは水に実質的に不溶性で機械的強度の大きい酵素又は微生物固定化用粒状成形物を得ることができる。
【0025】
上記の光硬化に使用しうる活性光線の波長は、該粒状ゲル中に含まれる光硬化性樹脂の種類等に応じて異なるが、一般には、約250〜約600nmの範囲内の波長の光を発する光源を照射に使用するのが有利である。そのような光源の例としては、低圧水銀灯、高圧水銀灯、蛍光灯、キセノンランプ、カーボンアーク灯、太陽光等が挙げられる。照射時間は光源の光の強さ、光源からの距離等に応じて変える必要があるが、一般には約0.5〜約10分間の範囲内とすることができる。
【0026】
このようにして照射処理が終った粒状ゲルは水又は緩衝水溶液で洗浄し、そのまゝあるいは凍結乾燥して保存することができる。
【0027】
本発明の浮上、流出が防止された固定化担体混合物は、水中における沈降速度が3.3cm/秒以上、好ましくは4.2〜10cm/秒の担体(A)と、水中における沈降速度が0.5cm/秒以上、好ましくは0.8〜3.0cm/秒であり、かつ担体(A)よりも0.4cm/秒以上小さい、好ましくは0.6cm/秒以上小さい担体(B)とからなる。
【0028】
上記担体(A)の沈降速度が3.3cm/秒より小さくなると、処理水と微生物固定化担体とを分離するに際に、担体の浮上や流出を抑制することが難しくなる傾向がある。また、上記担体(B)の沈降速度と担体(A)の沈降速度との差が0.4cm/秒未満となると、槽内で担体の分布勾配が形成されず十分な流動性を確保できなくなる傾向がある。
【0029】
上記担体(A)及び担体(B)の水中での沈降速度を制御する方法としては、担体比重の調整、担体粒径の調整、担体形状の制御などが挙げられ、これらのうち、担体比重の調整、担体粒径の調整は簡便に行うことができる。
【0030】
担体比重の調整は、担体の固形分濃度の調節によっても行うことができるが、担体の強度や耐久性の面で好ましい方法は、各種比重調整剤の配合によるものである。比重調整剤を配合する場合、比重調整剤の粒径は80μm以下であることが担体製造時の作業性などの面から好ましい。比重調整剤の添加量は、その種類によっても異なるが、一般には、担体の全固形分100重量部に対して120重量部以下であることが担体強度や耐久性の面から好ましい。
【0031】
担体(A)の比重調整用に使用される比重調整剤は、通常、担体(A)の比重を大きくして担体の沈降速度を大きくするものが好ましく、比重1.9以上、好適には2.0〜4.5の範囲内にある水に不溶ないし難溶性の無機質粉粒体(d)を挙げることができ、例えば、重質炭酸カルシウム、クレー、ホワイトカーボン、タルク、炭酸バリウム、硅酸アルミニウム、アルミナ、マイカ粉、シリカ(硅砂、硅石粉)粉などの各種顔料;コロイダルシリカ、微小ガラスビーズなどが挙げられ、具体的には、「ハイミクロンHE−5」(竹原化学工業社製、タルク、比重2.67)、「ミクロマイカMK−100」(コープケミカル社製、マイカ粉、比重2.7)、「ユニビーズUB−03L」、「同UB−23L」、「同UB−34L」(以上いずれも、株式会社ユニオン社製、ガラスビーズ、比重2.5)、「MB−20」(東芝バロティーニ社製、ガラスビーズ、比重2.5)などを使用することができる。
【0032】
一方、担体(B)の比重調整用に使用される比重調整剤は、通常、担体(B)の比重を小さくして担体の沈降速度を小さくするものが好ましく、比重0.2〜0.8、好ましくは0.3〜0.6の完全閉鎖型無機質系微小中空ビーズ(e)が適している。上記担体(B)用の比重調整剤の比重が0.2未満のものは担体に添加する際に分離しやすくなるなどの製造上の問題が発生し易くなり、一方、比重が0.9を越えると担体の比重を小さくする効果が小さくなってしまう。上記担体(B)用の比重調整剤としては、例えば、中空ガラスビーズや中空セライトが挙げられ、具体的には、「Filite200/7」、「同300/7」(以上、いずれも日本フェライト社製、中空ガラスビーズ、比重0.7)、「サンチュライトY02」、「同Y04」、「同Y0C」(以上、いずれも三機工業社製、中空セライト)、「フジバルーンS−35」、「同S−40」、「同S−45」、「同H−30」、「同H−35」、「同H−40X」(以上、いずれも富士シリシア化学社製、中空ガラスビーズ)、「Q−Ce1570」(東芝バロティーニ社製、中空ガラスビーズ、比重0.34)などを使用することができる。
【0033】
担体の沈降速度制御のための担体粒径の調整は、例えば、光硬化ゲル▲2▼の製造など、液状組成物を滴下して液中でゲル化させてゲル化粒子を形成する場合には、液状組成物を滴下する際に用いるノズルの内径を調節することにより、通常、2.5mm〜5.4mmの範囲内で容易に調整することができる。沈降速度を大きくするには、粒径を大きくし、沈降速度を小さくするには、粒径を小さくすればよい。
【0034】
担体の沈降速度を制御するためには、担体の比重調整、担体粒径の調整のそれぞれ単独の方法を用いることができるが、これらの方法を組合せて行うことも可能であり、他の方法を用いてもよい。
【0035】
前記担体(A)、(B)の各酵素又は微生物固定化担体には、酵素又は微生物が付着又は包括される。付着又は包括させうる酵素又は微生物は、特に限定されるものではなく、目的に応じて使用することができる。上記酵素としては、代表例として、ラクテートヒドロゲナーゼ(1・1・2・3)、リパーゼ(3・1.1.3)、コレステロールエステラーゼ(3・1・1・13)、β−ガラクトシダーゼ(3・2・1・23)、A.T.P.アーゼ(3・6・1・3)などを挙げることができる。また、上記微生物としては、嫌気性微生物、好気性微生物のどちらでも用いることができ、微生物の種類としては、例えば、アスパルギルス属、ペニシリウム属、フザリウム属などのカビ類、サッカロミセス属、ファフィア属、カンジダ属などの酵母類;ザイモモナス属、ニトロソモナス属、ニトロバクター属、パラコッカス属、ビブリオ属、メタノサルシナ属、バチルス属などの細菌類等を挙げることができる。
【0036】
これらの酵素又は微生物を担体に付着させるには、担体と酵素又は微生物とを、例えば、水などの液中で接触させることによって担体表面に酵素又は微生物に付着させることができる。また、酵素又は微生物を担体中に予め包括固定化する場合には、例えば、担体が、光硬化ゲル▲2▼又は光硬化ゲル▲2▼中に比重調整剤を含有させてなるものである場合には、前記(a)、(b)、(c)成分及び必要に応じて比重調整剤を含有する水性液状物に酵素又は微生物を混合しておいて包括固定化することができる。
【0037】
本発明の担体混合物を用いる水処理は、例えば、容器又は槽中にて、排水などの処理すべき水中に酵素又は微生物固定化担体混合物を加え、空気を吹き込んで水中の酸素濃度を上げ、攪拌、曝気して排水中の有機物などを担体上の酵素又は微生物と接触させることによって分解するなどの方法により行うことができる。
【0038】
本発明の酵素又は微生物固定化担体混合物における上記担体(A)と担体(B)との混合割合は、担体(A)/担体(B)の体積比で20/80〜90/10、好ましくは35/65〜80/20の範囲内となるようにすることができる。これによって、担体の浮上・流出を防止することができ、かつ十分な担体流動性を確保することができる。担体(A)の体積比が上記比率より低くなると担体の浮上・流出が起こりやすくなり、一方、担体(A)の体積比が上記比率より高くなると水中での担体の十分な流動性が得られなくなる傾向がある。上記担体(A)1種であってもよいし2種以上を組合せたものであってもよい。また、上記担体(B)もまた1種であってもよいし2種以上を組合せたものであってもよい。
【0039】
本発明の担体混合物は、水中における酵素又は微生物固定化担体の浮上、流出を防止することができ、かつ水中での担体の流動性を確保できるので、流動床型バイオリアクタ、または撹拌型の発酵槽等において、例えば水処理のために好適に適用することができる。
【0040】
本発明の水処理方法は、酵素又は微生物固定化担体を用いる水処理システムであれば、特にその処理の内容、規模に制限なく適用が可能であるが、特に曝気によって担体の浮上や流出が起こりやすい硝化槽において特にその効果が大きい。また、水処理システムの規模は特に制限されるものではないが、なかでも50人以下の人数における屎尿および/又は生活雑廃水を処理の対象とした比較的小規模な処理システムにおいては浮上・流出の問題は技術的・コスト的に解決が難しいため、本発明の水処理方法を適用する利点が大きい。
【0041】
【実施例】
実施例により本発明をさらに具体的に説明する。
【0042】
微生物固定化担体の製造
製造例1
分子量約4,000のポリエチレングリコール2,000gとイソホロンジイソシアネート222g(1モル)及びメタクリル酸2−ヒドロキシエチル130g(1モル)を反応させてなる光硬化性樹脂プレポリマー100重量部と、ベンゾインイソブチルエーテル2重量部、2%アルギン酸ナトリウム水溶液100重量部、「MB−20」(商品名、東芝バロティーニ社製、比重2.5、平均粒径10〜12μmのガラスビーズ)45重量部、および蒸留水100重量部をよく混合して得られる水性液状組成物を、1モル濃度の塩化カルシウム水溶液中に、注射器の先端から液面高さ10cmより滴下したところ、粒状物が得られた。
【0043】
この粒状物を平らな底面を有するペトリ皿に取り、ペトリ皿の上面および下面から波長300〜400nmの活性光線を3分間照射したところ比重1.06、粒径4.5mm、水中における沈降速度6.7cm/秒の微生物固定化担体(A−1)が得られた。
【0044】
製造例2
製造例1において、「MB−20」45重量部のかわりに「Q−Ce1570」(商品名、東芝バロティーニ社製、比重0.34、粒径1〜50μmの微小中空ガラスビーズ)7重量部を配合する以外は製造例1と同様の操作を行い、比重1.01、粒径4.5mm、水中における沈降速度3.0cm/秒の微生物固定化担体(B−1)を得た。
【0045】
製造例3
製造例1において、水性組成物として、重合度が500のポリビニルアルコール500gにN−メチロールアクリルアミド101.1g(1モル)を付加して得た光硬化性樹脂の25%水溶液100重量部に、ベンゾインイソブチルエーテル0.5重量部を均一に混合し、濃度3%のκ−カラギーナン水溶液100重量部および「MB−20」65重量部を均一に混合分散して得られる水性液状組成物を用いる以外は製造例1と同様の操作を行い、比重1.08、粒径3.6mm、水中における沈降速度5.6cm/秒の微生物固定化担体(A−2)を得た。
【0046】
製造例4
製造例3において、「MB−20」65重量部のかわりに、「Filite300/7」(商品名、日本フェライト社製、比重0.7、平均粒径75μmの中空アルミナシリカ)2.5重量部を配合する以外は製造例3と同様の操作を行い、比重1.005、粒径3.6mm、水中における沈降速度1.7cm/秒の微生物固定化担体(B−2)を得た。
【0047】
製造例5
製造例1において、「MB−20」を配合しない以外は製造例1と同様の操作を行い、比重1.02、粒径4.4mm、水中における沈降速度4.4cm/秒の微生物固定化担体(A−3)を得た。
【0048】
実施例1
製造例1で得た微生物固定化担体(A−1)40L(リットル、以下同様)と製造例2で得た微生物固定化担体(B−1)10Lを混合したものを担体として用いて担体流動試験に供した。
【0049】
実施例2
製造例3で得た微生物固定化担体(A−2)25Lと製造例4で得た微生物固定化担体(B−2)25Lを混合したものを担体として用いて担体流動試験に供した。
【0050】
実施例3
製造例3で得た微生物固定化担体(A−2)15Lと製造例2で得た微生物固定化担体(B−1)35Lを混合したものを担体として用いて担体流動試験に供した。
【0051】
実施例4
製造例5で得た微生物固定化担体(A−3)35Lと製造例4で得た微生物固定化担体(B−2)15Lを混合したものを担体として用いて担体流動試験に供した。
【0052】
比較例1
製造例1で得た微生物固定化担体(A−1)50Lを担体として用いて担体流動試験に供した。
【0053】
比較例2
製造例2で得た微生物固定化担体(B−1)50Lを担体として用いて担体流動試験に供した。
【0054】
担体流動試験
(1)担体流出防止性の評価
担体流動槽(容量300L)および担体分離槽(容量100L)が隣接し、仕切り板により底部から10cmの高さまで仕切られて設置されており、両槽が底部において通水できるように接続された構造を有し、かつ底部から約20cmの位置及び底部に散気管が設置された試験装置(図面参照)を用いた。ここで担体流動槽および担体分離槽の容量は、仕切り板を底部まで垂直に延長したときに隔離される各槽の容量とした。
【0055】
槽内を水道水および上記各実施例又は各比較例の担体50Lで満たし、担体流動槽側から担体分離槽側へ常に一定の流速(約10L/分)で水道水を流しながら、底部から約20cmの位置に設置された散気管からエア通気(約80L/分)を行い、24時間後に担体流動槽内の上部の液を採取し、採取液中における担体の見掛容積率を測定して、その値から担体の分離槽側への流出防止性を評価した。本試験において、担体の見掛容積率が5%以上の場合を良好(○)とした。
【0056】
(2)担体流動性の評価
担体流出防止性の評価に用いた試験装置を用い、槽内を水道水および上記各実施例又は各比較例の担体50Lで満たし、担体流動槽側から担体分離槽側への通水は行わず、底部に設置された散気管からエア通気(約80L/分)を行い、エア通気開始から30分間以内に堆積していた担体が十分にほぐれたと目視観察できるものを流動性良好(○)とした。
【0057】
以下に担体流動試験における評価結果を示す。
【0058】
【表1】

Figure 0004346206
【0059】
【発明の効果】
本発明の固定化担体混合物により、流動床型バイオリアクタなどの水中における微生物固定化担体の浮上、流出を防止することができるとともに、水中における微生物固定化担体の流動性を確保することができる。
【0060】
また、本発明の微生物固定化担体混合物を用いた水処理システムにより、担体の浮上・流出防止と十分な流動性の確保の両立が可能であり、本発明の水処理システムは、特に曝気によって担体の浮上や流出が起こりやすい硝化槽においてその効果を大きく発揮させることができる。なかでも50人以下の人数における屎尿および/又は生活雑廃水を処理の対象とした比較的小規模な処理システムにおいては浮上・流出の問題は技術的・コスト的に解決が難しいため、本発明の水処理システムを適用する利点が大きい。
【図面の簡単な説明】
【図1】担体流動試験装置の概要を示す概要図(側面断面図、上面からの概要図)である。
【図2】担体流出防止性評価時における担体流動試験装置の概要図である。
【図3】担体流動性評価時における担体流動試験装置の概要図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an enzyme or microorganism-immobilized carrier mixture that is prevented from floating and flowing out in water, such as a fluidized bed bioreactor, and a water treatment system using the immobilized carrier mixture.
[0002]
[Prior art and problems]
It has been well known that water treatment methods such as waste water can save space, improve processing capacity, and improve processing stability in a low temperature period by using a microorganism-immobilized carrier. However, particularly in a small water treatment facility, there is a problem that the carrier is likely to float and flow out when separating the treated water and the microorganism-immobilized carrier. As one of the solutions, for example, it is conceivable to suppress the floating / outflow of the carrier by increasing the sedimentation rate of the microorganism-immobilized carrier, but this method reduces the fluidity of the carrier in water. The problem arises.
[0003]
In water treatment using a microorganism-immobilized carrier, as a technique for preventing the microorganism-immobilized carrier from flowing out, there is a method using a net or a wedge wire screen, but sludge and contaminants are clogged with a method using a net. There is a problem, and the method using the wedge wire screen has a drawback that the total cost of the system is increased because the wedge wire screen is expensive.
[0004]
The main object of the present invention is to prevent floating or outflow of an enzyme or a microorganism-immobilized support in water such as a fluidized bed bioreactor, and to ensure fluidity of the enzyme or microorganism-immobilized support in water. Another object is to provide a water treatment method that can prevent immobilization and outflow of an enzyme or a microorganism-immobilized carrier, and can ensure fluidity in water of the microorganism-immobilized carrier.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have used a mixture of two or more specific enzymes or microorganism-immobilized carriers that have different sedimentation rates of 0.4 cm / second or more. It has been found that by providing a gradient in the distribution in the fluid tank, sufficient fluidity can be ensured while preventing the carrier of the oxidizing carrier from floating and flowing out, and the present invention has been completed.
[0006]
  Thus, according to the present invention, (A) the sedimentation rate in water is4.2-10cm /Second enzyme immobilization carrier orThe microorganism-immobilized carrier and (B) the sedimentation rate in water0.8-3.0cm /In secondsYes, and theEnzyme immobilization carrier or0.4 cm / sec or less smaller than the sedimentation rate of the microorganism-immobilized carrier (A)Enzyme immobilization carrier orConsisting of a mixture of microbial immobilization carriers,The solidWith the support (A)The solidEnzyme in which floating and outflow in water are prevented, characterized in that the volume ratio of the carrier to the regularizing carrier (B) is in the range of 20/80 to 90/10 as (A) / (B)Immobilization carrierAlternatively, a microbial immobilization carrier mixture is provided.
[0007]
  Further, according to the present invention, (A) the sedimentation rate in water is4.2-10cm /Second enzyme immobilization carrier orThe microorganism-immobilized carrier and (B) the sedimentation rate in water0.8-3.0cm /In secondsYes, and theEnzyme immobilization carrier or0.4 cm / sec or less smaller than the sedimentation rate of the microorganism-immobilized carrier (A)Enzyme immobilization carrier orConsisting of a mixture of microbial immobilization carriers,The solidWith the support (A)The solidAn enzyme characterized in that a carrier mixture having a carrier volume ratio with the regularizing carrier (B) in the range of 20/80 to 90/10 in terms of (A) / (B) is used as a carrier for water treatment.Immobilization carrierAlternatively, a water treatment method using a microorganism-immobilized carrier is provided.
[0008]
Hereinafter, the immobilized carrier mixture and the water treatment method of the present invention will be described in more detail.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The enzyme or microorganism-immobilized carrier used in the method of the present invention (hereinafter sometimes abbreviated as “carrier”) is not particularly limited in its material, shape and the like as long as the sedimentation rate can be controlled. For example, (1) hydrophilic polymer gel such as ethylene glycol gel or polyvinyl alcohol gel; (2) (a) hydrophilic photocurable resin having at least two ethylenically unsaturated bonds in one molecule; An aqueous liquid composition comprising (b) a photopolymerization initiator and (c) a water-soluble polymeric polysaccharide capable of gelation by contact with an alkali metal ion or a polyvalent metal ion, The composition is dropped into an aqueous medium containing a valent metal ion to gel the composition, and then the resulting granular gel is irradiated with actinic rays to cure the photocurable resin in the granular gel. Photocuring gel that; ▲ 3 ▼ (d) inorganic powder or granular material in these gels, can include those formed by incorporating a specific gravity adjusting agent such as (e) inorganic-based micro hollow beads.
[0010]
Among these, the photocuring gel (2) and the photocuring gel (2) containing a specific gravity adjusting agent can be preferably used.
[0011]
Hereinafter, the photocurable gel {circle around (2)} that can be preferably used and the carrier containing a specific gravity adjusting agent in the photocured gel {circle around (2)} will be described.
[0012]
Hydrophilic photocurable resin (a):
The hydrophilic photocurable resin which is the component (a) for producing the photocurable gel (2) is a hydrophilic photocurable resin having at least two ethylenically unsaturated bonds in one molecule. An ionic or nonionic hydrophilic group having an average molecular weight of 300 to 30,000, preferably 500 to 20,000, sufficient to disperse in water, such as a hydroxyl group, a carboxyl group, a phosphate group, or a sulfonic acid Preferred are those having a group, an amino group, an ether bond, etc. in the molecule and cured to a substantially water-insoluble resin when irradiated with an actinic ray having a wavelength of about 200 to 600 nm. used.
[0013]
As such a photo-curing resin, those known for immobilization carriers of enzymes or microbial cells can be used (for example, Japanese Patent Publication No. 55-40, Japanese Patent Publication No. 55-20676, Japanese Patent Publication No. 55-20676). As representative examples thereof, high acid value unsaturated polyesters, high acid value unsaturated epoxides, anionic unsaturated acrylic resins, cationic unsaturated acrylic resins, Polyesters of polyethylene glycol and / or polypropylene glycol and (meth) acrylic acid, polyethylene glycol and / or polypropylene glycol and 2-hydroxyethyl (meth) acrylate are diisocyanates such as tolylene diisocyanate, xylylene diisocyanate and isophorone diisocyanate. Bonded through compounds Urethanization adducts, unsaturated celluloses, unsaturated polyamides, and the like. The photocurable resins as exemplified above can be used alone or in combination of two or more. Among these photocurable resins, those that can be particularly preferably used in the present invention include urethanated adducts of polyethylene glycol and / or polypropylene glycol and 2-hydroxyethyl (meth) acrylate.
[0014]
Photopolymerization initiator (b):
A photoinitiator (b) is mix | blended in order to accelerate | stimulate the photopolymerization reaction of the said hydrophilic photocurable resin (a). Photopolymerization initiators that can be used are those that decompose upon light irradiation to generate radicals, which become polymerization initiation species and cause a crosslinking reaction between the photocurable resins. For example, benzoin, acetoin Α-carbonyl alcohols such as; benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, anisoin ethyl ether, and acyloin ethers such as pivaloin ethyl ether; polycyclic aromatic compounds such as naphthol and hydroxyanthracene; Α-substituted acyloins such as methylbenzoin and α-methoxybenzoin; azoamide compounds such as 2-cyano-2-butylazoformamide; metal salts such as ferric chloride; mercaptans, disulfides, halogen compounds, dyes And the like.
[0015]
Water-soluble polymer polysaccharide (c):
The water-soluble polymer polysaccharide (c) is a water-soluble polymer capable of changing to a water-insoluble or sparingly soluble gel when contacted with an alkali metal ion or a polyvalent metal ion in an aqueous medium. A polysaccharide having a number average molecular weight generally in the range of about 3,000 to 2,000,000, in particular 5,000 to 1,000,000, and an alkali metal ion or polyvalent metal ion; Those having a solubility of usually at least about 10 g / l (25 ° C.) in a water-soluble state before contact are preferably used.
[0016]
Specific examples of the water-soluble polymeric polysaccharide having such properties include alkali metal salts of alginic acid, carrageenan and the like.
[0017]
These water-soluble polymeric polysaccharides are dissolved in an aqueous medium, in the case of carrageenan, by contacting with an alkali metal ion such as potassium ion or sodium ion, and in the case of an alkali metal salt of alginic acid, Contact with at least one polyvalent metal ion of alkaline earth metal ions such as magnesium ion, calcium ion, strontium ion and barium ion; or other polyvalent metal ions such as aluminum ion, cerium ion and nickel ion Can be gelled.
[0018]
Preparation of photocured gel (2):
The photocuring gel (2) is prepared, for example, by mixing an aqueous liquid composition containing the components (a), (b) and (c) in an aqueous medium containing alkali metal ions or polyvalent metal ions. It can be done by dripping and granulating and curing it.
[0019]
The mutual use ratios of the components (a), (b) and (c) are not strictly limited and can vary widely depending on the type of each component, but in general, (a) It is appropriate to use the components (b) and (c) in the following proportions with respect to 100 parts by weight of the component hydrophilic photocurable resin.
[0020]
Photopolymerization initiator (b): 0.5 to 5 parts by weight, preferably 1 to 3 parts by weight,
Water-soluble polymer polysaccharide (c): 0.5 to 15 parts by weight, preferably 1 to 8 parts by weight.
[0021]
An aqueous liquid composition is prepared by dissolving or dispersing the components (a) to (c) described above in an aqueous medium. The solid content concentration of the liquid composition is generally 5 to 30% by weight, particularly 8 to 25% by weight. When the carrier contains a specific gravity adjusting agent such as (d) inorganic powder and (e) inorganic micro hollow beads in the photocuring gel (2), the above (a) to ( A specific gravity adjuster may be further contained in the aqueous liquid composition containing the component c).
[0022]
The aqueous liquid composition thus prepared is then dripped into an aqueous medium containing the above-mentioned types of alkali metal ions or polyvalent metal ions, thereby causing the liquid composition to form a gel. It is done. The concentration of alkali metal ions or polyvalent metal ions that cause gelation varies depending on the type of water-soluble polymeric polysaccharide, but generally ranges from 0.01 to 5 mol / l, preferably from 0.05 to 3 mol / l. Is within.
[0023]
The dropping of the aqueous liquid composition into the aqueous medium containing the alkali metal ion or the polyvalent metal ion is performed by, for example, a method of dropping the liquid composition from the tip of a syringe or the liquid composition using centrifugal force. It can be carried out by a method such as a method of scattering in a granular form, a method of atomizing the liquid composition from the tip of a spray nozzle and dropping it into a granular form. The size of the droplet to be dropped can be freely changed depending on the particle size desired for the carrier for immobilizing an enzyme or microorganism, but usually the diameter is about 0.1 mm to about 5 mm, preferably about 0. Conveniently, it is dropped as droplets in the range of 5 mm to about 4 mm.
[0024]
The granular gel produced as described above is directly dispersed in an aqueous medium or separated from the aqueous medium, and then irradiated with actinic rays to give a hydrophilic photocurable resin in the granular gel. Allow to cure. As a result, the granular gel is substantially insoluble in water, and a granular molded product for immobilizing an enzyme or microorganism can be obtained.
[0025]
The wavelength of the actinic ray that can be used for the above photocuring varies depending on the type of the photocurable resin contained in the granular gel, but in general, light having a wavelength in the range of about 250 to about 600 nm is used. It is advantageous to use a light source that emits for irradiation. Examples of such a light source include a low-pressure mercury lamp, a high-pressure mercury lamp, a fluorescent lamp, a xenon lamp, a carbon arc lamp, and sunlight. The irradiation time needs to be changed according to the light intensity of the light source, the distance from the light source, etc., but can generally be in the range of about 0.5 to about 10 minutes.
[0026]
The granular gel thus subjected to the irradiation treatment can be washed with water or an aqueous buffer solution and stored as such or lyophilized.
[0027]
  The immobilization carrier mixture that is prevented from floating and flowing out according to the present invention has a sedimentation rate in water of 3.3 cm / second or more, preferably 4.2 to 10 cm / second.Burden ofBody (A) and a sedimentation rate in water of 0.5 cm / sec or more, preferably 0.8 to 3.0 cm /In secondsYes, orBearing0.4 cm / sec or less smaller than the body (A), preferably 0.6 cm / sec or less smallerIIt consists of a body (B).
[0028]
When the sedimentation rate of the carrier (A) is smaller than 3.3 cm / second, it is difficult to suppress the floating and outflow of the carrier when separating the treated water and the microorganism-immobilized carrier. Further, when the difference between the sedimentation rate of the carrier (B) and the sedimentation rate of the carrier (A) is less than 0.4 cm / second, a carrier distribution gradient is not formed in the tank, and sufficient fluidity cannot be secured. Tend.
[0029]
Examples of the method for controlling the sedimentation rate of the carrier (A) and the carrier (B) in water include adjustment of the carrier specific gravity, adjustment of the carrier particle diameter, and control of the carrier shape. Adjustment and adjustment of the carrier particle size can be easily performed.
[0030]
The specific gravity of the carrier can be adjusted by adjusting the solid content concentration of the carrier, but a preferable method in terms of the strength and durability of the carrier is by blending various specific gravity adjusting agents. When a specific gravity adjusting agent is blended, the particle size of the specific gravity adjusting agent is preferably 80 μm or less from the viewpoint of workability during the production of the carrier. The amount of the specific gravity adjusting agent to be added varies depending on the type, but in general, it is preferably 120 parts by weight or less with respect to 100 parts by weight of the total solid content of the carrier from the viewpoint of carrier strength and durability.
[0031]
The specific gravity adjusting agent used for adjusting the specific gravity of the carrier (A) is usually preferably one that increases the specific gravity of the carrier (A) to increase the sedimentation rate of the carrier, and the specific gravity is 1.9 or more, preferably 2 Examples include inorganic powders (d) that are insoluble or sparingly soluble in water in the range of 0.0 to 4.5, such as heavy calcium carbonate, clay, white carbon, talc, barium carbonate, and oxalic acid. Various pigments such as aluminum, alumina, mica powder, silica (silica sand, meteorite powder) powder; colloidal silica, fine glass beads, etc., specifically, “Hi-micron HE-5” (manufactured by Takehara Chemical Industries, Ltd., Talc, specific gravity 2.67), "micro mica MK-100" (manufactured by Co-op Chemical, mica powder, specific gravity 2.7), "unibeads UB-03L", "same UB-23L", "same UB-34L" (More As for the deviation, Glass Co., Ltd. manufactured by Union Co., Ltd., specific gravity 2.5), “MB-20” (manufactured by Toshiba Barotini Co., Ltd., glass beads, specific gravity 2.5) can be used.
[0032]
On the other hand, the specific gravity adjusting agent used for adjusting the specific gravity of the carrier (B) is usually preferably one that reduces the specific gravity of the carrier (B) to reduce the sedimentation rate of the carrier, and has a specific gravity of 0.2 to 0.8. Preferably, a completely closed inorganic micro hollow bead (e) of 0.3 to 0.6 is suitable. When the specific gravity adjusting agent for the carrier (B) has a specific gravity of less than 0.2, production problems such as easy separation will easily occur when added to the carrier, while the specific gravity is 0.9. If it exceeds, the effect of reducing the specific gravity of the carrier will be reduced. Specific examples of the specific gravity adjusting agent for the carrier (B) include hollow glass beads and hollow celite. Specifically, “Filite 200/7”, “300/7” (all of which are Nippon Ferrite Co., Ltd.) Manufactured, hollow glass beads, specific gravity 0.7), “Santurite Y02”, “Same Y04”, “Same Y0C” (all from Sanki Kogyo Co., Ltd., hollow Celite), “Fuji Balloon S-35”, “S-40”, “S-45”, “H-30”, “H-35”, “H-40X” (all of these are hollow glass beads manufactured by Fuji Silysia Chemical Ltd.), “Q-Ce1570” (manufactured by Toshiba Barotini Co., Ltd., hollow glass beads, specific gravity 0.34) can be used.
[0033]
Adjustment of the carrier particle size for controlling the sedimentation rate of the carrier is, for example, in the case of forming gelled particles by dropping the liquid composition and gelling in the liquid, such as in the production of photocured gel (2). By adjusting the inner diameter of the nozzle used when dropping the liquid composition, it can usually be easily adjusted within the range of 2.5 mm to 5.4 mm. In order to increase the sedimentation rate, the particle size is increased. To decrease the sedimentation rate, the particle size may be decreased.
[0034]
In order to control the sedimentation rate of the carrier, individual methods of adjusting the specific gravity of the carrier and adjusting the particle size of the carrier can be used, but these methods can be combined and other methods can be used. It may be used.
[0035]
Enzymes or microorganisms are attached to or included in each enzyme or microorganism-immobilized carrier of the carriers (A) and (B). The enzyme or microorganism that can be attached or entrapped is not particularly limited, and can be used depending on the purpose. Representative examples of the enzymes include lactate hydrogenase (1 · 1 · 2 · 3), lipase (3 · 1.1.3), cholesterol esterase (3 · 1 · 1 · 13), β-galactosidase (3 · 2.1.23), A.I. T.A. P. Examples include ase (3, 6, 1, 3). In addition, as the above-mentioned microorganism, either an anaerobic microorganism or an aerobic microorganism can be used. Examples include yeasts such as Candida; bacteria such as Zymomonas, Nitrosomonas, Nitrobacter, Paracoccus, Vibrio, Methanosarcina, and Bacillus.
[0036]
In order to attach these enzymes or microorganisms to a carrier, the carriers and the enzymes or microorganisms can be attached to the surface of the carrier by bringing them into contact with a liquid such as water. In the case where enzymes or microorganisms are preliminarily immobilized and immobilized in a carrier, for example, the carrier is a photocuring gel (2) or a photocuring gel (2) containing a specific gravity adjusting agent. In addition, an enzyme or a microorganism can be mixed and immobilized in an aqueous liquid containing the components (a), (b), (c) and, if necessary, a specific gravity adjusting agent.
[0037]
In the water treatment using the carrier mixture of the present invention, for example, an enzyme or a microorganism-immobilized carrier mixture is added to water to be treated such as waste water in a container or a tank, and air is blown to increase the oxygen concentration in the water, followed by stirring. It can be carried out by a method such as decomposing by contacting a substrate with an enzyme or a microorganism on the carrier by aeration.
[0038]
The mixing ratio of the carrier (A) and the carrier (B) in the enzyme or microorganism-immobilized carrier mixture of the present invention is 20/80 to 90/10 in volume ratio of carrier (A) / carrier (B), preferably It can be set within the range of 35/65 to 80/20. As a result, the carrier can be prevented from floating and flowing out, and sufficient carrier fluidity can be ensured. When the volume ratio of the carrier (A) is lower than the above ratio, the carrier tends to float and flow out. On the other hand, when the volume ratio of the carrier (A) is higher than the above ratio, sufficient fluidity of the carrier in water is obtained. There is a tendency to disappear. 1 type of said support | carrier (A) may be sufficient, and what combined 2 or more types may be sufficient. Further, the carrier (B) may also be one kind or a combination of two or more kinds.
[0039]
The carrier mixture of the present invention can prevent the floating or outflow of the enzyme or microorganism-immobilized carrier in water, and can secure the fluidity of the carrier in water. Therefore, the fluidized bed bioreactor or the stirring type fermentation is supported. In a tank etc., it can apply suitably for water treatment, for example.
[0040]
The water treatment method of the present invention can be applied to any water treatment system that uses an enzyme or a microorganism-immobilized carrier, with no particular limitation on the content and scale of the treatment. The effect is particularly great in an easy nitrification tank. In addition, the scale of the water treatment system is not particularly limited. In particular, in a relatively small treatment system that treats manure and / or household wastewater of 50 or less people, the surface of the water treatment system will rise and flow out. Since this problem is difficult to solve technically and costly, there is a great advantage in applying the water treatment method of the present invention.
[0041]
【Example】
The present invention will be described more specifically with reference to examples.
[0042]
Production of microorganism-immobilized carrier
Production Example 1
100 parts by weight of a photocurable resin prepolymer obtained by reacting 2,000 g of polyethylene glycol having a molecular weight of about 4,000, 222 g (1 mol) of isophorone diisocyanate and 130 g (1 mol) of 2-hydroxyethyl methacrylate, and benzoin isobutyl ether 2 parts by weight, 100 parts by weight of a 2% aqueous sodium alginate solution, “MB-20” (trade name, manufactured by Toshiba Ballotini, specific gravity 2.5, glass beads having an average particle diameter of 10 to 12 μm), 45 parts by weight, and distilled water 100 When an aqueous liquid composition obtained by thoroughly mixing parts by weight was dropped into a 1 molar calcium chloride aqueous solution from the tip of the syringe at a liquid surface height of 10 cm, a granular material was obtained.
[0043]
This granular material is taken up in a Petri dish having a flat bottom surface, and irradiated with an actinic ray having a wavelength of 300 to 400 nm from the upper and lower surfaces of the Petri dish for 3 minutes. The specific gravity is 1.06, the particle diameter is 4.5 mm, and the sedimentation speed in water is 6. A microorganism-immobilized carrier (A-1) having a thickness of 7 cm / second was obtained.
[0044]
Production Example 2
In Production Example 1, instead of 45 parts by weight of “MB-20”, 7 parts by weight of “Q-Ce1570” (trade name, manufactured by Toshiba Barotini Co., Ltd., specific gravity 0.34, fine hollow glass beads having a particle diameter of 1 to 50 μm) Except for blending, the same operation as in Production Example 1 was performed to obtain a microorganism-immobilized carrier (B-1) having a specific gravity of 1.01, a particle diameter of 4.5 mm, and a sedimentation speed of 3.0 cm / sec in water.
[0045]
Production Example 3
In Production Example 1, as an aqueous composition, 100 parts by weight of a 25% aqueous solution of a photocurable resin obtained by adding 101.1 g (1 mol) of N-methylolacrylamide to 500 g of polyvinyl alcohol having a polymerization degree of 500 was added to benzoin. Except for using an aqueous liquid composition obtained by uniformly mixing 0.5 parts by weight of isobutyl ether and uniformly mixing and dispersing 100 parts by weight of a 3% κ-carrageenan aqueous solution and 65 parts by weight of “MB-20”. The same operation as in Production Example 1 was performed to obtain a microorganism-immobilized carrier (A-2) having a specific gravity of 1.08, a particle size of 3.6 mm, and a sedimentation speed of 5.6 cm / second in water.
[0046]
Production Example 4
In Production Example 3, instead of 65 parts by weight of “MB-20”, 2.5 parts by weight of “Filite300 / 7” (trade name, Nippon Ferrite Co., Ltd., specific gravity 0.7, hollow alumina silica having an average particle size of 75 μm) The same procedure as in Production Example 3 was carried out except that, to obtain a microorganism-immobilized carrier (B-2) having a specific gravity of 1.005, a particle size of 3.6 mm, and a sedimentation speed of 1.7 cm / sec in water.
[0047]
Production Example 5
The same procedure as in Production Example 1 was carried out except that “MB-20” was not blended in Production Example 1, and a microorganism-immobilized carrier having a specific gravity of 1.02, a particle size of 4.4 mm, and a sedimentation speed of 4.4 cm / second in water. (A-3) was obtained.
[0048]
Example 1
Flow of carrier using a mixture of 40 L of microorganism-immobilized carrier (A-1) obtained in Production Example 1 (liter, the same applies hereinafter) and 10 L of microorganism-immobilized carrier (B-1) obtained in Production Example 2 as a carrier. It used for the test.
[0049]
Example 2
A mixture of the microorganism-immobilized carrier (A-2) 25L obtained in Production Example 3 and the microorganism-immobilized carrier (B-2) 25L obtained in Production Example 4 was used as a carrier and subjected to a carrier flow test.
[0050]
Example 3
A mixture of the microorganism-immobilized carrier (A-2) 15L obtained in Production Example 3 and the microorganism-immobilized carrier (B-1) 35L obtained in Production Example 2 was used as a carrier and subjected to a carrier flow test.
[0051]
Example 4
A mixture of 35 L of the microorganism-immobilized carrier (A-3) obtained in Production Example 5 and 15 L of the microorganism-immobilized carrier (B-2) obtained in Production Example 4 was used for the carrier flow test.
[0052]
Comparative Example 1
50 L of the microorganism-immobilized carrier (A-1) obtained in Production Example 1 was used as a carrier and subjected to a carrier flow test.
[0053]
Comparative Example 2
50 L of the microorganism-immobilized carrier (B-1) obtained in Production Example 2 was used as a carrier and subjected to a carrier flow test.
[0054]
Carrier flow test
(1) Evaluation of carrier outflow prevention
A structure in which a carrier fluid tank (capacity 300L) and a carrier separation tank (capacity 100L) are adjacent to each other and are partitioned from the bottom to a height of 10 cm by a partition plate, and both tanks are connected so that water can pass through the bottom. And a test apparatus (see the drawing) in which a diffuser was installed at a position about 20 cm from the bottom and at the bottom. Here, the capacities of the carrier flow tank and the carrier separation tank were the capacities of the respective tanks that were isolated when the partition plate was extended vertically to the bottom.
[0055]
The tank is filled with tap water and the carrier 50L of each of the above examples or comparative examples, and the tap water is always supplied from the carrier flow tank side to the carrier separation tank side at a constant flow rate (about 10 L / min), and from the bottom. Air ventilation (about 80 L / min) was performed from the air diffuser installed at a position of 20 cm, and after 24 hours, the liquid in the upper part of the carrier flow tank was collected, and the apparent volume ratio of the carrier in the collected liquid was measured. From these values, the ability of the carrier to flow out to the separation tank was evaluated. In this test, the case where the apparent volume ratio of the carrier was 5% or more was evaluated as good (◯).
[0056]
(2) Evaluation of carrier fluidity
Using the test apparatus used for evaluating the carrier outflow prevention property, the tank is filled with tap water and the carrier 50L of each of the above examples or comparative examples, and water is not passed from the carrier flow tank side to the carrier separation tank side. Air flow (approximately 80 L / min) from the air diffuser installed at the bottom, and good fluidity (○) that can be visually observed that the carrier deposited within 30 minutes from the start of air aeration is sufficiently loosened did.
[0057]
The evaluation results in the carrier flow test are shown below.
[0058]
[Table 1]
Figure 0004346206
[0059]
【The invention's effect】
The immobilization carrier mixture of the present invention can prevent the microbial immobilization carrier from floating and flowing out in water such as a fluidized bed bioreactor, and can ensure the fluidity of the microbial immobilization carrier in water.
[0060]
In addition, the water treatment system using the microorganism-immobilized carrier mixture of the present invention makes it possible to achieve both the prevention of floating and outflow of the carrier and the securing of sufficient fluidity, and the water treatment system of the present invention particularly supports the carrier by aeration. The effect can be greatly exerted in a nitrification tank where buoyancy and outflow of the slag easily occur. In particular, in a relatively small-scale treatment system for treating manure and / or household wastewater of 50 people or less, the problem of rising and outflow is difficult to solve technically and costly. The advantage of applying a water treatment system is great.
[Brief description of the drawings]
FIG. 1 is a schematic diagram (side sectional view, schematic diagram from the top) showing an outline of a carrier flow test apparatus.
FIG. 2 is a schematic diagram of a carrier flow test apparatus at the time of evaluating the carrier outflow prevention property.
FIG. 3 is a schematic diagram of a carrier flow test apparatus at the time of carrier fluidity evaluation.

Claims (7)

(A)水中における沈降速度が4.2〜10cm/秒の酵素固定化担体又は微生物固定化担体と、(B)水中における沈降速度が0.8〜3.0cm/秒であり、かつ該酵素固定化担体又は微生物固定化担体(A)の沈降速度より0.4cm/秒以上小さい酵素固定化担体又は微生物固定化担体の混合物からなり、該固定化担体(A)と該固定化担体(B)との担体体積比が(A)/(B)で20/80〜90/10の範囲内にあることを特徴とする水中における浮上、流出が防止された酵素固定化担体又は微生物固定化担体混合物。(A) a sedimentation rate in water is 4.2 to 10 cm / sec enzyme immobilization carrier or microorganism immobilization pellets, the sedimentation rate in (B) in water is 0.8 to 3.0 cm / sec, and The enzyme- immobilized carrier or the microorganism-immobilized carrier (A) comprises a mixture of the enzyme- immobilized carrier or the microorganism-immobilized carrier that is 0.4 cm / second or more smaller than the sedimentation rate of the enzyme- immobilized carrier or the microorganism-immobilized carrier (A). (B) and the carrier volume ratio floating in water, characterized in that in (a) / (B) in the range of 20 / 80-90 / 10, outflow enzyme immobilization carrier or microorganism fixed is prevented Carrier mixture. 酵素固定化担体又は微生物固定化担体(A)が2.0〜4.5の比重を有し且つ水に不溶ないし難溶性の無機質粉粒体を含有するものであることを特徴とする請求項1記載の混合物。The enzyme- immobilized carrier or microorganism-immobilized carrier (A) has a specific gravity of 2.0 to 4.5 and contains inorganic particles that are insoluble or hardly soluble in water. The mixture according to 1. 酵素固定化担体又は微生物固定化担体(B)が0.2〜0.8の範囲内の比重を有する無機質微小中空ビーズを含有するものであることを特徴とする請求項1又は2記載の混合物。Claim 1 or 2, wherein the enzyme-immobilized carrier or microorganism-immobilized carrier (B) is one which contains an inorganic substance infinitesimal hollow beads having a specific gravity within the range of 0.2 to 0.8 Mixture of. 酵素固定化担体又は微生物固定化担体(A)が、(a)一分子中に少なくとも2個のエチレン性不飽和結合を有する親水性光硬化性樹脂、(b)光重合開始剤、(c)アルカリ金属イオン又は多価金属イオンとの接触によりゲル化する能力のある水溶性高分子多糖類、及び(d)2.0〜4.5の比重を有し且つ水に不溶ないし難溶性の無機質粉粒体を含んでなる水性液状組成物を、アルカリ金属イオン又は多価金属イオンを含有する水性媒体中に滴下して該組成物を粒状にゲル化させ、次いで得られる粒状ゲルに活性光線を照射して該粒状ゲル中の光硬化性樹脂を硬化させることによって得られる酵素固定化担体又は微生物固定化担体であることを特徴とする請求項1〜3のいずれか一項に記載の混合物。The enzyme- immobilized carrier or the microorganism-immobilized carrier (A) is (a) a hydrophilic photocurable resin having at least two ethylenically unsaturated bonds in one molecule, (b) a photopolymerization initiator, (c) water-soluble polymeric polysaccharide capable of gelation upon contact with an alkali metal ion or polyvalent metal ion,及beauty (d) to and water has a specific gravity of 2.0 to 4.5 of the insoluble or sparingly soluble An aqueous liquid composition comprising an inorganic powder granule is dropped into an aqueous medium containing alkali metal ions or polyvalent metal ions to gel the composition into granules, and then the resulting granular gel is treated with actinic rays. The mixture according to any one of claims 1 to 3, wherein the mixture is an enzyme-immobilized carrier or a microorganism-immobilized carrier obtained by irradiating a photocurable resin in the granular gel by irradiation. . 酵素固定化担体又は微生物固定化担体(B)が、(a)一分子中に少なくとも2個のエチレン性不飽和結合を有する親水性光硬化性樹脂、(b)光重合開始剤、(c)アルカリ金属イオン又は多価金属イオンとの接触によりゲル化する能力のある水溶性高分子多糖類、及び(e)0.2〜0.8の範囲内の比重を有する無機質微小中空ビーズを含んでなる水性液状組成物を、アルカリ金属イオン又は多価金属イオンを含有する水性媒体中に滴下して該組成物を粒状にゲル化させ、次いで得られる粒状ゲルに活性光線を照射して該粒状ゲル中の光硬化性樹脂を硬化させることによって得られる酵素固定化担体又は微生物固定化担体であることを特徴とする1〜4のいずれか一項に記載の混合物。The enzyme- immobilized carrier or the microorganism-immobilized carrier (B) is (a) a hydrophilic photocurable resin having at least two ethylenically unsaturated bonds in one molecule, (b) a photopolymerization initiator, (c) inorganic matter infinitesimal hollow beads having a specific gravity within the range of alkali metal ions or water-soluble polymeric polysaccharide capable of gelation upon contact with a polyvalent metal ion,及beauty (e) 0.2 to 0.8 An aqueous liquid composition comprising the above is dropped into an aqueous medium containing alkali metal ions or polyvalent metal ions to gel the composition, and then the resulting granular gel is irradiated with actinic rays. The mixture according to any one of 1 to 4, which is an enzyme- immobilized carrier or a microorganism-immobilized carrier obtained by curing the photocurable resin in the granular gel. (A)水中における沈降速度が4.2〜10cm/秒の酵素固定化担体又は微生物固定化担体と、(B)水中における沈降速度が0.8〜3.0cm/秒であり、かつ該酵素固定化担体又は微生物固定化担体(A)の沈降速度より0.4cm/秒以上小さい酵素固定化担体又は微生物固定化担体の混合物からなり、該固定化担体(A)と該固定化担体(B)との担体体積比が(A)/(B)で20/80〜90/10の範囲内にある担体混合物を水処理用担体として使用することを特徴とする酵素固定化担体又は微生物固定化担体を用いた水処理方法。(A) a sedimentation rate in water is 4.2 to 10 cm / sec enzyme immobilization carrier or microorganism immobilization pellets, the sedimentation rate in (B) in water is 0.8 to 3.0 cm / sec, and The enzyme- immobilized carrier or the microorganism-immobilized carrier (A) comprises a mixture of the enzyme- immobilized carrier or the microorganism-immobilized carrier that is 0.4 cm / second or more smaller than the sedimentation rate of the enzyme- immobilized carrier or the microorganism-immobilized carrier (A). An enzyme- immobilized carrier or microorganism characterized in that a carrier mixture having a carrier volume ratio with (B) in the range of 20/80 to 90/10 in (A) / (B) is used as a carrier for water treatment. Water treatment method using immobilized carrier. 担体混合物を、曝気を伴う硝化槽内で用いることを特徴とする請求項6記載の水処理方法。  The water treatment method according to claim 6, wherein the carrier mixture is used in a nitrification tank with aeration.
JP2000112128A 2000-04-13 2000-04-13 Enzyme or microorganism-immobilized carrier mixture and water treatment method using the same Expired - Fee Related JP4346206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000112128A JP4346206B2 (en) 2000-04-13 2000-04-13 Enzyme or microorganism-immobilized carrier mixture and water treatment method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000112128A JP4346206B2 (en) 2000-04-13 2000-04-13 Enzyme or microorganism-immobilized carrier mixture and water treatment method using the same

Publications (2)

Publication Number Publication Date
JP2001292765A JP2001292765A (en) 2001-10-23
JP4346206B2 true JP4346206B2 (en) 2009-10-21

Family

ID=18624348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000112128A Expired - Fee Related JP4346206B2 (en) 2000-04-13 2000-04-13 Enzyme or microorganism-immobilized carrier mixture and water treatment method using the same

Country Status (1)

Country Link
JP (1) JP4346206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4000593B2 (en) * 2002-08-30 2007-10-31 株式会社日立プラントテクノロジー Immobilized microorganism carrier and method for producing the same

Also Published As

Publication number Publication date
JP2001292765A (en) 2001-10-23

Similar Documents

Publication Publication Date Title
US4195129A (en) Method for immobilizing enzymes and microbial cells
JP4358413B2 (en) Microorganism-immobilized carrier mixture and bioreactor using the same
JPS6222857A (en) Production of polymer bonding composition containing filler and obtained composition and its use
JPH0951794A (en) Porous carrier for bioreactor
CN106986442B (en) Method for treating ammonia nitrogen sewage by combining microorganism carrier and fluidized bed
JP2003062594A (en) Method and apparatus for treating organic waste water containing high concentration suspended substance
JP4346206B2 (en) Enzyme or microorganism-immobilized carrier mixture and water treatment method using the same
JPH0244578B2 (en)
JPS637897A (en) Floatable granulated material and its preparation
JP4384338B2 (en) Enzyme or microorganism-immobilized carrier composition
JPH0235997A (en) Treatment of sewage
JP2007007489A (en) Washing method of membrane separation element
JPH09314165A (en) Treatment method for waste water containing organic substance
JP4343562B2 (en) Granular carrier for enzyme or microbial cell immobilization
JP2007283233A (en) Organism deodorization method and device
JPH10152511A (en) Regulation of specific gravity of granular molding product for immobilizing enzyme or microbial cell
JP3775706B2 (en) Method for producing granular molded product for enzyme or microbial cell immobilization
JPH078989A (en) Method and apparatus for decolorizing of colored waste water
JPH10168105A (en) Method for adjusting specific gravity of granular article for immobilizing enzyme or microorganismic cell
JPS60234582A (en) Immobilization of biological material
JP5400010B2 (en) Enzyme or microorganism immobilization carrier
JPH10139803A (en) Adjustment of specific gravity of granular molded material for immobilizing enzyme or microorganism cell
JPH10191973A (en) Production of carrier with large granular size for immobilization of enzyme microbial fungus
JPS5917988A (en) Preparation of granular immobilized molded material of yeast having fermenting ability of alcohol
JPS583674B2 (en) Enzyme or microbial cell immobilization method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees