JP3775706B2 - Method for producing granular molded product for enzyme or microbial cell immobilization - Google Patents

Method for producing granular molded product for enzyme or microbial cell immobilization Download PDF

Info

Publication number
JP3775706B2
JP3775706B2 JP03148397A JP3148397A JP3775706B2 JP 3775706 B2 JP3775706 B2 JP 3775706B2 JP 03148397 A JP03148397 A JP 03148397A JP 3148397 A JP3148397 A JP 3148397A JP 3775706 B2 JP3775706 B2 JP 3775706B2
Authority
JP
Japan
Prior art keywords
granular
weight
molded product
gel
thermal polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03148397A
Other languages
Japanese (ja)
Other versions
JPH10210969A (en
Inventor
宏志 三嶽
健治 瀬古
仁 泉田
靖 名西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP03148397A priority Critical patent/JP3775706B2/en
Publication of JPH10210969A publication Critical patent/JPH10210969A/en
Application granted granted Critical
Publication of JP3775706B2 publication Critical patent/JP3775706B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は酵素又は微生物菌体固定化用粒状成形物の製造方法に関する。
【0002】
【従来の技術】
酵素又は微生物の固定化法としては、従来から、包括法、物理的吸着法、共有結合法等多くの方法が知られている。これらの方法によって得られる塊状又はシート状の固定化物は、微生物反応や酵素反応に使用する場合には、細かく切断したり磨砕したりした後カラムに充填するのが普通である。しかしその場合、固定化物は面同志で密着することが多く、微生物反応や酵素反応の効率が悪くなり、また、屡々チャネリング現象を起こしてカラムを閉塞する等の欠点がある。
【0003】
このため、最近では、酵素又は微生物菌体を粒状成形物として固定化することによって、流動しやすく、カラムへの充填作業が容易で、粒子同志の接触面積も少なく、微生物反応や酵素反応の効率をアップさせることが提案されている(例えば、特公昭62−19837号公報参照)。しかしながら、酵素又は微生物菌体を固定化する従来の光硬化性樹脂を主成分とする粒状成形物は、硬化時に光を粒状成形物の内部まで均一に照射させる必要があるため、高価な光照射装置を必要とし、また、1台の照射装置で処理できる粒状物の量に限度があることから生産性が低下する等の問題がある。
【0004】
さらに、平均粒径が5mm以上の大粒径の粒状成形物を製造しようとする場合には、粒状物の中心部が未硬化の液状状態で存在するという問題もある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、酵素又は微生物菌体を固定化する粒状成形物の生産性を向上させることができ且つ大粒径の粒状成形物であっても全体が完全に硬化した粒状成形物を製造することができる方法を提供することである。
【0006】
【発明が解決する手段】
本発明者らは、上記した目的を達成するために鋭意検討を重ねた結果、水溶性高分子多糖類を用いた酵素又は微生物菌体固定化用粒状担体の構成材料として親水性熱硬化性樹脂を併用し、これにレドックス系熱重合開始剤を添加して加熱硬化させることにより、光硬化性樹脂を用いる場合に生ずる前記の如き問題が一挙に解決できることを見い出し、本発明を完成するに至った。
【0007】
かくして、本発明に従えば、
(a) 1分子中に少なくとも2個のエチレン性不飽和結合を有する親水性熱硬化性樹脂、
(b) 酸化剤と還元剤からなるレドックス系熱重合開始剤又はその一部、及び
(c) アルカリ金属イオン又は多価金属イオンとの接触によりゲル化する能力のある水溶性高分子多糖類
を含んでなる水性液状組成物を、アルカリ金属イオン又は多価金属イオンを含有する水性媒体中に滴下して該組成物を粒状にゲル化させるか又は該水性媒体の表面上に所定の時間、連続的に注加して液滴を所望の粒径になるまで生長させた後、その液滴を沈降させてゲル化させ、次いで得られる粒状ゲルを熱重合して該粒状ゲル中の熱硬化性樹脂を硬化させることを特徴とする酵素又は微生物菌体固定化用粒状成形物の製造方法が提供される。
【0008】
以下、本発明についてさらに詳しく説明する。
【0009】
(a) 熱硬化性樹脂
本発明において、酵素又は微生物菌体固定化用粒状担体の製造に用いられる1分子中に少なくても2個のエチレン性不飽和結合を有する熱硬化性樹脂としては、一般に、300〜30000、好ましくは500〜20000の範囲内の数平均分子量を有し、水性媒体中に均一に分散するに充分なイオン性又は非イオン性の親水性基、例えば水酸基、アミノ基、カルボキシル基、リン酸基、スルホン酸基、エーテル結合等を含むものが好適に使用される。そのような熱硬化性樹脂としては、包括固定化用の光硬化性樹脂として既に知られているものを同様に用いることができる(例えば、特公昭55−40号公報、特公昭55−20676号公報、特公昭62−19837号公報等参照)。代表的なものとしては以下に記載するものを挙げることができる。
【0010】
(i) ポリアルキレングリコールの両末端に熱重合可能なエチレン性不飽和基を有する化合物:例えば、
▲1▼ 分子量400〜6000のポリエチレングリコール1モルの両末端水酸基を(メタ)アクリル酸2モルでエステル化したポリエチレングリコールジ(メタ)アクリレート類。
【0011】
▲2▼ 分子量200〜4000のポリプロピレングリコール1モルの両末端水酸基を(メタ)アクリル酸2モルでエステル化したポリプロピレングリコールジ(メタ)アクリレート類。
【0012】
▲3▼ 分子量400〜6000のポリエチレングリコール1モルの両末端水酸基をトリレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート等のジイソシアネート化合物2モルでウレタン化し、次いで(メタ)アクリル酸2−ヒドロキシエチル等の不飽和モノヒドロキシエチル化合物2モルを付加した不飽和ポリエチレングリコールウレタン化物。
【0013】
▲4▼ 分子量200〜4000のポリプロピレングリコール1モルの両末端水酸基をトリレンジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート等のジイソシアネート化合物2モルでウレタン化し、次いで(メタ)アクリル酸2−ヒドロキシエチル等の不飽和モノヒドロキシ化合物2モルを付加した不飽和ポリプロピレングリコールウレタン化物、など。
【0014】
(ii) 高酸価不飽和ポリエステル樹脂:
不飽和多価カルボン酸を含む多価カルボン酸成分と多価アルコールとのエステル化により得られる酸価が40〜200の不飽和ポリエステルの塩類など。
【0015】
(iii) 高酸価不飽和エポキシ樹脂:
エポキシ樹脂と(メタ)アクリル酸などの不飽和カルボキシル化合物との付加反応物に残存するヒドロキシル基に酸無水物を付加して得られる酸価40〜200の不飽和エポキシ樹脂など。
【0016】
(iv) アニオン性不飽和アクリル樹脂:
(メタ)アクリル酸及び(メタ)アクリル酸エステルから選ばれる少なくとも2種の(メタ)アクリル系モノマーを共重合させて得られるカルボキシル基、リン酸基及び/又はスルホン酸基を含有する共重合体に熱重合可能なエチレン性不飽和基を導入した樹脂など。
【0017】
(v) 不飽和ポリアミド:
トリレンジイソシアネート、キシリレンジイソシアネートなどのジイソシアネートとアクリル酸2−ヒドロキシエチルなどのエチレン性不飽和ヒドロキシ化合物との付加物をゼラチンなどの水溶性ポリアミドに付加反応させた不飽和ポリアミドなど。
【0018】
以上に例示した如き熱硬化性樹脂はそれぞれ単独で使用することができ、或いは2種もしくはそれ以上組み合わせて使用してもよい。
【0019】
これらの熱硬化性樹脂のうち、本発明において特に有利に使用しうるものは、前記(i)のポリアルキレングリコールの両末端に熱重合可能なエチレン性不飽和基を有する化合物であり、代表的なものとしては、関西ペイント株式会社からENT−1000、ENT−2000、ENT−4000、ENTG−2000、ENTG−3800等の商品名で販売されているものを挙げることができる。
(b) レドックス系熱重合開始剤
上記(a)に述べた熱硬化性樹脂の熱重合反応を促進する目的で、本発明に従う液状組成物にはレドックス系熱重合開始剤を含ませる。レドックス系熱重合開始剤としては、従来から公知のものを使用することができ、例えば、−10℃〜50℃程度の比較的低温でラジカル重合を行ない得る、酸化剤と還元剤の組み合わせからなる重合開始剤が好適に使用される。
【0020】
酸化剤としては、例えば、過酸化ベンゾイル、メチルエチルケトンペルオキシド、ジクミルペルオキシド、t−ブチルパーベンゾエート、クメンヒドロペルオキシドなどの有機過酸化物類;ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウムなどのペルオキソ二硫酸塩類;過酸化水素等が挙げられる。また、還元剤としては、例えば、亜硫酸水素ナトリウムなどの亜硫酸水素塩類;硫酸第一鉄、塩化第一鉄などの二価の鉄塩類;N,N−ジメチルアニリン、フエニルモルホリンなどのアミン類;ナフテン酸コバルト、ナフテン酸マンガン、ナフテン酸銅などのナフテン酸金属塩類;等を挙げることができる。
【0021】
これらのレドックス系熱重合開始剤のうち、本発明において特に有利に使用しうるものは、酸化剤がペルオキソ二硫酸塩類又は過酸化水素からなり、還元剤が亜硫酸水素塩類又は二価の鉄塩からなる組み合わせのものである。
【0022】
(c) 水溶性高分子多糖類
本発明において使用する水溶性高分子多糖類は、水溶性であり、かつ水性媒体中でアルカリ金属イオン又は多価金属イオンと接触したときに水に不溶性又は難溶性のゲルに変化する能力のある高分子多糖類であって、一般に約3000〜約2000000の範囲内の数平均分子量を有し、また、アルカリ金属イオン又は多価金属イオンと接触させる前の水溶性の状態で、通常少なくとも約10g/l(25℃)の溶解度を示すものが好適に使用される。
【0023】
かかる特性をもつ水溶性高分子多糖類の具体例には、アルギン酸のアルカリ金属塩、カラギーナン等が包含される。
【0024】
これら水溶性高分子多糖類は、水性媒体中に溶解した状態で、カラギーナンの場合は、カリウムイオン、ナトリウムイオン等のアルカリ金属イオンと接触することによって、また、アルギン酸のアルカリ金属塩の場合は、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等のアルカリ土類金属イオン;或いはアルミニウムイオン、セリウムイオン、ニッケルイオン等の他の多価金属イオン;のうちの少なくとも1種の多価金属イオンと接触することによってゲル化しうるものである。ゲル化が起るアルカリ金属イオン又は多価金属イオンの濃度は水溶性高分子多糖類の種類等により異なるが、一般には0.01〜5mol/lの範囲内である。
【0025】
上記(a)、(b)及び(c)の各成分の相互の使用割合は厳密に制限されるものではなく、各成分の種類等に応じて広範にわたって変えることができるが、一般には、(a)成分の親水性熱硬化性樹脂100重量部に対し、(b)及び(c)成分はそれぞれ下記の割合で使用するのが適当である(カッコ内は好適範囲である)。
【0026】
(b) レドックス系熱重合開始剤:0.1〜5重量部(0.3〜3重量部)
(c) 水溶性高分子多糖類:0.5〜15重量部(1〜8重量部)
また、上記(b)のレドックス熱重合開始剤は酸化剤と還元剤とを組み合わせて使用されるが、両者の混合割合はモル比で一般に5:1〜1:5、好適には2.5:1〜1:2.5の範囲内とするのが適当である。
【0027】
本発明によって製造される粒状成形物は、一般に水とほぼ同じ1.0〜1.03の範囲内の比重を有しているが、流動床型の大型リアクターや複雑な構造のリアクター中で流動させて使用する場合、下方に移動しやすく均一に流動させることが困難な場合がある。このような場合には粒状成形物の比重を低くする必要があり、粒状成形物の組成物中に無機質系微小中空ビーズを添加することによって粒状成形物の比重を低くすることができる。
【0028】
粒状成型物の比重調整のために使用される無機質系微小中空ビーズとしては、好ましくは珪素を主成分とし、殊に珪酸塩又はアルミナシリカを主成分とし、粒子内に中空体構造を有する比重が0.3〜0.7の範囲内にある完全閉鎖型微小中空粒子を使用することができる。具体的には中空ガラスビーズ及び中空セライトを挙げることができる。
【0029】
微小中空ビーズは、一般に1〜200μm、好適には3〜50μmの範囲内の平均粒子径を有することができ、また、中空の大きさは、所望される比重によっても異なるが、通常、ビーズの直径の 1/2 以下、好ましくは 1/3 以下であることが有利である。
【0030】
中空の直径が 1/2 より大きいものは、得られる固定化用粒状成形物中で破壊したりして圧縮強度が低下するおそれがある。
【0031】
微小中空ビーズは、前記(a)、(b)及び(c)の各成分からなる水性液状組成物中の(a)成分100重量部に対し0.1〜10重量部の割合で添加することによって、得られる粒状成形物の比重が0.90〜1.00の範囲内になるように調整することができる。
【0032】
他方、粒状成形物の比重を大きくしたい場合には、ガラスビーズ、微細硫酸バリウム等比重が1以上の無機質系粉粒体を(a)成分100重量部に対して0.1〜30重量部の割合で粒状成形物の組成物中に添加することによって、粒状組成物の比重が1〜1.24の範囲内になるように比重調整することができる。
【0033】
以上に述べた(a)〜(c)の各成分及び必要に応じて添加される比重調整用の上記した添加剤は水性媒体中に溶解ないし分散させることにより、水性液状組成物が調製される。この液状組成物の固形分濃度は一般に5〜30重量%の範囲内が適当である。なお、(b)成分のレドックス系熱重合開始剤を構成する酸化剤又は還元剤のいずれか一方は、必要に応じて、アルカリ金属イオン又は多価金属イオンを含有する水性媒体中に、例えば0.05〜5重量%、好ましくは0.1〜2重量%の濃度で含有させるようにしてもよい。
【0034】
このようにして調製される水性液状組成物は、次いで、前述した如き種類のアルカリ金属イオン又は多価金属イオンを含有する水性媒体中に滴下するか、又は平均粒子径が5mm以上の粒状物を得る場合には、該水性媒体表面上に所定の時間連続的に注加して液滴を所望の粒径になるまで生長させた後、その液滴を沈降させることにより、該液状組成物が粒状でゲル化せしめられる。
【0035】
アルカリ金属イオン又は多価金属イオンを含有する水性媒体中への水性液状組成物の滴下は、例えば、注射器の先端から該液状組成物を滴下する方法、遠心力を利用して該液状組成物を粒状に飛散させる方法、スプレーノズルの先端から該液状組成物を霧化して粒状とし滴下する方法などの方法により行なうことができる。また、水性液状組成物の水性媒体表面への注加は、所望の孔径のノズル口から細い液流として連続的に供給することによって行うことができる。液滴の大きさは、最終の粒状固定化物に望まれる粒径に応じて自由に変えることができるが、通常、滴下法では、直径が約0.1〜約5mm、好ましくは約0.5〜約4mmの範囲内の液滴として滴下させるのが、また注加法では、約0.5〜3cmの範囲内の液滴とするのが好都合である。
【0036】
上記の如くして生成せしめた粒状ゲルは、そのまま水性媒体中に分散させた状態で、或いは水性媒体から分離した後、熱重合させることにより、該粒状ゲル中の親水性熱硬化性樹脂を硬化せしめる。これにより粒状ゲルは水に実質的に不溶性で機械的強度の大きい酵素又は微生物菌体固定化用粒状成形物が得ることができる。
【0037】
上記の粒状ゲルは、レドックス系熱重合開始剤を含有しているため、室温で放置しておくだけでも熱重合が進行して必要な機械的強度が得られるまでに硬化されるが、必要に応じ、恒温雰囲気中で硬化させてもよい。恒温雰囲気の温度は一般に0℃〜50℃、特に20℃〜40℃の範囲内が好適である。また、必要な機械的強度を得るためには、少なくとも熱硬化に10分〜30分の時間をかけることが望ましい。
【0038】
このように熱重合による硬化処理が終った粒状ゲルは水又は緩衝水溶液で洗浄し、そのまゝあるいは凍結乾燥して保存することができる。
【0039】
本発明によって製造される酵素又は微生物菌体固定化用粒状成形物は、表面の構造が特に微生物の付着に適しており、微生物を大量に付着させることができる。該担体に付着させうる微生物は、特に限定されず、嫌気性微生物、好気性微生物のどちらでも用いることができる。微生物の種類としては、アスパルギルス属、ペニシリウム属、フザリウム属などのカビ類、サッカロミセス属、ファフィア属、カンジダ属などの酵母類;ザイモモナス属、ニトロソモナス属、ニトロバクター属、パラコッカス属、ビブリオ属、メタノサルシナ属、バチルス属などの細菌類等を挙げることができる。
【0040】
なお、上記した微生物や酵素は、熱重合温度が常温のような低温度であれば、予め(a)、(b)及び(c)の各成分からなる水性液状物に混合しておいて包括固定化してもよい。
【0041】
かくして、本発明の固定化用粒状成形物の製造方法によれば、従来の光硬化系の粒状固定化物と同等の性能のものが、平均粒径が0.1mm〜30mmの範囲でより生産性を向上させて得ることができる。しかも、本発明の方法により提供される粒状成形物は、水中における流動性に優れているため、流動床型のバイオリアクターまたは攪拌型の発酵槽等に使用するのに最も適しているが、固定床型のバイオリアクター、発酵槽等に応用することも可能である。
【0042】
【実施例】
次に実施例により本発明をさらに具体的に説明する。
【0043】
実施例1
数平均分子量約4000のポリエチレングリコール2000gとイソホロンジイソシアネート1モル(222g)とを反応容器に入れ、80℃で2時間反応させた。さらにアクリル酸2−ヒドロキシエチル1モル(116g)とハイドロキノン1gとを反応容器に入れ、空気を吹き込みながら80℃で3時間反応させ、1分子の両末端にエチレン性不飽和結合を有する親水性熱硬化性樹脂を得た。
【0044】
上記熱硬化性樹脂100重量部と、ペルオキソ二硫酸アンモニウム1重量部、亜硫酸水素ナトリウム無水塩1重量部、2%アルギン酸ナトリウム水溶液100重量部及び蒸留水100重量部をよく混合して得られる水性液状組成物を、5%塩化カルシウム水溶液中に、注射器の先端から液面高さ約10cmより滴下したところ、粒径約2mmの粒状物が得られた。この粒状物をそのまま30℃で30分間放置して、比重1.03及び圧縮強度20kg/cm2の固定化用粒状成形物を得た。
【0045】
実施例2
実施例1で調製した親水性熱硬化性樹脂100重量部、ペルオキソ二硫酸アンモニウム1重量部、硫酸第一鉄0.7重量部、2%アルギン酸ナトリウム水溶液100重量部及び蒸留水100重量部をよく混合して得られる水性液状組成物を、5%塩化カルシウム水溶液中に、注射器の先端から液面高さ約10cmより滴下したところ、粒径約2mmの粒状物が得られた。この粒状物をそのまま30℃で30分間放置して、比重1.02及び圧縮強度20kg/cm2の固定化用粒状成形物を得た。
【0046】
実施例3
実施例1で調製した親水性熱硬化性樹脂100重量部、過酸化ベンゾイル1重量部、N,N−ジメチルアニリン0.5重量部、2%アルギン酸ナトリウム水溶液100重量部及び蒸留水100重量部をよく混合して得られる水性液状組成物を、5%塩化カルシウム水溶液中に、注射器の先端から液面高さ約10cmより滴下したところ、粒径約2mmの粒状物が得られた。この粒状物をそのまま30℃で30分間放置して、比重1.04及び圧縮強度20kg/cm2の固定化用粒状成形物を得た。
【0047】
実施例4
実施例1で調製した親水性熱硬化性樹脂100重量部、硫酸第一鉄0.7重量部、2%アルギン酸ナトリウム水溶液100重量部及び蒸留水100重量部をよく混合して得られる水性液状組成物を、5%塩化カルシウム水溶液(0.5%のペルオキソ二硫酸アンモニウムを含む)中に、注射器の先端から液面高さ約10cmより滴下したところ、粒径約2mmの粒状物が得られた。この粒状物をそのまま30℃で30分間放置して、比重1.01及び圧縮強度20kg/cm2の固定化用粒状成形物を得た。
【0048】
実施例5
実施例1で調製した熱硬化性樹脂100重量部に蒸留水100重量部を加えてから約50℃に加温してよく混合して均一な樹脂水溶液とした。この樹脂混合液200重量部にペルオキソ二硫酸アンモニウム1重量部、亜硫酸水素ナトリウム無水塩1重量部及び2%アルギン酸ナトリウム水溶液100重量部をよく混合して得られる水性液状組成物を、ペリスターポンプを用いて5%塩化カルシウム水溶液表面に、1ml/秒の流速で3秒間連続供給した。供給された該組成物は水溶液中に自然沈降し、粒径約10mmの粒状物が得られた。この粒状物をそのまま30℃で30分間放置して、比重1.03及び圧縮強度30kg/cm2の固定化用粒状成形物を得た。
【0049】
実施例6
実施例4で調製した熱硬化性樹脂水溶液200重量部にペルオキソ二硫酸アンモニウム1重量部、亜硫酸水素ナトリウム無水塩1重量部、3%k−カナギーナン水溶液75重量部及び2%グリコースイソメラーゼ菌体酵素液(重炭酸ナトリウム緩衝液pH8)25重量部を加えて均一な混合液を調製した。この均一な混合液を注射器の先端から5%塩化カリウム水溶液中に液面より約20cmの高さの位置から滴下したところ、粒径約1.5mmの粒状物が得られた。この粒状物をそのまま30℃で30分間放置して、比重1.01及び圧縮強度30kg/cm2の固定化用粒状成形物を得た。
【0050】
実施例7
重合度が500のポリビニルアルコール500g、N−メチロールアクリルアミドル1モル(101g)、ハイドロキノン0.5g及び脱イオン水1803gを反応容器に入れ、70℃に7時間保って付加反応を行い、親水性熱硬化性樹脂の25%水溶液を得た。この熱硬化性樹脂水溶液400重量部にペルオキソ二硫酸アンモニウム1重量部、亜硫酸水素ナトリウム無水塩1重量部、2%アルギン酸ナトリウム水溶液100重量部及び平均粒子径75μmの中空アルミナシリカ(日本フエライト社製商品名、Filite 300/7、真比重0.7)5重量部をよく混合して得られる水性液状組成物を、5%塩化カルシウム水溶液中に、注射器の先端から液面高さ約10cmより滴下したところ、粒径2mmの粒状物が得られた。この粒状物をそのまま30℃で30分間放置して、比重0.97及び圧縮強度10kg/cm2の固定化用粒状成形物を得た。
【0051】
以上、実施例1〜5及び実施例7で得られた固定化用粒状成形物を、それぞれ別々に500mLの三角フラスコに取り、ついでそれぞれにGY−10培地(酵母エキス1g/L、グルコース100g/Lからなる)を100mL加えた。それに2%の濃度でザイモモナス・モビリス(Zymomonas mobilis)IFO13756を加え、30℃で24時間静置賦活培養を行った。
【0052】
賦活後、それぞれの固定化用粒状成形物の表面を蒸留水で洗浄した後、賦活発酵液を新しい培地と交換し、24時間静置培養を行ない、エタノール濃度を測定した。その結果以下に示す。
【0053】
粒状成形物 エタノール濃度
実施例1 7.5%
実施例2 7.1%
実施例3 6.7%
実施例4 7.6%
実施例5 6.6%
実施例7 6.4%
【0054】
【発明の効果】
本発明の酵素又は微生物菌体固定化用粒状成形物の製造方法によれば、上記実施例から明らかなように、従来の光硬化型の粒状物と同等の粒状成形物が得られ、しかも光硬化型の樹脂を用いる場合のように光照射装置を全く必要とせず生産性が高く、粒状成形物の製造コストを大きく下げることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a granular molded product for immobilizing enzymes or microbial cells.
[0002]
[Prior art]
As an enzyme or microorganism immobilization method, conventionally, many methods such as a comprehensive method, a physical adsorption method, and a covalent bond method are known. In the case of using in a microbial reaction or an enzyme reaction, a block or solid immobilization product obtained by these methods is usually finely cut or ground and then packed into a column. However, in this case, the immobilized product often comes into close contact with each other, and the efficiency of the microbial reaction and the enzymatic reaction is deteriorated, and the channeling phenomenon is often caused to block the column.
[0003]
For this reason, recently, by immobilizing enzymes or microbial cells as granular products, it is easy to flow, the column can be easily packed, the contact area between the particles is small, and the efficiency of microbial and enzymatic reactions Has been proposed (see, for example, Japanese Examined Patent Publication No. 62-19837). However, the conventional granular molded product mainly composed of a photocurable resin that immobilizes enzymes or microbial cells needs to irradiate light uniformly to the inside of the granular molded product at the time of curing. There is a problem that productivity is reduced because an apparatus is required and there is a limit to the amount of particulate matter that can be processed by one irradiation apparatus.
[0004]
Furthermore, when trying to produce a granular molded product having a large particle size with an average particle size of 5 mm or more, there is also a problem that the center of the granular material exists in an uncured liquid state.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to improve the productivity of granular moldings for immobilizing enzymes or microbial cells, and to produce granular moldings that are completely cured even when the granular moldings have a large particle size. It is to provide a way that can be done.
[0006]
[Means for Solving the Invention]
As a result of intensive studies in order to achieve the above-mentioned object, the present inventors have found that a hydrophilic thermosetting resin as a constituent material of a granular carrier for immobilizing an enzyme or microbial cells using a water-soluble polymeric polysaccharide. It was found that the above-mentioned problems caused by using a photocurable resin can be solved at once by adding a redox-based thermal polymerization initiator to this and curing by heating, and the present invention has been completed. It was.
[0007]
Thus, according to the present invention,
(A) a hydrophilic thermosetting resin having at least two ethylenically unsaturated bonds in one molecule;
(B) a redox thermal polymerization initiator comprising an oxidizing agent and a reducing agent or a part thereof, and (c) a water-soluble polymeric polysaccharide capable of gelling by contact with an alkali metal ion or a polyvalent metal ion. The aqueous liquid composition is dropped into an aqueous medium containing alkali metal ions or polyvalent metal ions to gel the composition into a granular form or continuously on the surface of the aqueous medium for a predetermined time. The droplets are allowed to grow to a desired particle size, and then the droplets are allowed to settle and gel, and then the resulting granular gel is thermally polymerized to thermoset in the granular gel. There is provided a method for producing a granular molded product for immobilizing an enzyme or microbial cell, characterized by curing a resin.
[0008]
Hereinafter, the present invention will be described in more detail.
[0009]
(A) Thermosetting resin In the present invention, thermosetting having at least two ethylenically unsaturated bonds in one molecule used for the production of a granular carrier for immobilizing enzymes or microbial cells. The resin generally has a number average molecular weight in the range of 300 to 30000, preferably 500 to 20000, and is an ionic or nonionic hydrophilic group sufficient to be uniformly dispersed in an aqueous medium, such as a hydroxyl group. , An amino group, a carboxyl group, a phosphoric acid group, a sulfonic acid group, an ether bond and the like are preferably used. As such a thermosetting resin, those already known as a photocurable resin for entrapping immobilization can be used in the same manner (for example, Japanese Patent Publication Nos. 55-40 and 55-20676). Gazette, Japanese Patent Publication No. 62-19837). Typical examples include those described below.
[0010]
(I) a compound having an ethylenically unsaturated group capable of thermal polymerization at both ends of the polyalkylene glycol:
(1) Polyethylene glycol di (meth) acrylates obtained by esterifying both terminal hydroxyl groups of 1 mol of polyethylene glycol having a molecular weight of 400 to 6000 with 2 mol of (meth) acrylic acid.
[0011]
(2) Polypropylene glycol di (meth) acrylates obtained by esterifying both terminal hydroxyl groups of 1 mol of polypropylene glycol having a molecular weight of 200 to 4000 with 2 mol of (meth) acrylic acid.
[0012]
(3) Both moles of hydroxyl groups at 1 mol of polyethylene glycol having a molecular weight of 400 to 6000 are urethanated with 2 mol of diisocyanate compounds such as tolylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, Unsaturated polyethylene glycol urethanized product added with 2 mol of saturated monohydroxyethyl compound.
[0013]
(4) 1 mol of polypropylene glycol having a molecular weight of 200 to 4000 is urethanated with 2 mol of diisocyanate compounds such as tolylene diisocyanate, xylylene diisocyanate, isophorone diisocyanate, Unsaturated polypropylene glycol urethanized product added with 2 mol of saturated monohydroxy compound.
[0014]
(Ii) High acid value unsaturated polyester resin:
Salts of unsaturated polyesters having an acid value of 40 to 200 obtained by esterification of a polyvalent carboxylic acid component containing an unsaturated polycarboxylic acid and a polyhydric alcohol.
[0015]
(Iii) High acid value unsaturated epoxy resin:
An unsaturated epoxy resin having an acid value of 40 to 200 obtained by adding an acid anhydride to a hydroxyl group remaining in an addition reaction product of an epoxy resin and an unsaturated carboxyl compound such as (meth) acrylic acid.
[0016]
(Iv) Anionic unsaturated acrylic resin:
Copolymer containing carboxyl group, phosphoric acid group and / or sulfonic acid group obtained by copolymerizing at least two kinds of (meth) acrylic monomers selected from (meth) acrylic acid and (meth) acrylic acid ester Resin with an ethylenically unsaturated group that can be thermally polymerized.
[0017]
(V) Unsaturated polyamide:
Unsaturated polyamides obtained by addition reaction of diisocyanates such as tolylene diisocyanate and xylylene diisocyanate and ethylenically unsaturated hydroxy compounds such as 2-hydroxyethyl acrylate with water-soluble polyamides such as gelatin.
[0018]
The thermosetting resins as exemplified above can be used alone or in combination of two or more.
[0019]
Among these thermosetting resins, those that can be used particularly advantageously in the present invention are compounds having an ethylenically unsaturated group capable of being thermally polymerized at both ends of the polyalkylene glycol of the above (i). Examples of such products include those sold by Kansai Paint Co., Ltd. under trade names such as ENT-1000, ENT-2000, ENT-4000, ENTG-2000, and ENTG-3800.
(B) Redox thermal polymerization initiator For the purpose of promoting the thermal polymerization reaction of the thermosetting resin described in (a) above, the liquid composition according to the present invention contains a redox thermal polymerization initiator. Make it. As the redox thermal polymerization initiator, conventionally known ones can be used. For example, the redox thermal polymerization initiator comprises a combination of an oxidizing agent and a reducing agent that can perform radical polymerization at a relatively low temperature of about -10 ° C to 50 ° C. A polymerization initiator is preferably used.
[0020]
Examples of the oxidizing agent include organic peroxides such as benzoyl peroxide, methyl ethyl ketone peroxide, dicumyl peroxide, t-butyl perbenzoate and cumene hydroperoxide; peroxodisulfates such as ammonium peroxodisulfate and potassium peroxodisulfate; Hydrogen peroxide etc. are mentioned. Examples of the reducing agent include bisulfites such as sodium bisulfite; divalent iron salts such as ferrous sulfate and ferrous chloride; amines such as N, N-dimethylaniline and phenylmorpholine; Naphthenic acid metal salts such as cobalt naphthenate, manganese naphthenate, and copper naphthenate;
[0021]
Among these redox thermal polymerization initiators, those that can be used particularly advantageously in the present invention are those in which the oxidizing agent is made of peroxodisulfate or hydrogen peroxide, and the reducing agent is made of bisulfite or divalent iron salt. Is a combination of
[0022]
(C) Water-soluble polymer polysaccharide The water-soluble polymer polysaccharide used in the present invention is water-soluble and water when contacted with alkali metal ions or polyvalent metal ions in an aqueous medium. A high molecular weight polysaccharide having the ability to turn into a gel that is insoluble or sparingly soluble, generally having a number average molecular weight in the range of about 3000 to about 2,000,000, and in contact with alkali metal ions or polyvalent metal ions A water-soluble state before being used usually exhibits a solubility of at least about 10 g / l (25 ° C.).
[0023]
Specific examples of the water-soluble polymeric polysaccharide having such properties include alkali metal salts of alginic acid, carrageenan and the like.
[0024]
These water-soluble polymeric polysaccharides are dissolved in an aqueous medium, in the case of carrageenan, by contacting with an alkali metal ion such as potassium ion or sodium ion, and in the case of an alkali metal salt of alginic acid, Contact with at least one polyvalent metal ion of alkaline earth metal ions such as magnesium ion, calcium ion, strontium ion and barium ion; or other polyvalent metal ions such as aluminum ion, cerium ion and nickel ion By doing so, it can be gelled. The concentration of alkali metal ions or polyvalent metal ions that cause gelation varies depending on the type of water-soluble polymer polysaccharide, but is generally in the range of 0.01 to 5 mol / l.
[0025]
The mutual use ratios of the components (a), (b), and (c) are not strictly limited, and can be changed over a wide range according to the type of each component. It is appropriate to use the components (b) and (c) in the following proportions with respect to 100 parts by weight of the hydrophilic thermosetting resin as component a) (the parenthesized values are in a preferred range).
[0026]
(B) Redox thermal polymerization initiator: 0.1 to 5 parts by weight (0.3 to 3 parts by weight)
(C) Water-soluble polymer polysaccharide: 0.5 to 15 parts by weight (1 to 8 parts by weight)
The redox thermal polymerization initiator (b) is used in combination of an oxidizing agent and a reducing agent, and the mixing ratio of the two is generally 5: 1 to 1: 5, preferably 2.5. : It is suitable to be within the range of 1-1 to 2.5.
[0027]
The granular molded article produced by the present invention generally has a specific gravity within the range of 1.0 to 1.03 which is almost the same as that of water, but flows in a fluidized bed large reactor or a reactor having a complicated structure. When used in such a manner, it may be difficult to move uniformly and easily move downward. In such a case, it is necessary to lower the specific gravity of the granular molded product, and the specific gravity of the granular molded product can be lowered by adding inorganic micro hollow beads to the composition of the granular molded product.
[0028]
The inorganic fine hollow beads used for adjusting the specific gravity of the granular molded product are preferably composed mainly of silicon, particularly silicate or alumina silica, and have a specific gravity having a hollow body structure in the particles. Fully closed microhollow particles in the range of 0.3 to 0.7 can be used. Specific examples include hollow glass beads and hollow celite.
[0029]
The micro hollow beads can generally have an average particle size in the range of 1 to 200 μm, preferably 3 to 50 μm, and the size of the hollow depends on the specific gravity desired, but is usually diameter of 1/2 or less, preferably advantageously at 1/3 or less.
[0030]
Those hollow diameter is greater than 1/2, or disrupted by immobilizing molded particles in the resulting compression strength may be lowered.
[0031]
The micro hollow beads should be added at a ratio of 0.1 to 10 parts by weight with respect to 100 parts by weight of the component (a) in the aqueous liquid composition comprising the components (a), (b) and (c). The specific gravity of the obtained granular molded product can be adjusted to be in the range of 0.90 to 1.00.
[0032]
On the other hand, when it is desired to increase the specific gravity of the granular molded product, 0.1 to 30 parts by weight of inorganic particles such as glass beads and fine barium sulfate having a specific gravity of 1 or more with respect to 100 parts by weight of component (a). The specific gravity can be adjusted so that the specific gravity of the granular composition falls within the range of 1 to 1.24 by adding it to the composition of the granular molded product at a ratio.
[0033]
The aqueous liquid composition is prepared by dissolving or dispersing the components (a) to (c) described above and the above-mentioned additives for adjusting the specific gravity, which are added as necessary, in an aqueous medium. . The solid content concentration of the liquid composition is generally in the range of 5 to 30% by weight. In addition, any one of the oxidizing agent or the reducing agent constituting the redox thermal polymerization initiator of the component (b) is, for example, 0% in an aqueous medium containing an alkali metal ion or a polyvalent metal ion. You may make it contain by the density | concentration of 0.05 to 5 weight%, Preferably 0.1 to 2 weight%.
[0034]
The aqueous liquid composition thus prepared is then dropped into an aqueous medium containing alkali metal ions or polyvalent metal ions of the kind described above, or a granular material having an average particle diameter of 5 mm or more. In the case of obtaining the liquid composition, the liquid composition is continuously poured onto the surface of the aqueous medium for a predetermined time to grow the droplets to a desired particle size, and then the droplets are allowed to settle. Granular and gelled.
[0035]
The dropping of the aqueous liquid composition into the aqueous medium containing the alkali metal ion or the polyvalent metal ion is performed by, for example, a method of dropping the liquid composition from the tip of a syringe or the liquid composition using centrifugal force. It can be carried out by a method such as a method of scattering in a granular form, a method of atomizing the liquid composition from the tip of a spray nozzle and dropping it into a granular form. The aqueous liquid composition can be poured onto the surface of the aqueous medium by continuously supplying it as a thin liquid flow from a nozzle opening having a desired pore diameter. The size of the droplets can be freely changed depending on the particle size desired for the final granular immobilization product. However, in the dropping method, the diameter is usually about 0.1 to about 5 mm, preferably about 0.5. It is convenient to drop the liquid droplets in the range of about 4 mm to about 4 mm, and in the case of the pouring method, the liquid droplets are in the range of about 0.5 to 3 cm.
[0036]
The granular gel formed as described above is cured in a state in which it is dispersed in an aqueous medium as it is or after it is separated from the aqueous medium and then thermally polymerized to cure the hydrophilic thermosetting resin in the granular gel. Let me. Thereby, the granular gel is substantially insoluble in water, and a granular molded product for immobilizing microbial cells can be obtained.
[0037]
Since the granular gel contains a redox thermal polymerization initiator, it can be cured until the required mechanical strength is obtained by thermal polymerization even if it is left at room temperature. Accordingly, curing may be performed in a constant temperature atmosphere. The temperature of the constant temperature atmosphere is generally 0 ° C. to 50 ° C., particularly preferably in the range of 20 ° C. to 40 ° C. In order to obtain the required mechanical strength, it is desirable to spend at least 10 minutes to 30 minutes for thermosetting.
[0038]
The granular gel thus cured by thermal polymerization can be washed with water or an aqueous buffer solution and stored as such or freeze-dried.
[0039]
The granular molded product for immobilizing enzymes or microbial cells produced according to the present invention has a surface structure that is particularly suitable for adhesion of microorganisms, and can attach a large amount of microorganisms. The microorganism that can be attached to the carrier is not particularly limited, and either an anaerobic microorganism or an aerobic microorganism can be used. As types of microorganisms, Aspargillus genus, Penicillium genus, Fusarium genus fungi, Saccharomyces genus, Phaffia genus, Candida genus yeasts; Examples include bacteria such as Methanosarcina and Bacillus.
[0040]
The microorganisms and enzymes described above are comprehensively mixed with an aqueous liquid comprising the components (a), (b) and (c) in advance if the thermal polymerization temperature is a low temperature such as room temperature. It may be fixed.
[0041]
Thus, according to the method for producing a granular molded product for immobilization of the present invention, a product having the same performance as that of a conventional photocurable granular fixed product is more productive in the range of an average particle size of 0.1 mm to 30 mm. Can be obtained. Moreover, since the granular molded product provided by the method of the present invention is excellent in fluidity in water, it is most suitable for use in a fluidized bed bioreactor or a stirred fermenter, etc. It can also be applied to floor-type bioreactors, fermenters, and the like.
[0042]
【Example】
Next, the present invention will be described more specifically with reference to examples.
[0043]
Example 1
2000 g of polyethylene glycol having a number average molecular weight of about 4000 and 1 mol (222 g) of isophorone diisocyanate were placed in a reaction vessel and reacted at 80 ° C. for 2 hours. Further, 1 mol (116 g) of 2-hydroxyethyl acrylate and 1 g of hydroquinone were put into a reaction vessel, reacted for 3 hours at 80 ° C. while blowing air, and hydrophilic heat having ethylenically unsaturated bonds at both ends of one molecule. A curable resin was obtained.
[0044]
Aqueous liquid composition obtained by thoroughly mixing 100 parts by weight of the above thermosetting resin, 1 part by weight of ammonium peroxodisulfate, 1 part by weight of anhydrous sodium hydrogen sulfite, 100 parts by weight of 2% aqueous sodium alginate solution and 100 parts by weight of distilled water. When the product was dropped into a 5% calcium chloride aqueous solution from the tip of the syringe from a liquid surface height of about 10 cm, a granular material having a particle size of about 2 mm was obtained. This granular material was allowed to stand at 30 ° C. for 30 minutes to obtain a fixed granular molded product having a specific gravity of 1.03 and a compressive strength of 20 kg / cm 2 .
[0045]
Example 2
100 parts by weight of the hydrophilic thermosetting resin prepared in Example 1, 1 part by weight of ammonium peroxodisulfate, 0.7 parts by weight of ferrous sulfate, 100 parts by weight of 2% sodium alginate aqueous solution and 100 parts by weight of distilled water were mixed well. The aqueous liquid composition thus obtained was dropped into a 5% calcium chloride aqueous solution from the tip of the syringe from a liquid surface height of about 10 cm, and a granular material having a particle size of about 2 mm was obtained. This granular material was allowed to stand at 30 ° C. for 30 minutes to obtain a fixed granular molded product having a specific gravity of 1.02 and a compressive strength of 20 kg / cm 2 .
[0046]
Example 3
100 parts by weight of hydrophilic thermosetting resin prepared in Example 1, 1 part by weight of benzoyl peroxide, 0.5 part by weight of N, N-dimethylaniline, 100 parts by weight of 2% aqueous sodium alginate solution and 100 parts by weight of distilled water When an aqueous liquid composition obtained by mixing well was dropped into a 5% calcium chloride aqueous solution from the tip of the syringe from a liquid surface height of about 10 cm, a granular material having a particle size of about 2 mm was obtained. This granular material was allowed to stand at 30 ° C. for 30 minutes to obtain a fixed granular molded product having a specific gravity of 1.04 and a compressive strength of 20 kg / cm 2 .
[0047]
Example 4
An aqueous liquid composition obtained by thoroughly mixing 100 parts by weight of the hydrophilic thermosetting resin prepared in Example 1, 0.7 part by weight of ferrous sulfate, 100 parts by weight of 2% aqueous sodium alginate solution and 100 parts by weight of distilled water. When the product was dropped into a 5% aqueous calcium chloride solution (containing 0.5% ammonium peroxodisulfate) from the tip of the syringe at a liquid surface height of about 10 cm, a granular material having a particle size of about 2 mm was obtained. This granular material was allowed to stand at 30 ° C. for 30 minutes to obtain a fixed granular molded product having a specific gravity of 1.01 and a compressive strength of 20 kg / cm 2 .
[0048]
Example 5
After adding 100 parts by weight of distilled water to 100 parts by weight of the thermosetting resin prepared in Example 1, it was heated to about 50 ° C. and mixed well to obtain a uniform resin aqueous solution. An aqueous liquid composition obtained by thoroughly mixing 200 parts by weight of this resin mixture with 1 part by weight of ammonium peroxodisulfate, 1 part by weight of anhydrous sodium hydrogen sulfite and 100 parts by weight of 2% sodium alginate aqueous solution was obtained using a peristaltic pump. The solution was continuously supplied to the surface of a 5% calcium chloride aqueous solution for 3 seconds at a flow rate of 1 ml / second. The supplied composition spontaneously settled in an aqueous solution, and a granular material having a particle size of about 10 mm was obtained. This granular material was allowed to stand at 30 ° C. for 30 minutes to obtain a fixed granular molded product having a specific gravity of 1.03 and a compressive strength of 30 kg / cm 2 .
[0049]
Example 6
200 parts by weight of the thermosetting resin aqueous solution prepared in Example 4, 1 part by weight of ammonium peroxodisulfate, 1 part by weight of sodium hydrogensulfite anhydrous salt, 75 parts by weight of 3% k-canaginan aqueous solution, and 2% glycolose isomerase bacterial enzyme solution ( Sodium bicarbonate buffer pH 8) 25 parts by weight was added to prepare a uniform mixture. When this uniform mixed solution was dropped into a 5% potassium chloride aqueous solution from the tip of the syringe from a position about 20 cm above the liquid level, a granular material having a particle size of about 1.5 mm was obtained. This granular material was allowed to stand at 30 ° C. for 30 minutes to obtain a fixed granular molded product having a specific gravity of 1.01 and a compressive strength of 30 kg / cm 2 .
[0050]
Example 7
500 g of polyvinyl alcohol having a polymerization degree of 500, 1 mol (101 g) of N-methylolacrylamide, 0.5 g of hydroquinone and 1803 g of deionized water are placed in a reaction vessel and kept at 70 ° C. for 7 hours to carry out an addition reaction. A 25% aqueous solution of a curable resin was obtained. 400 parts by weight of this thermosetting resin aqueous solution, 1 part by weight of ammonium peroxodisulfate, 1 part by weight of anhydrous sodium hydrogen sulfite, 100 parts by weight of 2% aqueous sodium alginate solution and hollow alumina silica having an average particle size of 75 μm (trade name, manufactured by Nippon Ferrite Co., Ltd.) , Filite 300/7, true specific gravity 0.7) When an aqueous liquid composition obtained by thoroughly mixing 5 parts by weight is dropped into a 5% calcium chloride aqueous solution from the tip of the syringe from a liquid surface height of about 10 cm. A granular material having a particle diameter of 2 mm was obtained. This granular material was allowed to stand at 30 ° C. for 30 minutes to obtain a fixed granular molded product having a specific gravity of 0.97 and a compressive strength of 10 kg / cm 2 .
[0051]
As mentioned above, the granular moldings for immobilization obtained in Examples 1 to 5 and Example 7 were separately taken into 500 mL Erlenmeyer flasks, respectively, and then GY-10 medium (yeast extract 1 g / L, glucose 100 g / L), respectively. L) was added. Zymomonas mobilis IFO 13756 was added thereto at a concentration of 2%, and stationary activated culture was performed at 30 ° C. for 24 hours.
[0052]
After activation, the surface of each immobilization granular molding was washed with distilled water, and then the activated fermentation broth was replaced with a new medium, followed by stationary culture for 24 hours, and the ethanol concentration was measured. The results are shown below.
[0053]
Granular molding ethanol concentration Example 1 7.5%
Example 2 7.1%
Example 3 6.7%
Example 4 7.6%
Example 5 6.6%
Example 7 6.4%
[0054]
【The invention's effect】
According to the method for producing a granular molded product for immobilizing an enzyme or microbial cell of the present invention, as is apparent from the above examples, a granular molded product equivalent to a conventional photocurable granular product is obtained, and light Unlike the case where a curable resin is used, no light irradiation device is required, the productivity is high, and the production cost of the granular molded product can be greatly reduced.

Claims (3)

(a) 1分子中に少なくとも2個のエチレン性不飽和結合を有する親水性熱硬化性樹脂、
(b) 酸化剤と還元剤からなるレドックス系熱重合開始剤又はその一部、及び
(c) アルカリ金属イオン又は多価金属イオンとの接触によりゲル化する能力のある水溶性高分子多糖類
を含んでなる水性液状組成物を、アルカリ金属イオン又は多価金属イオンを含有する水性媒体中に滴下して該組成物を粒状にゲル化させるか又は該水性媒体の表面上に所定の時間連続的に注加して液滴を所望の粒径になるまで生長させた後、その液滴を沈降させてゲル化させ、次いで得られる粒状ゲルを熱重合して該粒状ゲル中の熱硬化性樹脂を硬化させることを特徴とする酵素又は微生物菌体固定化用粒状成形物の製造方法。
(A) a hydrophilic thermosetting resin having at least two ethylenically unsaturated bonds in one molecule;
(B) a redox thermal polymerization initiator comprising an oxidizing agent and a reducing agent or a part thereof, and (c) a water-soluble polymeric polysaccharide capable of gelling by contact with an alkali metal ion or a polyvalent metal ion. The aqueous liquid composition is dropped into an aqueous medium containing alkali metal ions or polyvalent metal ions to gel the composition into a granular form or continuously on the surface of the aqueous medium for a predetermined time. After the droplets are grown to a desired particle size, the droplets are allowed to settle and gel, and the resulting granular gel is thermally polymerized to thermoset resin in the granular gel A method for producing a granular molded product for immobilizing an enzyme or a microbial cell, characterized by curing the material.
レドックス系熱重合開始剤(b)を構成する酸化剤又は還元剤の一方をアルカリ金属イオン又は多価金属イオンを含有する水性媒体中に含有させる請求項1に記載の方法。The method according to claim 1, wherein one of an oxidizing agent and a reducing agent constituting the redox thermal polymerization initiator (b) is contained in an aqueous medium containing an alkali metal ion or a polyvalent metal ion. レドックス系熱重合開始剤(b)が、ペルオキソ二硫酸塩類又は過酸化水素からなる酸化剤と、亜硫酸水素塩類又は二価の鉄塩からなる還元剤との組合せからなるものである請求項1又は2記載の方法。The redox thermal polymerization initiator (b) comprises a combination of an oxidizing agent comprising peroxodisulfates or hydrogen peroxide and a reducing agent comprising bisulfites or a divalent iron salt. 2. The method according to 2.
JP03148397A 1997-01-31 1997-01-31 Method for producing granular molded product for enzyme or microbial cell immobilization Expired - Lifetime JP3775706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03148397A JP3775706B2 (en) 1997-01-31 1997-01-31 Method for producing granular molded product for enzyme or microbial cell immobilization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03148397A JP3775706B2 (en) 1997-01-31 1997-01-31 Method for producing granular molded product for enzyme or microbial cell immobilization

Publications (2)

Publication Number Publication Date
JPH10210969A JPH10210969A (en) 1998-08-11
JP3775706B2 true JP3775706B2 (en) 2006-05-17

Family

ID=12332526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03148397A Expired - Lifetime JP3775706B2 (en) 1997-01-31 1997-01-31 Method for producing granular molded product for enzyme or microbial cell immobilization

Country Status (1)

Country Link
JP (1) JP3775706B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526143B2 (en) * 1999-12-02 2010-08-18 関西ペイント株式会社 Method for producing granular molded article for microbial cell immobilization
JP4430254B2 (en) 2001-01-31 2010-03-10 関西ペイント株式会社 Method for producing granular molded article for microbial cell immobilization
JP5181576B2 (en) * 2007-08-17 2013-04-10 ソニー株式会社 FUEL CELL MANUFACTURING METHOD, FUEL CELL, AND ELECTRONIC DEVICE
JP7014485B2 (en) * 2017-11-09 2022-02-01 株式会社クラレ Polyvinyl alcohol-based mutual penetration type gel
CN113272347B (en) * 2018-11-21 2024-05-14 株式会社可乐丽 Monodisperse hydrogel particles

Also Published As

Publication number Publication date
JPH10210969A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
US4195129A (en) Method for immobilizing enzymes and microbial cells
US4605622A (en) Process for producing granular fixed enzymes or microorganisms
US4774178A (en) Immobilization of biological material within a polymer matrix
US4996150A (en) Biocatalyst immobilization in a gel of anionic polysaccharide and cationic polymer
CN104099316A (en) Amphiphilic structure microsphere based on hydrophobic modified sodium alginate material and preparation and application
JP3775706B2 (en) Method for producing granular molded product for enzyme or microbial cell immobilization
CN112980826B (en) Lipase/polyacrylamide hydrogel microsphere catalytic material and preparation method and application thereof
JPH0739376A (en) Carrier for immobilizing microbe
KR100762159B1 (en) A mixture of microorganism immobilized carriers and a bioreactor with use of the same
JP4384338B2 (en) Enzyme or microorganism-immobilized carrier composition
Ferreira et al. Preparation and characterization of polyethylene based graft copolymers. Applications in the immobilization of enzymes
JP4343562B2 (en) Granular carrier for enzyme or microbial cell immobilization
JP4526143B2 (en) Method for producing granular molded article for microbial cell immobilization
JPH10152511A (en) Regulation of specific gravity of granular molding product for immobilizing enzyme or microbial cell
CN1970747A (en) Process for preparing spherical immobilized cell and enzyme particulate
JPH10168105A (en) Method for adjusting specific gravity of granular article for immobilizing enzyme or microorganismic cell
JP7191454B2 (en) Enzyme or microorganism immobilization carrier
Kaetsu et al. Immobilization of enzymes for medical uses on plastic surfaces by radiation‐induced polymerization at low temperatures
JPS60234582A (en) Immobilization of biological material
CN107474264B (en) Nano ferroferric oxide mediated free radical polymerization initiation system and method for preparing magnetic hydrogel by using same
JPH10139803A (en) Adjustment of specific gravity of granular molded material for immobilizing enzyme or microorganism cell
JP4299945B2 (en) Method for producing granular molded product for enzyme or microbial cell immobilization
JPH10191973A (en) Production of carrier with large granular size for immobilization of enzyme microbial fungus
GB2149816A (en) Process for producing granular fixed enzymes or/microorganism strains
Klein et al. Polymers for the immobilization of whole cells and their application in biotechnology

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term