JPS62165967A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62165967A
JPS62165967A JP835386A JP835386A JPS62165967A JP S62165967 A JPS62165967 A JP S62165967A JP 835386 A JP835386 A JP 835386A JP 835386 A JP835386 A JP 835386A JP S62165967 A JPS62165967 A JP S62165967A
Authority
JP
Japan
Prior art keywords
diffusion region
region
diode
conductivity type
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP835386A
Other languages
Japanese (ja)
Inventor
Toshio Wakabayashi
敏雄 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP835386A priority Critical patent/JPS62165967A/en
Publication of JPS62165967A publication Critical patent/JPS62165967A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Abstract

PURPOSE:To reduce the number of the steps of assembling a semiconductor device by forming a protecting diode in a diffused region formed deeper than the base of a transistor TR to prevent a current flowing to a diode when the TR is turned OFF and to form the TR and the diode in one chip. CONSTITUTION:An epitaxial layer 4 on one conductivity type semiconductor substrate of a semiconductor device 1 is separated by a separating diffused region 9, and a first diffuse region 5 is formed through the hole of a thermal oxide film 12 on the layer 4. A one conductivity type diffused region 8 and a reverse conductivity type diffused region 7 are formed on the periphery of the region 5. A Schottky electrode 6 is further formed on the inside periphery of the region 7 as a protecting diode 2, and an ohmic electrode 10 is bonded to a region 8. A base electrode of one conductivity type diffused region 11 of a TR3 and an emitter electrode of reverse conductivity type diffused region 13 are formed in the holes of the film 12 of the layer 4 separated by a region 9. The region 5 of the diode 3 is formed deeper than the region 11 of the TR3 to prevent a current flowing to the diode 2 when the TR3 is turned OFF.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は半導体装置、特にトランジスタ等の保護ダイオ
ードに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to semiconductor devices, particularly protection diodes for transistors and the like.

(ロ)従来の技術 電子回路において、トランジスタはダイオードと接続し
た形で良く使われる。例えば第4図の如く、スイッチン
グ回路において、1〜ランジスタがON状態の時にL負
荷に蓄積されたエネルギーがOFFの瞬間トランジスタ
のコレクタ・エミッタ間を通る。このスパイク電圧がト
ランジスタをバンチスルーさせトランジスタを破壊させ
ることがある。その時にダイオードがONしスパイク電
圧を減少させるものである。
(b) Conventional technology In electronic circuits, transistors are often used in a form connected to diodes. For example, as shown in FIG. 4, in a switching circuit, when transistors 1 to 1 are in the ON state, the energy stored in the L load momentarily passes between the collector and emitter of the transistor in the OFF state. This spike voltage can cause the transistor to bunch through and destroy the transistor. At that time, the diode turns on and reduces the spike voltage.

この様な回路を組立てる時は、一般に配線基板上にトラ
ンジスタチップとダイオードチップを半田付けして電子
回路等を組立てていた。
When assembling such circuits, electronic circuits and the like were generally assembled by soldering transistor chips and diode chips onto a wiring board.

しかし上述の如き方法では組立て工数や単価等が増える
ため特開昭57−15466号公報のようにトランジス
タとダイオードをワンチップ化することがおこなわれて
おり、N型のシリコン基板(21)の−・主面にベース
となる2つのP型拡散領域(22) (22)を形成し
、各P型領域(22)の表面の一部にエミッタとなるN
+型拡散領域(23)(23)を形成して、−i側をN
PN型トランジスタとする電極ベース(24)、エミッ
タ(25)を設け、他方側はコレクタとベースを電極材
(アルミニウム)により短絡させ、エミッタ上に端子を
設けてダイオード(26)とすることにより一つのチッ
プ内に形成していた。
However, since the above-mentioned method increases the number of assembly steps and unit cost, a transistor and a diode are integrated into one chip as in Japanese Patent Application Laid-Open No. 57-15466.・Two P-type diffusion regions (22) (22) are formed on the main surface as bases, and N is formed as an emitter on a part of the surface of each P-type region (22).
+ type diffusion regions (23) (23) are formed and the -i side is N
A PN type transistor is provided with an electrode base (24) and an emitter (25), and on the other side, the collector and base are short-circuited with an electrode material (aluminum), and a terminal is provided on the emitter to form a diode (26). It was formed within one chip.

(ハ)発明が解決しようとする問題点 上述の如き構成にあるダイオード(26)は、スパイク
電圧により破壊されるトランジスタの保護素子として次
の性能が要求される。
(c) Problems to be Solved by the Invention The diode (26) having the above-mentioned configuration is required to have the following performance as a protection element for a transistor destroyed by a spike voltage.

先ず応答速度が速いこと、スパイクに強いこと、ダイオ
ードとP型のショットキ電極とでトランジスタ動作をし
ないこと等である。
First, it has a fast response speed, is resistant to spikes, and does not operate as a transistor between a diode and a P-type Schottky electrode.

しかし上述の構成のダイオード(26)ではこの要求を
すべて満足することは非常に難しい。
However, it is very difficult to satisfy all of these requirements with the diode (26) having the above configuration.

(ニ)問題点を解決するための手段 本発明は斯上の問題点に鑑みてなされ、保護ダイオード
(3)とトランジスタ(2)を1チップに形成した半導
体装置<1)に於いて、前記半導体基板(4)上に形成
される一導電型の第1の拡散領域(5)と、該第1の拡
散領域(5)内に形成されるシヨ・/トキ接合電極(6
)と、該ショットキ接合型M(6)の周辺に形成される
逆導電型および一導電型の二重拡散領域(7)<8)と
、前記第1の拡散領域(5)の周囲に形成される逆導電
型の分離拡散領域(9)と、前記半導体基板(4)に形
成される)・ランジスタ(2)と、前記二重拡散領域(
7)(8)の一部である一導電型の拡散領域(8)と接
続するオーミック電極(10)とを備え、前記トランジ
スタのベース拡散領域(11)よりも深く形成された第
1の拡散領域〈5)と、前記二重拡散領域(7)(8)
で形成されたツェナーダイオードと、前記第1の拡散領
域(5)全体を囲むように形成される高不純物濃度であ
る分離拡散領域(9)とを具備することで解決するもの
である。
(d) Means for solving the problems The present invention has been made in view of the above problems, and provides a semiconductor device <1) in which a protection diode (3) and a transistor (2) are formed on one chip. A first diffusion region (5) of one conductivity type formed on a semiconductor substrate (4), and a top/bottom junction electrode (6) formed within the first diffusion region (5).
), a double diffusion region (7)<8) of opposite conductivity type and one conductivity type formed around the Schottky junction type M(6), and a double diffusion region (7) <8) formed around the first diffusion region (5). an isolation diffusion region (9) of opposite conductivity type formed in the semiconductor substrate (4), a transistor (2) formed in the semiconductor substrate (4), and the double diffusion region (
7) A first diffusion formed deeper than the base diffusion region (11) of the transistor, comprising an ohmic electrode (10) connected to a diffusion region (8) of one conductivity type that is a part of (8). Region <5) and the double diffusion region (7) (8)
This problem can be solved by providing a Zener diode formed with a high impurity concentration isolation diffusion region (9) formed so as to surround the entire first diffusion region (5).

(ホ)作用 前記半導体基板(4)上に形成される一導電型の拡散領
域(5〉と、該拡散領域(5)内に形成されるショット
キ接合電極(6)とでショットキ・バリア・ダイオード
を形成している。前記ショットキ・バリア・ダイオード
は逆回復時間trrが非常に小さいため応答速度が非常
に速い。
(E) Function The diffusion region (5) of one conductivity type formed on the semiconductor substrate (4) and the Schottky junction electrode (6) formed in the diffusion region (5) form a Schottky barrier diode. The Schottky barrier diode has a very short reverse recovery time trr and therefore has a very fast response speed.

また前記ショットキ接合電極(6)の周辺に形成きれる
逆導電型および一導電型の二重拡散領域<7)(8)と
、該二重拡散領域(7)(8)の一部である一導電型の
拡散領域(8)表面で形成されるオーミック電極(10
)とを備え、前記二重拡散領域(7)<8>でツェナー
ダイオードを形成している。前記ツェナーダイオードの
ツェナー電圧■2を例えば2VC6< v2< 3 V
cc(少なくとも2Vcc<Vz)の範囲とすることで
逆向きサージに弱い前記ショットキ・バリア・ダイオー
ドを保護し、スパイクに強くなる。
Further, double diffusion regions of opposite conductivity type and one conductivity type <7) (8) that can be formed around the Schottky junction electrode (6), and a part of the double diffusion regions (7) and (8) An ohmic electrode (10) is formed on the surface of the conductive type diffusion region (8).
), and the double diffusion regions (7) and <8> form a Zener diode. The Zener voltage 2 of the Zener diode is, for example, 2VC6<v2<3V
cc (at least 2Vcc<Vz), the Schottky barrier diode, which is vulnerable to reverse surges, is protected and becomes resistant to spikes.

更には前記トランジスタのベース拡散領域(11〉より
も深く形成きれた第1の拡散領域り5)により、ダイオ
ードとP型のショットキ電極<6)とで形成されてしま
うトランジスタの動作を防止できる。
Furthermore, the first diffusion region 5 formed deeper than the base diffusion region (11) of the transistor can prevent the operation of the transistor formed by the diode and the P-type Schottky electrode <6).

そして前記第1の拡散領域(5)全体を囲むように形成
される高不純物濃度である逆導電型の分離拡散領域(9
)を設けることで、前記分離拡散領域(9)は低抵抗と
なり、逆サージが加わった時前記トランジスタに電流が
流込まずより一層前記分離拡散領域(9)を通ってダイ
オード(2)へ流れるようになる。
Then, an isolation diffusion region (9) of opposite conductivity type with a high impurity concentration is formed to surround the entire first diffusion region (5).
), the isolation diffusion region (9) has a low resistance, and when a reverse surge is applied, current does not flow into the transistor, but flows through the isolation diffusion region (9) to the diode (2). It becomes like this.

また前記二重拡散領域(7)(8)の一部である一導電
型の拡散領域(8)と接続するオーミック電極〈10〉
はトランジスタのコレクタ領域とは接続されてないため
、トランジスタがオフした時ダイオード(2)よりトラ
ンジスタへ流込む電流をコレクタ領域を介せず流せるた
め、コレクタ損失を減少できる。
Also, an ohmic electrode <10> connected to the one conductivity type diffusion region (8) which is a part of the double diffusion regions (7) and (8).
is not connected to the collector region of the transistor, so when the transistor is turned off, the current that flows into the transistor from the diode (2) can flow without passing through the collector region, thereby reducing collector loss.

(へ)実施例 本発明は第3図の等価回路をワンチップ化したものであ
り、以下に実施例を第1図を参照しながら説明する。
(F) Embodiment The present invention is a one-chip version of the equivalent circuit shown in FIG. 3, and an embodiment will be described below with reference to FIG. 1.

第1図に示す如く、P゛型の半導体基板上に例えばエピ
タキシへ・ル成長法で形成されP−型の工ビタギシャル
層(4)と、 該エピタキシャル層(4)上に形成きれている熱酸化膜
(12)に、写真蝕刻法でP+型の分離拡散領域(9)
部を開口し、この開口部を介していわゆる分離拡散法に
より形成されるP1型の分離拡散領域(9)と、また分
離拡散を行う前に予めP33拡散を形成して上と下から
同時にエピタキシャル層にP4拡散をしてもよい、 前記エピタキシャル層(4)上に形成されている熱酸化
膜け2)に、写真蝕刻法等でN−型の拡散領域<5)部
を開口し、開口部を介して形成されるN−型の拡散領域
(5)と、 該N−型の拡散領域(5)の周辺に、例えば不純物であ
るリンをイオン注入法で注入し、形成されるN+型の拡
散領域(8)と、ここでこのイオン注入条件は印加電圧
100 KeV、ドーズ量3XIQ13cm−’とする
、 前記N+型の拡散領域(8)表面上における熱酸化膜の
一部を写真蝕刻法で開口し、前記開口部を介して前記N
+型の拡散領域(8)の内側周辺に、例えばBNをソー
スとする拡散で形成きれるP3型の拡散領域(7)と、
ここで拡散温度は1100℃とする、 前記エピタキシャル層上に熱拡散法等で形成されるベー
ス領域となるN−型の拡散領域(11)と、該ベース領
域となるN−型の拡散領域(11)内に熱拡1ik法等
で形成されるエミッタ領域となるP+型の拡散領域(1
3)と、 前記N+型の拡散領域(8)の一部を蒸若により形成さ
れたアルミニウム電極(10)と、ここで前記アルミニ
ウム電極(10)は500〜550°Cでアロイ化され
オーミック電極となる、また回路組立ての際電極(10
)とコレクタ電極は電気的に接続される、前記P+型の
拡散領域(7)の内側周辺の領域に形成されるショット
キ・バリア層(6)と、ここで金属はモリブデン、タン
グステン、白金等で450〜500℃で金属−シリサイ
・ド層を形成し、ショットキ・バリア電極(6)を作る
As shown in FIG. 1, there is a P- type epitaxial layer (4) formed on a P type semiconductor substrate by, for example, an epitaxial growth method, and a thermal layer formed on the epitaxial layer (4). A P+ type isolation diffusion region (9) is formed on the oxide film (12) by photolithography.
A P1 type isolation diffusion region (9) formed by a so-called isolation diffusion method is formed through this opening, and a P33 diffusion is formed in advance before isolation diffusion to form an epitaxial layer simultaneously from above and below. In the thermal oxide film 2) formed on the epitaxial layer (4), in which P4 diffusion may be performed, an N- type diffusion region <5) is opened by photolithography or the like, and the opening is formed. An N-type diffusion region (5) is formed through the N-type diffusion region (5), and an N+-type diffusion region is formed by implanting, for example, phosphorus as an impurity into the periphery of the N-type diffusion region (5) by ion implantation. A part of the thermal oxide film on the surface of the N+ type diffusion region (8) is opened by photolithography, where the ion implantation conditions are an applied voltage of 100 KeV and a dose of 3XIQ13 cm-'. and the N through the opening.
A P3 type diffusion region (7), which can be formed by diffusion using BN as a source, for example, around the inside of the + type diffusion region (8);
Here, the diffusion temperature is 1100°C. An N-type diffusion region (11) which will become a base region is formed on the epitaxial layer by a thermal diffusion method or the like, and an N-type diffusion region (11) which will become the base region. 11) A P+ type diffusion region (1
3), an aluminum electrode (10) formed by vaporizing a part of the N+ type diffusion region (8), and here the aluminum electrode (10) is alloyed at 500 to 550°C to form an ohmic electrode. Also, when assembling the circuit, the electrode (10
) and the collector electrode are electrically connected to a Schottky barrier layer (6) formed in the inner peripheral region of the P+ type diffusion region (7), where the metal is molybdenum, tungsten, platinum, etc. A metal-silicide layer is formed at 450-500°C to form a Schottky barrier electrode (6).

前記N−型の拡散領域(11)とP+型の拡散領域(1
3)とに夫れ夫れ形成されるベースおよびエミッタ電極
とにより構成される。
The N- type diffusion region (11) and the P+ type diffusion region (1)
3) A base electrode and an emitter electrode are respectively formed.

ここで本発明の第1および第2の特徴は第3図に示す如
く、ショットキ・バリア・ダイオードがあり、また該シ
ョットキ・バリア・ダイオードと並列に接続され、前記
P°型の拡散領域(7)と前記N+型の拡散領域(8)
とで構成される二重拡散領域(7)(8)により形成さ
れるツェナーダイオードがある。
Here, the first and second features of the present invention, as shown in FIG. ) and the N+ type diffusion region (8)
There is a Zener diode formed by double diffusion regions (7) and (8).

前記N−型の拡散領域(5〉と、該N−型の拡散領域(
5)内に形成されるショットキ接合電極(6)とでンヨ
ッ1〜キ・バリア・ダイオードを形成しており、このシ
ョットキ・バリア・ダイオードは逆回復時間trrが非
常に小さいため応答速度が非常に速い。
The N-type diffusion region (5) and the N-type diffusion region (5)
A Schottky barrier diode is formed with the Schottky junction electrode (6) formed inside 5), and this Schottky barrier diode has a very short reverse recovery time trr, so its response speed is very high. fast.

また二重拡散領域(7)(8)により形成されるツェナ
ーダイオードのツェナー電圧V2を2Vcc<Vz<a
vccの範囲(少なくとも2Vcc<Vz)となるよう
に不純物濃度を制御する。従って逆サージに弱い前記シ
ョットキ・バリア・ダイオードを保護できるようになる
In addition, the Zener voltage V2 of the Zener diode formed by the double diffusion regions (7) and (8) is set to 2Vcc<Vz<a
The impurity concentration is controlled to be within the range of Vcc (at least 2Vcc<Vz). Therefore, the Schottky barrier diode, which is vulnerable to reverse surges, can be protected.

また第3の特徴としては前記l・ランジスタのベース拡
散領域(11)よりも深く形成された第1の拡散領域(
5)にある。
The third feature is that the first diffusion region (11) is formed deeper than the base diffusion region (11) of the l transistor.
5).

つまり第1の拡散領域(5)を深く形成すると、注入さ
れる電子がベース内部で再結合により失われ、P型のシ
ョットキ電極(6)、N−型の拡散領域、P型の半導体
基板(5)<4)で形成されるトランジスタの動作を防
止できる。
In other words, when the first diffusion region (5) is formed deeply, the injected electrons are lost due to recombination inside the base, and the P-type Schottky electrode (6), the N-type diffusion region, and the P-type semiconductor substrate ( 5) The operation of the transistor formed in <4) can be prevented.

また第4の特徴としては前記第1の拡散領域(5)全体
を囲むように形成される高不純物濃度の逆導電型の分離
拡散領域(9)を設けること、つまりN−型の拡散領域
(5)の周囲に形成されるP3型の分離拡散領域(9)
を設けであるため、分離拡散領域(9)は低抵抗となり
、逆ザージが加わった時にトランジスタに流込まず、よ
り−KBP+型の分離拡散領域(9)を通って保護ダイ
オードへ流れるようになる。
The fourth feature is that an isolation diffusion region (9) of a high impurity concentration and opposite conductivity type is formed to surround the entire first diffusion region (5), that is, an N-type diffusion region ( 5) P3 type separation diffusion region (9) formed around
Because of this, the isolation diffusion region (9) has a low resistance, and when a reverse surge is applied, it does not flow into the transistor, but flows to the protection diode through the -KBP+ type isolation diffusion region (9). .

更に第5の特徴としては前記二重拡散領域(7)(8)
の一部であるN+型の拡散領域(8)と接続するオーミ
ック電極(10)はトランジスタのコレクタ領域とは接
続されていない。また前記電極(10)とコレクタ領域
とは回路組立ての際リード線間を電気的に接続する。従
って!・ランジスタがオフした時ダイオード(2)より
トランジスタに流込む電流をコレクタ領域を介せずバイ
パスして流せるためコレクタ損失を減少できる。
Furthermore, the fifth feature is the double diffusion region (7) (8).
The ohmic electrode (10) connected to the N+ type diffusion region (8) which is part of the transistor is not connected to the collector region of the transistor. Further, the electrode (10) and the collector region electrically connect lead wires during circuit assembly. Therefore! - When the transistor is turned off, the current that flows into the transistor from the diode (2) can be bypassed without going through the collector region, reducing collector loss.

(ト)発明の効果 以上の説明からも明らかな如く、前記ショットキ・バリ
ア・ダイオードと、該ショットキ・バリア・ダイオード
と並列接続きれ、前記二重拡散領域<7>(8)により
形成されるツェナーダイオードと、前記トランジスタの
ベース拡散領域(11)よりも深く形成された第1の拡
散領域(5)とにより、応答速度が速く、スパイクに強
く、更にはP型のショットキ電極(6)、N−型の拡散
領域、P型の半導体基板(5)(4)で形成されるトラ
ンジスタの動作を防止できる。
(g) Effects of the invention As is clear from the above explanation, the Schottky barrier diode and the Zener formed by the double diffusion region <7>(8) which is connected in parallel with the Schottky barrier diode Due to the diode and the first diffusion region (5) formed deeper than the base diffusion region (11) of the transistor, the response speed is fast and resistant to spikes, and the P-type Schottky electrode (6), N It is possible to prevent the operation of the transistor formed by the − type diffusion region and the P type semiconductor substrate (5) (4).

また逆サージが加わった際に、低抵抗のP1型の分離拡
散領域(9)を介して良好に保護ダイオード(2)へ流
すことができるため、より一層信頼性を向上きせること
ができる。
In addition, when a reverse surge is applied, the current can flow to the protection diode (2) through the low-resistance P1 type isolation diffusion region (9), so that reliability can be further improved.

更にはトランジスタ(3)がオフしたI時ダイオード(
2)よりトランジスタ(3)にl!lコ込む電流をコレ
クタ領域を介せずバイパスして流せるため、トランジス
タ(3)のコレクタ損失を減少できる。
Furthermore, when the transistor (3) is turned off, the diode (
2) to transistor (3)! The collector loss of the transistor (3) can be reduced because the current flowing into the transistor (3) can be bypassed without passing through the collector region.

従ってトランジスタ特性にあったダイオードをトランジ
スタと一緒にフンチップ化することで、組立て工数を減
少でき、更には単価も安くできる。
Therefore, by incorporating a diode that matches the characteristics of the transistor into a single chip together with the transistor, the number of assembly steps can be reduced, and the unit price can also be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例であり半導体装置の断面図、
第2図は従来の半導体装置の断面図、第3図は本発明の
半導体装置の等価回路図、第4図はスイッチング回路を
示す図である。 (1)は半導体装置、(2)は保護ダイオード、(3)
はトランジスタ、(4〉はエピタキシャル5. (5)
は第1の拡散領域、(6)はショットキ電極、(7)は
逆導電型の拡散領域、(8)は−導電型の拡散領域、(
9)は分離拡散領域、(10)はオーミック電極である
。 第1図 第2図 第3図 :14 4  ;”’
FIG. 1 is an embodiment of the present invention, and is a cross-sectional view of a semiconductor device.
FIG. 2 is a sectional view of a conventional semiconductor device, FIG. 3 is an equivalent circuit diagram of the semiconductor device of the present invention, and FIG. 4 is a diagram showing a switching circuit. (1) is a semiconductor device, (2) is a protection diode, (3)
is a transistor, (4> is an epitaxial 5. (5)
is the first diffusion region, (6) is the Schottky electrode, (7) is the diffusion region of opposite conductivity type, (8) is the diffusion region of − conductivity type, (
9) is a separation diffusion region, and (10) is an ohmic electrode. Figure 1 Figure 2 Figure 3: 14 4 ;”'

Claims (1)

【特許請求の範囲】[Claims] (1)保護ダイオードとトランジスタを1チップに形成
した半導体装置に於いて、前記半導体基板上に形成され
る一導電型の第1の拡散領域と、該第1の拡散領域内に
形成されるショットキ接合電極と、該ショットキ接合電
極の周辺に形成される逆導電型および一導電型の二重拡
散領域と、前記第1の拡散領域の周囲に形成される逆導
電型の分離拡散領域と、前記半導体基板に形成されるト
ランジスタと、前記二重拡散領域の一部である一導電型
の拡散領域と接続するオーミック電極とを備え、前記ト
ランジスタのベース拡散領域よりも深く形成された第1
の拡散領域と、前記二重拡散領域で形成されたツェナー
ダイオードと、前記第1の拡散領域全体を囲むように形
成される高不純物濃度である前記分離拡散領域とを具備
することを特徴とした半導体装置。
(1) In a semiconductor device in which a protection diode and a transistor are formed on one chip, a first diffusion region of one conductivity type formed on the semiconductor substrate, and a Schottky transistor formed in the first diffusion region. a junction electrode, a double diffusion region of opposite conductivity type and one conductivity type formed around the Schottky junction electrode, an isolated diffusion region of opposite conductivity type formed around the first diffusion region; A first transistor formed on a semiconductor substrate, and an ohmic electrode connected to a diffusion region of one conductivity type that is a part of the double diffusion region, and formed deeper than the base diffusion region of the transistor.
a Zener diode formed by the double diffusion region, and the separation diffusion region having a high impurity concentration and formed to surround the entire first diffusion region. Semiconductor equipment.
JP835386A 1986-01-17 1986-01-17 Semiconductor device Pending JPS62165967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP835386A JPS62165967A (en) 1986-01-17 1986-01-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP835386A JPS62165967A (en) 1986-01-17 1986-01-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62165967A true JPS62165967A (en) 1987-07-22

Family

ID=11690860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP835386A Pending JPS62165967A (en) 1986-01-17 1986-01-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62165967A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643422A1 (en) * 1993-09-13 1995-03-15 Texas Instruments Incorporated Method and system for protecting integrated circuits

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0643422A1 (en) * 1993-09-13 1995-03-15 Texas Instruments Incorporated Method and system for protecting integrated circuits
US6208493B1 (en) 1993-09-13 2001-03-27 Texas Instruments Incorporated Method and system for protecting integrated circuits against a variety of transients
KR100331661B1 (en) * 1993-09-13 2002-08-13 텍사스 인스트루먼츠 인코포레이티드 Methods and systems for protecting integrated circuits from various electrical transients

Similar Documents

Publication Publication Date Title
JP3074736B2 (en) Semiconductor device
US4595941A (en) Protection circuit for integrated circuit devices
JP2958202B2 (en) Semiconductor device
KR0159451B1 (en) Protection circuit for a semiconductor device
JPS6358380B2 (en)
JP2004336032A (en) Structure of integrated circuit for conducting electrostatic discharge energy
KR100208632B1 (en) Semiconductor integrated circuit and method of fabricating it
US4543593A (en) Semiconductor protective device
JP2834485B2 (en) Bipolar transistor
JPS5967670A (en) Semiconductor device
US4336489A (en) Zener regulator in butted guard band CMOS
JPS62179756A (en) Semiconductor device
JPS62165967A (en) Semiconductor device
US5880501A (en) Semiconductor integrated circuit and manufacturing method of the same
JPS62179142A (en) Semiconductor device
JPS62165978A (en) Protective diode
CA1161968A (en) Protection circuit for integrated circuit devices
JPS62165965A (en) Semiconductor device
JPH1117198A (en) Protection of logic well of component including integrated mos power transistor
JPS5916413B2 (en) semiconductor equipment
JPS62165966A (en) Semiconductor device
JPS62183157A (en) Semiconductor device
JP2901275B2 (en) Semiconductor integrated circuit device
JP2596312B2 (en) Semiconductor device
JPH0237112B2 (en)