JPH0780282A - Polymeric hydrogel granular material, production thereof and immobilization of bacteria using the same - Google Patents

Polymeric hydrogel granular material, production thereof and immobilization of bacteria using the same

Info

Publication number
JPH0780282A
JPH0780282A JP5175945A JP17594593A JPH0780282A JP H0780282 A JPH0780282 A JP H0780282A JP 5175945 A JP5175945 A JP 5175945A JP 17594593 A JP17594593 A JP 17594593A JP H0780282 A JPH0780282 A JP H0780282A
Authority
JP
Japan
Prior art keywords
polymer
water
hydrogel
particles
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5175945A
Other languages
Japanese (ja)
Other versions
JP3361570B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP17594593A priority Critical patent/JP3361570B2/en
Publication of JPH0780282A publication Critical patent/JPH0780282A/en
Application granted granted Critical
Publication of JP3361570B2 publication Critical patent/JP3361570B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To produce a granular gel in an extremely easy manner by forming a water-insoluble polymeric resin within highly water-absorbing polymeric particles to form a polymeric hydrogel granular material. CONSTITUTION:A precursor of a polymer B such as an aq. soln. of a monomer of a polymeric resin such as acrylamide is absorbed into particles of a highly water-absorbing polymer A swollen in water to form a flat spherical or oval granular gel and subsequently polymerized within the particles of the polymer A to form a water-insoluble polymer such as polyacrylamide. By this method, a hydrogel having high strength can easily be produced and bacteria are simply immobilized on the granular gel to produce a polymeric gel having bacteria inclusively immobilized thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極めて実用的な方法に
よって生産される、強度の大きな高分子ヒドロゲル粒子
に関し、特に著しく簡単な設備によって低コストで大量
に生産できる方法を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to high-strength polymer hydrogel particles produced by an extremely practical method, and particularly provides a method capable of mass production at a low cost by means of extremely simple equipment. .

【0002】[0002]

【従来の技術】現在最も進歩した水の生物処理法とし
て、包括固定化微生物法が注目されている。包括固定化
微生物による水処理法は、微生物菌体をポリエチレング
リコール、ポリビニルアルコール等の高分子樹脂の液状
物と混合した後、これらの高分子樹脂を塩化カルシウム
等のゲル化剤あるいは凍結によってゲル化させ、高分子
ゲルの内部に微生物を閉じ込めてから粒状に成型し、こ
の粒状物を処理対象原水と接触させるという方法であ
り、生物反応速度が大きいという特徴がある。
2. Description of the Related Art As the most advanced biological treatment method for water at present, the entrapping immobilization microbial method is drawing attention. The water treatment method using entrapping immobilization microorganisms involves mixing microbial cells with a liquid material of a polymer resin such as polyethylene glycol or polyvinyl alcohol, and then gelling the polymer resin with a gelling agent such as calcium chloride or by freezing. This is a method in which microorganisms are confined inside the polymer gel and then formed into particles, and the particles are brought into contact with raw water to be treated, which is characterized by a high biological reaction rate.

【0003】しかし、包括固定化微生物には、ゲル化前
の高分子樹脂と微生物を混合した後、高分子樹脂を重合
させ、この後微生物を包括固定化した高分子ゲルを適当
な粒径にカットするか、あるいは高分子樹脂と微生物の
混合物をゲル化剤液中に滴下造粒し、重合ゲル化して微
生物を包括固定化するという複雑かつ面倒な作業が必要
であるので、固定化微生物粒子の製造の時間とコストが
著しく大きく、また特別な固定化微生物製造設備が必要
であるという大きな欠点がある。従って、小規模の処理
には、ゲルが少量でよいので、固定化微生物法は実用化
できるが、数万〜百万m3 /日におよぶ下水処理などの
大規模な処理には固定化微生物法はゲルを製造するコス
トが高くなりすぎ、実質的に適用が不可能である。
However, in the entrapping immobilization microorganisms, the polymer resin before gelation is mixed with the microbes, the polymer resin is polymerized, and then the encapsulation-immobilized polymer gel is adjusted to an appropriate particle size. Since it is necessary to perform complicated and troublesome work of cutting or dropping a mixture of a polymer resin and a microorganism into a gelling agent liquid and granulating it to polymerize gel to immobilize the microorganism, the immobilized microbial particle There is a major drawback in that the production time and cost of the product are extremely large and that a special immobilized microorganism production facility is required. Therefore, the immobilized microorganism method can be put to practical use because a small amount of gel is required for small-scale treatment, but the immobilized microorganism method can be used for large-scale treatment such as sewage treatment of tens of thousands to 1 million m 3 / day. The method makes the gel too expensive to manufacture and is virtually inapplicable.

【0004】[0004]

【発明が解決しようとする課題】下水等の処理は、大規
模な処理となる上、極力処理コストを低くすることが要
求されるが、従来の固定化微生物は、微生物を固定化す
る方法及び設備が煩雑過ぎ、ゲルのコストも高い等、大
規模の処理に適用するためには致命的欠点がある。本発
明者は、この欠点を根本的に解決しない限り固定化微生
物法を大規模な排水処理に実用化することはできず、そ
のためには従来の固定化微生物法で必要であった、微生
物と高分子樹脂を混合し、これをゲル化し、適当な粒径
に造粒するという作業を完全に不要とするという新しい
概念に立つべきであるという認識に達した。上記概念の
達成を課題として検討を進め、従来の固定化微生物法を
著しく合理化して、微生物の固定化用のゲル製造を極力
容易する本発明に達した。
The treatment of sewage and the like is a large-scale treatment, and it is required to reduce the treatment cost as much as possible. Conventional immobilized microorganisms are a method for immobilizing microorganisms and a method for immobilizing microorganisms. There are fatal drawbacks for application to large-scale processing such as too complicated equipment and high gel cost. The present inventor cannot practically use the immobilized microbial method for large-scale wastewater treatment unless this drawback is fundamentally solved. We have come to the realization that the new concept of completely eliminating the work of mixing a polymer resin, gelling it, and granulating it to an appropriate particle size is necessary. With the aim of achieving the above-mentioned concept as a subject, studies have been advanced, and the present invention has been achieved in which the conventional immobilized microbial method is remarkably rationalized and gel production for microbial immobilization is made as easy as possible.

【0005】[0005]

【課題を解決するための手段】上記課題は、以下に述べ
る手段によって達成される。本発明の手段によれば、極
めて容易に粒状ゲル製造が可能であり、かつその粒状ゲ
ルに簡単に微生物の固定化して微生物を包括固定化した
高分子ゲルが得られ、しかもその微生物固定化高分子ゲ
ルを用いて効率的に汚水を浄化するものである。すなわ
ち、本発明は、少なくとも2種類の高分子を使用し、各
々を高分子A、高分子Bと表せば、(1)高吸水性高分
子Aの粒子内部に、水不溶性の高分子B樹脂を生成させ
てなる高分子ヒドロゲル粒状物であり、(2)高吸水性
高分子Aの粒子内部に、高分子B前駆体の水溶液を吸収
させた後、前記高分子Aの粒子内部において、前記高分
子B前駆体を重合せしめて水不溶性の高分子Bを生成さ
せることを特徴とする高分子ヒドロゲル粒状物の製造方
法。及び、(3)前記高分子ヒドロゲル粒状物を水中乃
至湿潤環境下で、少なくとも目的の微生物存在下に保持
して、該高分子ヒドロゲル粒状物表面に該微生物を固定
化することを特徴とする微生物固定化方法である。
The above objects can be achieved by the means described below. According to the means of the present invention, it is possible to produce a granular gel very easily, and a polymer gel in which microorganisms are entrapped and immobilized by easily immobilizing microorganisms on the granular gel can be obtained. This is to efficiently purify sewage using a molecular gel. That is, according to the present invention, at least two kinds of polymers are used, and each of them is referred to as polymer A and polymer B. (1) The water-insoluble polymer B resin is contained inside the superabsorbent polymer A particles. (2) after absorbing an aqueous solution of the polymer B precursor into the particles of the superabsorbent polymer A, the polymer hydrogel granules obtained by A method for producing a polymer hydrogel granular material, which comprises polymerizing a polymer B precursor to produce a water-insoluble polymer B. And (3) a microorganism characterized by holding the polymer hydrogel granules in water or in a wet environment in the presence of at least a target microorganism to immobilize the microorganisms on the surface of the polymer hydrogel granules. It is a method of immobilization.

【0006】高分子B前駆体としては、種々の重合性モ
ノマーが用いられる。また、本発明のヒドロゲル粒状物
は球状ないしそれに類する形状をとることが好ましい状
態である。該高分子B前駆体として使用する重合性モノ
マーは水溶性であっても良い。また該モノマーが上記高
分子ヒドロゲル粒状物外で重合された場合には水に可溶
性の高分子となるものであっても、ヒドロゲル粒状物内
で重合した場合実質的に水に不溶性であれば良い。勿論
ヒドロゲル粒状物内で重合する場合において、生成する
重合体が架橋重合体である場合はいうまでもない。な
お、これら高分子A粒子は吸水膨潤時、すなわち担体形
成時の粒径がmmオーダーとなるものが固液分離の上か
ら好ましい。
As the polymer B precursor, various polymerizable monomers are used. In addition, the hydrogel particles of the present invention preferably have a spherical shape or a shape similar thereto. The polymerizable monomer used as the polymer B precursor may be water-soluble. Further, even if the monomer becomes a water-soluble polymer when polymerized outside the polymer hydrogel granule, it may be substantially insoluble in water when polymerized inside the hydrogel granule. . Needless to say, when the polymerization is carried out in the hydrogel particles, the polymer produced is a cross-linked polymer. It is preferable that these polymer A particles have a particle size on the order of mm at the time of water swelling, that is, at the time of forming a carrier from the viewpoint of solid-liquid separation.

【0007】本発明の重要な思想は、水中で膨潤して、
偏平球状、楕円状の粒状ゲルを形成する高吸水性高分子
Aの粒子内部にアクリルアミド等の高分子樹脂のモノマ
ー水溶液等の高分子B前駆体を吸収せしめてから、これ
を重合させて高吸水性高分子Aの粒子内部でポリアクリ
ルアミド等の水不溶性高分子を形成せしめることによっ
て、強度の大きなヒドロゲルを得るようにした技術およ
びこれを微生物固定用担体として使用する技術である。
The important idea of the present invention is to swell in water,
After absorbing a precursor of a polymer B such as an aqueous solution of a monomer of a polymer resin such as acrylamide into a particle of the superabsorbent polymer A which forms a flat spherical or elliptic granular gel, the polymer B is polymerized to obtain high water absorption. It is a technique in which a water-insoluble polymer such as polyacrylamide is formed inside the particles of the functional polymer A to obtain a hydrogel having high strength, and a technique of using the hydrogel as a carrier for immobilizing microorganisms.

【0008】高吸水性高分子Aは、従来、紙オムツなど
の衛生用に多用されている物質であり、自重の数百倍も
の水を吸収できる親水性高分子であり、球状等の定形を
維持して、弾性を示すヒドロゲルになる。該ヒドロゲル
に吸収されなかった水をろ過によって容易に分離でき、
かつ水中でピンセットによってヒドロゲルをつまむこと
ができる。しかしながら、該ヒドロゲルはゲル強度が弱
く、押すと容易につぶれてしまうという欠点がある。
The superabsorbent polymer A is a substance that has been widely used for sanitary use such as a disposable diaper, is a hydrophilic polymer that can absorb several hundred times its own weight of water, and has a spherical shape. Maintains a hydrogel that exhibits elasticity. Water not absorbed by the hydrogel can be easily separated by filtration,
And the hydrogel can be pinched in water with forceps. However, the hydrogel has a drawback that it has a weak gel strength and is easily crushed when pressed.

【0009】このような性質を有する高分子としては、
アクリル酸−ビニルアルコール共重合体、澱粉−アクリ
ル酸グラフト重合体またはイソブチレン−無水マレイン
酸共重合体などが好例として挙げられる。本発明は、上
記のゲル強度が小さい高吸水性高分子A粒子内に、例え
ばアクリルアミド、アクリル酸、メタクリル酸アクリル
酸等の重合性モノマー(すなわち高分子B前駆体)の水
溶液を吸収させて、高吸水性高分子Aを膨潤させてから
モノマーをレドックス重合反応等によって重合させるこ
とによって、水不溶性のポリアクリルアミド、ポリアク
リル酸等の重合体を高吸水性高分子Aヒドロゲル内に形
成せしめると著しく強度が大きく、指で強く押しても破
壊しないヒドロゲル粒子が得られることをはじめて見出
して完成した。
Polymers having such properties include:
Acrylic acid-vinyl alcohol copolymer, starch-acrylic acid graft polymer, isobutylene-maleic anhydride copolymer and the like are mentioned as preferable examples. In the present invention, the above-mentioned superabsorbent polymer A particles having a low gel strength are allowed to absorb an aqueous solution of a polymerizable monomer (that is, a polymer B precursor) such as acrylamide, acrylic acid, methacrylic acid acrylic acid, When a polymer such as water-insoluble polyacrylamide or polyacrylic acid is formed in the super absorbent polymer A hydrogel by swelling the super absorbent polymer A and then polymerizing the monomer by a redox polymerization reaction or the like. It was completed for the first time by finding out that hydrogel particles with high strength that do not break even when pressed with a finger strongly are obtained.

【0010】本発明において、高吸水性高分子A粒子内
に、分子量の小さいモノマー等の高分子B前駆体を吸収
させてから重合させることが極めて重要である。高吸水
性高分子A粒子内に、分子量の小さいモノマー等の高分
子B前駆体を吸収させる方法としては、乾燥状態の、あ
るいは少し膨潤させた高吸水性高分子A粒子に、分子量
の小さいモノマー等の高分子B前駆体を水溶液として吸
収させることにより効率よく吸収させることができる。
このことも本発明の特徴の一つである。高分子量の分子
は高吸水性高分子には吸収されないことが認められた。
これは、高吸水性高分子の界面はRO膜、UF膜のよう
な一種の膜構造をもっているため、水溶性低分子の物質
しか水と共に吸収できないためであると考えられる。本
発明の粒状ヒドロゲルの製造方法は、驚くほどシンプル
な工程であり、ゲルを粒状物に成型する工程および設備
は全く不要である。本発明による高強度高分子ヒドロゲ
ルの製造の代表例を図1に示す。図1のように、本発明
では、複雑な粒状化設備は全く不要で、設備としては単
なる攪拌槽のみで済む。
In the present invention, it is extremely important to absorb the polymer B precursor such as a monomer having a small molecular weight into the superabsorbent polymer A particles before the polymerization. As a method of absorbing a polymer B precursor such as a monomer having a small molecular weight into the superabsorbent polymer A particles, a monomer having a small molecular weight is added to the superabsorbent polymer A particles in a dry state or slightly swollen. It is possible to efficiently absorb the polymer B precursor such as by absorbing it as an aqueous solution.
This is also one of the features of the present invention. It has been found that high molecular weight molecules are not absorbed by superabsorbent polymers.
It is considered that this is because the interface of the super absorbent polymer has a kind of membrane structure such as an RO membrane and a UF membrane, so that only a water-soluble low molecular substance can be absorbed together with water. The method for producing the granular hydrogel of the present invention is a surprisingly simple process, and the process and equipment for molding the gel into a granular material are completely unnecessary. A representative example of the production of a high strength polymer hydrogel according to the present invention is shown in FIG. As shown in FIG. 1, in the present invention, complicated granulating equipment is not required at all, and the equipment is only a stirring tank.

【0011】高分子B前駆体(モノマー)としてアクリ
ルアミドを使う場合、架橋剤としては、メチレンビスア
クリルアミド(略称BIS)、重合触媒としてはβ−ジ
メチルアミノプロピオニトリル(略称DMAPN)が適
している。重合開始剤は、過硫酸カリウムを使う。また
モノマーとしてアクリル酸の塩を使用する場合は、モノ
マー状のアクリル酸カルシウム水溶液にエリソルビン酸
ナトリウムを加えたものを高吸水性高分子A粒子内にポ
リアクリル酸カルシウムの樹脂が形成され、偏平球状
で、高強度の透明ヒドロゲルが形成される。なお、本発
明のヒドロゲル、すなわち、高吸水性高分子粒子内部に
水不溶性樹脂を重合させて保持させたものと、従来の、
以下に記載するゲル生成法によって得られる固定化微生
物法の代表的ゲルであるポリエチレングリコールヒドロ
ゲル等の高吸水性高分子を用いないゲルとを区別するの
には、外観、赤外吸収スペクトル、水分吸収特性、水分
吸収時のゲルの膨潤度、水分乾燥時の収縮率、ゲル乾燥
速度、示差熱分析等によって、両者の相違を明らかにで
きる。なお、上記ポリエチレングリコールヒドロゲル
は、ポリエチレングリコールプレポリマー液と重合触媒
および微生物を混合したものにアルギン酸ソーダと重合
開始剤を加え、良く混合してから塩化カルシウム液に液
滴状に滴下させて粒状のゲルとしたものである。
When acrylamide is used as the polymer B precursor (monomer), methylenebisacrylamide (abbreviation BIS) is suitable as the crosslinking agent, and β-dimethylaminopropionitrile (abbreviation DMAPN) is suitable as the polymerization catalyst. As the polymerization initiator, potassium persulfate is used. When a salt of acrylic acid is used as a monomer, a calcium polyacrylate resin is formed in superabsorbent polymer A particles by adding sodium erysorbate to a monomeric calcium acrylate aqueous solution to form a flat spherical shape. A high-strength transparent hydrogel is formed. Incidentally, the hydrogel of the present invention, that is, the one in which a water-insoluble resin is polymerized and held inside the superabsorbent polymer particles, and
The appearance, infrared absorption spectrum, and water content are used to distinguish gels that do not use superabsorbent polymers such as polyethylene glycol hydrogel, which is a typical gel of immobilized microbial method obtained by the gel formation method described below. The difference between the two can be clarified by the absorption characteristics, the degree of swelling of the gel when absorbing water, the shrinkage rate when drying water, the gel drying rate, the differential thermal analysis and the like. The polyethylene glycol hydrogel is a mixture of a polyethylene glycol prepolymer liquid, a polymerization catalyst, and a microorganism, to which sodium alginate and a polymerization initiator are added. It is a gel.

【0012】本発明の微生物固定化法の特徴は、本発明
のヒドロゲル粒子の表面に自然に微生物を増殖させるこ
とにある。例えば、本発明の高分子ヒドロゲル粒子に好
気性微生物を固定化するには、本発明の高分子ヒドロゲ
ル粒子を好気的な条件にある水中に投入し、BOD等の
微生物への基質を供給するだけで充分であり、およそ水
温20〜25℃で10〜20日後に本発明の高分子ヒド
ロゲル粒子の表層部に自然増殖的に効果的に微生物が固
定化されることが認められた。この微生物が固定化され
た本発明の高分子ヒドロゲル粒子はゲル強度が大きいの
で、エアレーションによっても何ら破壊されなかった。
一方嫌気性微生物(酸生成菌、メタン生成菌等)を固定
化するには嫌気的な条件で上記と同様な操作を行えばよ
く、やはり20〜30日後に嫌気性微生物が本発明の高
分子ヒドロゲル粒子の表層部に自然増殖的に固定化され
た。
The feature of the method for immobilizing microorganisms of the present invention is that microorganisms are naturally grown on the surface of the hydrogel particles of the present invention. For example, in order to immobilize aerobic microorganisms on the polymer hydrogel particles of the present invention, the polymer hydrogel particles of the present invention are put into water under aerobic conditions to supply a substrate for microorganisms such as BOD. It was found that the above is sufficient, and after about 10 to 20 days at a water temperature of about 20 to 25 ° C., the microorganisms are spontaneously and effectively immobilized on the surface layer of the polymer hydrogel particles of the present invention. Since the polymer hydrogel particles of the present invention having the microorganisms immobilized thereon have a high gel strength, they were not destroyed even by aeration.
On the other hand, in order to immobilize anaerobic microorganisms (acid-producing bacteria, methanogenic bacteria, etc.), the same operation as described above may be performed under anaerobic conditions. After 20 to 30 days, the anaerobic microorganisms are the polymer of the present invention. The hydrogel particles were immobilized on the surface of the hydrogel particles spontaneously.

【0013】従って本発明では、従来の包括固定化微生
物法のような微生物のゲル粒子内への閉じ込め操作が不
要であり、著しい合理化が達成された。さらに、本発明
ではヒドロゲル粒子の表層部にのみ微生物が固定化され
るが、粒子内にも微生物を含む包括固定化微生物法とそ
の微生物活性(処理)上の効果は何ら遜色のないもので
あることを確認している。また、本発明の高分子ヒドロ
ゲル粒子は十分の強度を有するので、固定充填材として
も、流動媒体としても使用することができる。なお、本
発明の高分子ヒドロゲル粒子は、上記のように水処理、
醸造等の微生物応用技術の担体とする他、トンネル工事
等の工事材料や土質・土壌改良材、脱臭剤その他多岐に
応用可能であり、特に用途を限定するものではない。
Therefore, according to the present invention, it is not necessary to enclose the microorganisms in the gel particles as in the conventional entrapping immobilization microorganism method, and a remarkable rationalization has been achieved. Furthermore, in the present invention, the microorganisms are immobilized only on the surface layer of the hydrogel particles, but the entrapping immobilization microbial method including the microorganisms in the particles and the effect on the microbial activity (treatment) are comparable. I have confirmed that. Moreover, since the polymer hydrogel particles of the present invention have sufficient strength, they can be used as both a fixed filler and a fluid medium. The polymer hydrogel particles of the present invention are treated with water as described above,
In addition to being used as a carrier for microorganism application technology such as brewing, it can be applied to a wide variety of construction materials such as tunnel construction, soil and soil improving materials, deodorants, etc., and is not particularly limited in use.

【0014】[0014]

【実施例】このでは特に水処理分野に応用する場合を想
定した実験例を示す。しかし、以下の実施例は本発明を
限定するものではない。 実施例1 水中に投入すると自重の約150倍の水を吸収し、著し
く膨潤して、球状ないし偏平球状のヒドロゲル粒状体
(粒径3〜4mm)になる性質をもつ高吸水性高分子
(イソブチレン−無水マレイン酸共重合体)の乾燥粉末
を第1表の組成をもつアクリルアミドモノマー水溶液a
内に添加混合したところ、20分後に、高吸水性高分子
は自重の約150倍に膨潤し、内部にモノマーが重合し
た水不溶性のポリアクリルアミドを保持した極めて強度
の大きな粒状3〜6mmのヒドロゲル粒子が得られた。
[Embodiment] In this example, an experimental example assuming a case of application to the water treatment field will be shown. However, the following examples do not limit the present invention. Example 1 A superabsorbent polymer (isobutylene) having the property of absorbing about 150 times its own weight of water when placed in water and swelling remarkably to form spherical or flat spherical hydrogel particles (particle diameter 3 to 4 mm). -Maleic anhydride copolymer) as a dry powder of acrylamide monomer aqueous solution a having the composition shown in Table 1
When added and mixed therein, the super absorbent polymer swelled to about 150 times its own weight after 20 minutes, and a very strong granular hydrogel of 3 to 6 mm holding water-insoluble polyacrylamide in which a monomer was polymerized was retained inside. Particles were obtained.

【0015】[0015]

【表1】 [Table 1]

【0016】このヒドロゲル粒子の圧縮強度は6〜7k
g/cm2 と著しく大きく、従来の包括固定化微生物法
のゲルとして最も強度が大きいとされるポリエチレング
リコールヒドロゲルの圧縮強度は3〜4kg/cm2
あり、それよりも約2倍の強度をもっていた。このよう
に本発明では、ゲルを粒状に成型する工程、設備は全く
不要であり、高吸水性高分子粒子をモノマーを含んだ水
溶液内に添加し、攪拌しながら膨潤させるだけで粒状の
高強度のヒドロゲル粒子が得られることが実証された。
The compressive strength of the hydrogel particles is 6 to 7 k.
The compressive strength of polyethylene glycol hydrogel, which is remarkably large as g / cm 2 and is said to have the highest strength as the gel of the conventional entrapping immobilization microorganism method, is 3 to 4 kg / cm 2 , which is about twice as high as that. I was there. As described above, in the present invention, the step of molding the gel into granules and equipment are not required at all, and the superabsorbent polymer particles are added to the aqueous solution containing the monomer, and the granular high strength is obtained by swelling while stirring. It was demonstrated that the following hydrogel particles were obtained.

【0017】実施例2 次にこの本発明の高分子ヒドロゲル粒子に硝酸菌を固定
化する試験を行った。下水の活性汚泥処理水(水温25
℃、BOD5〜10mg/リットル、NH3−N20〜
25mg/リットル)を槽容積20リットル(水深0.
8m)のタンク内に20リットル/時間の水量で供給し
ながら、本発明の透明高分子ヒドロゲル粒子を6リット
ル投入し、懸濁流動させた。この条件で、通水を始めて
から20日後に処理水の水質を測定したところ、処理水
中のNH3 −Nは1.5〜2.3mg/リットルとな
り、高度の硝化がなされた。槽から高分子ヒドロゲル粒
子を取り出して観察したところ、表層部に褐色の硝化菌
が多量に固定化されていた。
Example 2 Next, a test for immobilizing nitric acid bacteria on the polymer hydrogel particles of the present invention was conducted. Sewage activated sludge treated water (water temperature 25
℃, BOD5~10mg / liter, NH 3 -N20~
25 mg / liter) with a tank volume of 20 liters (water depth: 0.
While supplying water at a rate of 20 liters / hour into a tank of 8 m), 6 liters of the transparent polymer hydrogel particles of the present invention were added and the suspension fluidized. Under this condition, when the quality of the treated water was measured 20 days after starting the passage of water, the NH 3 —N in the treated water was 1.5 to 2.3 mg / liter, and a high degree of nitrification was performed. When the polymer hydrogel particles were taken out from the tank and observed, a large amount of brown nitrifying bacteria were immobilized on the surface layer.

【0018】[0018]

【発明の効果】本発明と従来の包括固定化微生物法との
効果の相違を第2表に示した。すなわち、本発明は第2
表の左の欄の様な効果があり、高強度の粒状高分子ヒド
ロゲルを著しく容易に、かつ大量に生産でき、しかも微
生物を効果的に本発明のヒドロゲル粒子に固定化でき
る。
The difference in effect between the present invention and the conventional entrapping immobilization microorganism method is shown in Table 2. That is, the present invention is the second
The effect as shown in the left column of the table is obtained, and it is possible to remarkably easily produce a high-strength granular polymer hydrogel in a large amount, and also to effectively immobilize microorganisms on the hydrogel particles of the present invention.

【0019】[0019]

【表2】 [Table 2]

【0020】本発明によって、大規模の排水処理に、例
えば処理量50〜100万m3 /日の下水処理設備に、
固定化微生物法を工業的に実施する上で初めて妥当なコ
ストで適用できるようになった。
According to the present invention, for large-scale wastewater treatment, for example, sewage treatment equipment having a treatment capacity of 5 to 1,000,000 m 3 / day,
It became possible to apply the immobilized microbial method at a reasonable cost for the industrial implementation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による高強度の高分子ヒドロゲル粒子の
製造方法を示すフローチャートである。
FIG. 1 is a flow chart showing a method for producing high strength polymer hydrogel particles according to the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年8月17日[Submission date] August 17, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[0019]

【表2】 [Table 2]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高吸水性高分子Aの粒子内部に、水不溶
性の高分子B樹脂を生成させてなる高分子ヒドロゲル粒
状物。
1. A polymer hydrogel granular material obtained by forming a water-insoluble polymer B resin inside particles of a superabsorbent polymer A.
【請求項2】 高吸水性高分子Aの粒子内部に、高分子
B前駆体の水溶液を吸収させた後、前記高分子Aの粒子
内部において、前記高分子B前駆体を重合せしめて水不
溶性の高分子Bを生成させることを特徴とする高分子ヒ
ドロゲル粒状物の製造方法。
2. A water-insoluble substance obtained by polymerizing the polymer B precursor inside the polymer A particle after absorbing an aqueous solution of the polymer B precursor into the particle of the superabsorbent polymer A. 1. A method for producing a polymer hydrogel granular material, characterized in that the polymer B is produced.
【請求項3】 前記高分子ヒドロゲル粒状物を水中乃至
湿潤環境下で、少なくとも目的の微生物存在下に保持し
て、該高分子ヒドロゲル粒状物表面に該微生物を固定化
することを特徴とする微生物固定化方法。
3. A microorganism characterized in that the polymer hydrogel granules are retained in water or a moist environment in the presence of at least the desired microorganisms to immobilize the microorganisms on the surface of the polymer hydrogel granules. Immobilization method.
JP17594593A 1993-06-24 1993-06-24 Microorganism immobilization method using polymer hydrogel granules Expired - Fee Related JP3361570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17594593A JP3361570B2 (en) 1993-06-24 1993-06-24 Microorganism immobilization method using polymer hydrogel granules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17594593A JP3361570B2 (en) 1993-06-24 1993-06-24 Microorganism immobilization method using polymer hydrogel granules

Publications (2)

Publication Number Publication Date
JPH0780282A true JPH0780282A (en) 1995-03-28
JP3361570B2 JP3361570B2 (en) 2003-01-07

Family

ID=16005006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17594593A Expired - Fee Related JP3361570B2 (en) 1993-06-24 1993-06-24 Microorganism immobilization method using polymer hydrogel granules

Country Status (1)

Country Link
JP (1) JP3361570B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787579A1 (en) 1996-02-05 1997-08-06 Teijin Limited Biaxially oriented laminate films and magnetic recording media
US5965233A (en) * 1996-06-06 1999-10-12 Teijin Limited Laminate film and magnetic recording medium using the same
US6124021A (en) * 1997-05-20 2000-09-26 Teijin Limited Biaxially oriented laminate film of wholly aromatic polyamide and magnetic recording media
US6344257B1 (en) 1998-04-13 2002-02-05 Teijin Limited Aromatic polyamide film for high-density magnetic recording media
WO2004064997A1 (en) * 2003-01-23 2004-08-05 Inotech Ag New microcapsules useful as extraction means in particular for extracting water or soil contaminants
WO2004064971A3 (en) * 2003-01-23 2004-10-14 Inotech Ag Process for preparing microcapsules having an improved mechanical resistance
JP2005042037A (en) * 2003-07-24 2005-02-17 Hideki Yamamoto Polyvinyl alcohol granular gel and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348337A (en) * 1986-08-19 1988-03-01 Sumitomo Chem Co Ltd Production of composite water-absorptive plastic material
JPS6448802A (en) * 1987-08-19 1989-02-23 Kyoritsu Yuki Co Ltd Water-absorbing resin
JPH01243988A (en) * 1988-03-24 1989-09-28 Daiso Co Ltd Method for immobilizing microorganism
JPH02280893A (en) * 1989-04-20 1990-11-16 Meidensha Corp Method for immobilizing nitrifying bacteria and water purifying treatment
JPH06142674A (en) * 1992-11-11 1994-05-24 Ebara Infilco Co Ltd Biological purification carrier for water and method and device for purifying water using its carrier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348337A (en) * 1986-08-19 1988-03-01 Sumitomo Chem Co Ltd Production of composite water-absorptive plastic material
JPS6448802A (en) * 1987-08-19 1989-02-23 Kyoritsu Yuki Co Ltd Water-absorbing resin
JPH01243988A (en) * 1988-03-24 1989-09-28 Daiso Co Ltd Method for immobilizing microorganism
JPH02280893A (en) * 1989-04-20 1990-11-16 Meidensha Corp Method for immobilizing nitrifying bacteria and water purifying treatment
JPH06142674A (en) * 1992-11-11 1994-05-24 Ebara Infilco Co Ltd Biological purification carrier for water and method and device for purifying water using its carrier

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0787579A1 (en) 1996-02-05 1997-08-06 Teijin Limited Biaxially oriented laminate films and magnetic recording media
US5912063A (en) * 1996-02-05 1999-06-15 Teijin Limited Biaxially oriented laminate films and magnetic recording media
US5965233A (en) * 1996-06-06 1999-10-12 Teijin Limited Laminate film and magnetic recording medium using the same
US6124021A (en) * 1997-05-20 2000-09-26 Teijin Limited Biaxially oriented laminate film of wholly aromatic polyamide and magnetic recording media
US6344257B1 (en) 1998-04-13 2002-02-05 Teijin Limited Aromatic polyamide film for high-density magnetic recording media
WO2004064997A1 (en) * 2003-01-23 2004-08-05 Inotech Ag New microcapsules useful as extraction means in particular for extracting water or soil contaminants
WO2004064971A3 (en) * 2003-01-23 2004-10-14 Inotech Ag Process for preparing microcapsules having an improved mechanical resistance
JP2005042037A (en) * 2003-07-24 2005-02-17 Hideki Yamamoto Polyvinyl alcohol granular gel and method for producing the same
JP4526008B2 (en) * 2003-07-24 2010-08-18 秀樹 山本 Polyvinyl alcohol-based granular gel and method for producing the same

Also Published As

Publication number Publication date
JP3361570B2 (en) 2003-01-07

Similar Documents

Publication Publication Date Title
CN105087541A (en) Microbe immobilizing method
JPH0380803B2 (en)
US4518693A (en) Immobilized biocatalysts
JP3361570B2 (en) Microorganism immobilization method using polymer hydrogel granules
US4906717A (en) Hydroabsorbent resins, production method and application thereof for obtaining articles capable of absorbing aqueous fluids
Karadağ et al. Swelling characterization of gamma-radiation induced crosslinked acrylamide/maleic acid hydrogels in urea solutions
RU2715380C1 (en) Method of producing a moisture-absorbing composite polymer material with microbiological additives
JPH10136980A (en) Support for bioreactor and its production
JP3801717B2 (en) Bioreactor carrier and catalyst
US3964973A (en) Preparation of insoluble biologically active compounds
CN1153519A (en) Process for producing aqueous gel, heavy-metal ion adsorbent, pigment adsorbent, microbe carrier, and carrier for enzyme immobilization
JPS60153998A (en) Waste water treating agent and its preparation
JPH0249709B2 (en)
RU2643040C2 (en) Method for obtaining water-absorbing composite polymer material
JPS62279887A (en) Surface immobilized anaerobic bacteria granule and treatment of waste water using same
JPH0374156B2 (en)
JP3378700B2 (en) Granular phosphorus adsorbent using tap water sludge and its production method
JPS59206095A (en) Process for preserving activated sludge by drying
JPH02113826A (en) Production of granular culture soil
JPS63294786A (en) Immobilization of cell of microorganism
JPS6324438B2 (en)
JPS649073B2 (en)
Mechain et al. Immobilization of asparaginase in radiation cured, thermally reversible hydrogels
KR100596366B1 (en) Hydrophilic immobilized media for immobilizing microbe for the wastewater treatment and manufacturing method thereof
JPH0427837B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees