JPS5916413B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS5916413B2
JPS5916413B2 JP11771075A JP11771075A JPS5916413B2 JP S5916413 B2 JPS5916413 B2 JP S5916413B2 JP 11771075 A JP11771075 A JP 11771075A JP 11771075 A JP11771075 A JP 11771075A JP S5916413 B2 JPS5916413 B2 JP S5916413B2
Authority
JP
Japan
Prior art keywords
region
type
semiconductor region
semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11771075A
Other languages
Japanese (ja)
Other versions
JPS5243374A (en
Inventor
昇 堀江
幹雄 はい島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11771075A priority Critical patent/JPS5916413B2/en
Publication of JPS5243374A publication Critical patent/JPS5243374A/en
Publication of JPS5916413B2 publication Critical patent/JPS5916413B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • H01L29/7322Vertical transistors having emitter-base and base-collector junctions leaving at the same surface of the body, e.g. planar transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Bipolar Transistors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、サージ電圧に強いPN接合を有する半導体装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device having a PN junction that is resistant to surge voltages.

従来のトランジスタ、或いはトランジスタおよび抵抗素
子などの複数の回路素子を集積化した半’o 導体集積
回路などのPN接合を有する半導体装置は、これに印加
される予期せぬサージ電圧によつてしばしぱ破壊される
場合がある。
Semiconductor devices with PN junctions, such as conventional transistors or semi-conductor integrated circuits that integrate multiple circuit elements such as transistors and resistive elements, often fail due to unexpected surge voltages applied to them. It may be destroyed.

この予期せぬサージ電圧は例えば半導体装置の運搬時の
人体からの静電気の誘導、或いはそれらの半導体装置を
j5テレビセットなどの電子機器に応用した場合にその
応用回路機器の周辺回路からの好ましくないサージ電圧
の誘導に起因し、好ましくないこのサージ電圧は、半導
体装置に設けられた信号の入出力端子、或いは接地端子
などの外部接続用端子から、j0半導体装置のPN接合
部に印加され、該PN接合を破壊するのである。従つて
、本発明の主たる目的は、サージ電圧によりPN接合が
破壊されるのを防止することにある。
This unexpected surge voltage may be caused, for example, by the induction of static electricity from the human body during the transportation of semiconductor devices, or if these semiconductor devices are applied to electronic equipment such as a J5 television set, undesirable surge voltage may be generated from the peripheral circuits of the applied circuit equipment. This undesirable surge voltage, which is caused by the induction of surge voltage, is applied to the PN junction of the j0 semiconductor device from a signal input/output terminal provided on the semiconductor device or an external connection terminal such as a ground terminal. This destroys the PN junction. Therefore, the main object of the present invention is to prevent the PN junction from being destroyed by surge voltage.

■5 本発明の他の目的は、半導体装置本来の特性を損
傷することなく、サージ電圧に対し破壊強度の強い半導
体装置を提供することにある。
(5) Another object of the present invention is to provide a semiconductor device that has strong breakdown strength against surge voltage without damaging the original characteristics of the semiconductor device.

:P!− 本発明のさらに他の目的は、半導体素子を形成するため
の半導体チツプ内の占有面積を極力小さくせしめたサー
ジ電圧に対する破壊強度の強い半導体装置を提供するこ
とにある。
:P! - Still another object of the present invention is to provide a semiconductor device which has a strong breakdown strength against surge voltage and which minimizes the area occupied within a semiconductor chip for forming a semiconductor element.

本発明の要旨は、少なくとも、第1導電型の第1領域中
に、第2導電型の第2領域が存在し、該第1領域と第2
領域との間にPN接合を有する半導体装置において、該
第2導電型の第2須域に、金属層によるコンタクト部を
形成し、該コンタクト部直下に、前記第2領域を囲むよ
うに、第3領域を形成し、該第3頭域は、前記第2須域
よりも濃度が低い第2導電型の領域若しくは前記第1領
域よりも濃度が低い第1導電型の須域又は、真性半導体
の碩域のいずれかよりなることを特徴とする半導体装置
にある。
The gist of the present invention is that at least a second region of the second conductivity type exists in the first region of the first conductivity type, and the first region and the second region
In a semiconductor device having a PN junction between the second region and the second region, a contact portion made of a metal layer is formed in the second region of the second conductivity type, and a contact portion is formed immediately below the contact portion so as to surround the second region. The third region is a region of a second conductivity type that has a lower concentration than the second region, a region of a first conductivity type that has a lower concentration than the first region, or an intrinsic semiconductor. A semiconductor device comprising any one of the following sub-regions.

以下、本発明を図面を参照にして説明する。Hereinafter, the present invention will be explained with reference to the drawings.

第1図bは本発明の一実施例に係る半導体装置(集積回
路)の断面図を示し、第1図dはその平面図を示す。第
1図aはその等価回路図を示し、第1図cはその半導体
装置に印加される電界強度を示す。第1図bにて、1は
P型の半導体基板、2は、N型島領域で、この島領域は
p+型のアイソレーシヨン須域5にて他のN型島領域(
図示せず)から電気的絶縁されている。3は、N型島領
域の中に形成されたP型のベース領域、4はP型ベース
領域中に形成されたN型のエミツタ領域、101は、コ
ンタクト部8によつてベース領域3にオーミツク接続さ
れている金属配線層で、これは入力端子7に接続される
FIG. 1b shows a sectional view of a semiconductor device (integrated circuit) according to an embodiment of the present invention, and FIG. 1d shows a plan view thereof. FIG. 1a shows its equivalent circuit diagram, and FIG. 1c shows the electric field strength applied to the semiconductor device. In FIG. 1b, 1 is a P-type semiconductor substrate, 2 is an N-type island region, and this island region is connected to another N-type island region (
(not shown). 3 is a P-type base region formed in the N-type island region, 4 is an N-type emitter region formed in the P-type base region, and 101 is an ohmic contact to the base region 3 through the contact portion 8. A connected metal wiring layer is connected to the input terminal 7.

102はエミツタ領域4にオーミツク接続された金属配
線層で、この金属配線層は導線14によつて接地される
Reference numeral 102 denotes a metal wiring layer ohmicly connected to the emitter region 4, and this metal wiring layer is grounded by a conductive wire 14.

103は、コレクタ領域として作用するN型島領域2に
オーミツク接続された金属配線層で、この配線層はさら
に、出力導体11および負荷抵抗13を通して電源Vc
cに接続される。
Reference numeral 103 denotes a metal wiring layer that is ohmicly connected to the N-type island region 2 that acts as a collector region, and this wiring layer is further connected to the power supply Vc through the output conductor 11 and the load resistor 13.
connected to c.

10は、低濃度なP一型碩域で、その不純物濃度は約1
015〜16at0ms/Cdである。
10 is a low-concentration P-type region, and its impurity concentration is approximately 1
015-16at0ms/Cd.

この不純物濃度は、P型ベース碩域3の不純物濃度(例
えば1018at0ms′)より低い濃度に規定される
。このP一型領域10は第1図dの平面図からも明らか
なように、入力信号の供給用の金属配線層101がベー
ス領域3にオーミツクコンタクトするコンタクト部8の
直下のP型ベース領域3の周囲を包囲するように配設さ
れている。このP一領域10は、エミツタ領域4の直下
部には存在しないので、トランジスタのベース幅を変え
ることはなく、従つて、トランジスタ素子が本来持つ電
流増幅率などの電気的特性を損傷することはない。しか
も、P一領域はベース領域に局部的に形成されるために
、従来の半導体装置とほぼ同様な占有面積を有する。次
に、かかる本発明の半導体装置の製造方法を述べる。
This impurity concentration is defined to be lower than the impurity concentration of the P-type base region 3 (for example, 1018 at0 ms'). As is clear from the plan view of FIG. 1d, this P-type region 10 is a P-type base region immediately below the contact portion 8 where the metal wiring layer 101 for supplying input signals is in ohmic contact with the base region 3. It is arranged so as to surround 3. Since this P-region 10 does not exist directly below the emitter region 4, it does not change the base width of the transistor, and therefore does not damage the electrical characteristics such as the current amplification factor that the transistor element originally has. do not have. Moreover, since the P1 region is formed locally in the base region, it has an occupied area almost the same as that of a conventional semiconductor device. Next, a method for manufacturing the semiconductor device of the present invention will be described.

第1図bにおいて、P型基板1を用意し、この上に周知
のエピタキシヤル成長技術によつてN型EP層を形1成
し、このEP層中にp+アイソレーシヨン領域5を周知
の拡散技術により形成する。その結果できたN型島領域
2中に、外部入力端子7に接続される金属層101とコ
ンタクト8を形成すべき部分の直下にP一型の領域10
を拡散技術により形成する。そして、このP一型領域1
0よりも浅いP型ベース領域3を、N型島領域2中に拡
散により形成する。その時、第1図dに示すように金属
層101のコンタクト部8直下に、形成されたP一型領
域10にその一部が、包囲されるように、P型ベース碩
域3が形成される。そのあと、N+型エミツタ領域4を
拡散技術によつて形成し、このN+型エミツタ領域4及
びP型ベース領域3、さらにN型島領域2に接続される
金属層101,102および103を蒸着等の手段によ
り形成する。なお、上記P一型領域は拡散技術によつて
形成する他に、イオン打込み技術によつても形成するこ
とができる。すなわち、P型基板1中に、p+アイソレ
ーシヨン須域5を拡散技術によつて形成したのち、N型
島領域2中に、ボロンなどのP型不純物をイオン打込み
することによりP一型領域10を形成する。そのあと、
第1図B,dに示すように少くなくともこのP一型領域
10にその一部が含まれるように、P一型領域10より
高濃度なP型のベース領域を拡散技術によつて形成する
。本発明のかかる半導体装置によれば、予期せぬ過渡状
態においてサージ電圧が印加されても、その半導体装置
のコレクタ、ベース間のPN接合は破壊から防止される
In FIG. 1b, a P-type substrate 1 is prepared, an N-type EP layer 1 is formed thereon by a well-known epitaxial growth technique, and a p+ isolation region 5 is formed in this EP layer by a well-known epitaxial growth technique. Formed by diffusion technology. In the resulting N-type island region 2, there is a P-type region 10 immediately below the part where the contact 8 is to be formed with the metal layer 101 connected to the external input terminal 7.
is formed using diffusion technology. And this P type region 1
A P type base region 3 shallower than 0 is formed in the N type island region 2 by diffusion. At this time, as shown in FIG. 1d, a P-type base subregion 3 is formed directly below the contact portion 8 of the metal layer 101 so as to be partially surrounded by the formed P-type region 10. . After that, an N+ type emitter region 4 is formed by diffusion technology, and metal layers 101, 102, and 103 connected to this N+ type emitter region 4, P type base region 3, and N type island region 2 are formed by vapor deposition, etc. Formed by means of. Note that the P-type region described above can be formed not only by the diffusion technique but also by the ion implantation technique. That is, after forming a p+ isolation region 5 in a P-type substrate 1 by diffusion technology, a P-type region 5 is formed by ion-implanting P-type impurities such as boron into the N-type island region 2. form 10. after that,
As shown in FIGS. 1B and d, a P-type base region having a higher concentration than the P-type region 10 is formed by diffusion technology so that at least a part of the P-type base region is included in the P-type region 10. do. According to the semiconductor device of the present invention, even if a surge voltage is applied in an unexpected transient state, the PN junction between the collector and base of the semiconductor device is prevented from being destroyed.

いま、第1図bに示す半導体装置の入力端子7に数百ボ
ルトの波高値を持つ負のサージ電圧Eiが印加された場
合を考えてみるに、サージ電流は金属層101のオーミ
ツクコンタクト部8からP型ベース領域3を通し、さら
にエミツタ・ベース間のPN接合を横切つてエミツタ金
属層102および導体14を通してアースに流れようと
する。一方、このサージ電圧は、電源Vccおよび抵抗
13を通して、N型コレクタ領域(島領域)2とP型ベ
ース領域3との間のコレクタ、ベースPN接合9に、該
PN接合9を逆バイアスする方向に印加される。このサ
ージ電圧は、ベース領域3に存在する分布抵抗104に
サージ電流が流れるがために、ベースコンタクト部8の
直下のコレクタ、ベースPN接合部に一番大きな逆バイ
アス電圧を供給し、このコンタクト部8直下の接合部か
ら離間された、エミツタ領域4の直下のコレクタ、ベー
スPN接合部に比較的小さな逆バイアス電圧が印加され
ることになる。すなわち、第1図cに示すように、ベー
スコンタクト部8の直下のPN接合部に印加される電界
はE5となり一番強く、エミツタ領域4の直下のPN接
合部の電界はE1であり一番弱くなる。しかるに、本発
明によれば、電界強度の一番強いベースコンタクト部8
直丁のPN接合部には特に低濃度なP一型の半導体領域
10が配設されているために、PN接合部のブレークダ
ウン電圧は補強されており、従つて、たとえ、電界強度
の強い逆バイアス電圧がPN接合に印加されても、その
PN接合は破壊から防止される。一般にPN接合部を形
成する隣接するP又はN型の半導体領域の不純物濃度が
より低濃度になるに従つて、P又はN型の半導体領域に
おける、PN接合のブレークダウンし始めるときの電界
(以下、臨界電界と言う)は、より低くなることが知ら
れている。これは例えばXPhysicsandTec
hnOlOgyOfSmi一COnductOrDev
icesIA.S.GROVEの193頁,Fig.6
,27に記載されている。従つて、本発明においてP一
型低濃度領域とN型領域とのP−N接合の臨界電界が従
来の場合よりも、低いためにp−N接合で消費されるエ
ネルギーが少くなり発生する熱も従来より低くなる。つ
まり、この接合での発熱による温度がSiの溶解温度に
まで達つしにくくなるのである。従つて外部端子に予期
せぬサージ電圧が印加されてもつこの端子が接続されて
いる直下のp−N接合の破壊強度が向上されるのである
。さらに、P一型の半導体碩域10は、ベースコンタク
ト部直下のみに形成されているため、P一領域10によ
つてベース幅を大きくすることはなノブ く、本来のトランジスタの特性を、そこなうことはない
Now, consider the case where a negative surge voltage Ei having a peak value of several hundred volts is applied to the input terminal 7 of the semiconductor device shown in FIG. 8 through the P-type base region 3, further across the PN junction between the emitter and base, through the emitter metal layer 102 and the conductor 14 to ground. On the other hand, this surge voltage is applied to the collector-base PN junction 9 between the N-type collector region (island region) 2 and the P-type base region 3 through the power supply Vcc and the resistor 13 in a direction that reverse biases the PN junction 9. is applied to Since this surge voltage causes a surge current to flow through the distributed resistance 104 existing in the base region 3, the highest reverse bias voltage is supplied to the collector and base PN junction immediately below the base contact portion 8, and this contact portion A relatively small reverse bias voltage is applied to the collector-base PN junction directly below the emitter region 4, which is spaced apart from the junction directly below the emitter region 8. That is, as shown in FIG. 1c, the electric field applied to the PN junction directly under the base contact portion 8 is E5, which is the strongest, and the electric field applied to the PN junction directly under the emitter region 4 is E1, which is the strongest. become weak. However, according to the present invention, the base contact portion 8 with the strongest electric field strength
Since a particularly low concentration P-type semiconductor region 10 is arranged in the direct PN junction, the breakdown voltage of the PN junction is reinforced, and therefore even if the electric field strength is strong, Even if a reverse bias voltage is applied to the PN junction, the PN junction is prevented from being destroyed. In general, as the impurity concentration of the adjacent P or N type semiconductor region forming the PN junction becomes lower, the electric field (hereinafter referred to as , the critical electric field) is known to be lower. This is for example XPhysicsandTec
hnOlOgyOfSmi-CONductOrDev
icesIA. S. GROVE page 193, Fig. 6
, 27. Therefore, in the present invention, the critical electric field of the P-N junction between the P-type low concentration region and the N-type region is lower than in the conventional case, so that less energy is consumed in the p-N junction and the heat generated is reduced. is also lower than before. In other words, it becomes difficult for the temperature generated by the heat generated in this bonding to reach the melting temperature of Si. Therefore, even if an unexpected surge voltage is applied to an external terminal, the breaking strength of the p-N junction directly below the external terminal connected to this terminal is improved. Furthermore, since the P-type semiconductor region 10 is formed only directly under the base contact portion, the base width is not increased by the P-type region 10, and the original characteristics of the transistor are impaired. Never.

また、P一領域10はベース領域に局部的に存在するの
で、半導体装置の集積度を減少させるという心配もない
。第2図A,bは、本発明をMOS型集積回路装置のゲ
ート保護用抵抗領域に応用した他の実施例を示す。
Further, since the P-region 10 exists locally in the base region, there is no fear that the degree of integration of the semiconductor device will be reduced. FIGS. 2A and 2B show another embodiment in which the present invention is applied to a gate protection resistor region of a MOS type integrated circuit device.

同図bは、MOS型集積回路装置の断面図を示し、同図
aは、MOS型集積回路装置の等価回路図を示す。第1
図b中、31は、N型半導体基板である。37は、P型
ソース須域で導体201を通して接地される。
Figure b shows a sectional view of a MOS integrated circuit device, and figure a shows an equivalent circuit diagram of the MOS integrated circuit device. 1st
In FIG. b, 31 is an N-type semiconductor substrate. 37 is a P-type source region and is grounded through conductor 201.

38はP型ドレイン領域でDDに接続される。38 is a P-type drain region connected to DD.

34は、外部入力端子32と、ゲート202間に接続さ
れるP型のゲート保護用抵抗領域である。
34 is a P-type gate protection resistance region connected between the external input terminal 32 and the gate 202.

33は、P一型の低濃度領域で、外部入力端子32のコ
ンタクト部35直下に形成されている。
Reference numeral 33 denotes a P-type low concentration region, which is formed directly below the contact portion 35 of the external input terminal 32.

この構造にすれば外部入力端子32に予期せぬサージ電
圧が印加されても、ゲート保護用抵抗領域34には、低
濃度のP一型須域33があるため、この抵抗領域34と
N型半導体基板31との間のPN接合で消費されるエネ
ルギーが減少されるため、このゲート保護用抵抗領戚3
4の破壊強度は向上する。さらに、コンタクト部35直
下のみに、P一型領域があるために、P一型領域によつ
て包囲された以外のゲート保護用抵抗領域34が基板3
1に対し形成するPN接合は絶縁ゲート203の破壊電
圧より低い所望のツエナ一電圧に設定できるので、ゲー
ト202に印加されるサージ電圧をツエナ一電圧に制限
する。すなわち、ゲート保護用抵抗碩域34のサージ電
圧をクランプするという本来の特性を損うことなく、抵
抗碩域34自体のサージ電圧に対する破壊強度を改善す
ることができる。しかも、P一領域33は局部的に設け
られるので、集積度を著しく悪化させることはない。さ
らに第3図A,bは、本発明を、バイポーラ型集積回路
装置に適用した他の実施例を示す。
With this structure, even if an unexpected surge voltage is applied to the external input terminal 32, since the gate protection resistor region 34 has a low concentration P-type subregion 33, this resistor region 34 and the N-type Since the energy consumed in the PN junction with the semiconductor substrate 31 is reduced, this gate protection resistive region 3
The fracture strength of No. 4 is improved. Furthermore, since there is a P-type region only directly below the contact portion 35, the gate protection resistor region 34 other than that surrounded by the P-type region is exposed to the substrate 3.
1 can be set to a desired Zener voltage lower than the breakdown voltage of the insulated gate 203, thereby limiting the surge voltage applied to the gate 202 to the Zener voltage. In other words, the breakdown strength of the resistor region 34 itself against surge voltage can be improved without impairing the original characteristic of the gate protection resistor region 34 to clamp surge voltage. Furthermore, since the P-region 33 is provided locally, the degree of integration does not deteriorate significantly. Furthermore, FIGS. 3A and 3B show another embodiment in which the present invention is applied to a bipolar integrated circuit device.

同図bは、バイポーラ型集積回路装置の断面図を示し、
同図aはその等価回路図を示す。第3図b中、41は半
導体基板を示す。42は、N型島碩域で、p+型アイソ
レーシヨン領域51によつて、分離されている。
Figure b shows a cross-sectional view of a bipolar integrated circuit device,
Figure a shows its equivalent circuit diagram. In FIG. 3b, 41 indicates a semiconductor substrate. 42 is an N-type island region separated by a p + type isolation region 51 .

43は、N型島碩域42中に形成されたP型ベース碩域
である。
43 is a P-type base area formed in the N-type island area 42.

44は、P型ベース領域43中に形成されたN+型エミ
ツタ領域である。
44 is an N+ type emitter region formed in the P type base region 43.

48は、N型島領域42中に形成された、P型抵抗領域
である。
48 is a P-type resistance region formed in the N-type island region 42.

このP型抵抗須域は、外部入力端子50とP型ベース須
域43間に接続される。P一型領域47は、外部入力端
子50のコンタクト部45の直下に形成されている。こ
の構造も、外部入力端子50に予期せぬサージ電圧が印
加されても抵抗領域48は、P一型領域47により、破
壊強度は向上する。この場合も、コンタクト部45直下
のみに、P一型須域47があるため、P型抵抗碩域48
の面積はさほど大きくならず、集積回路装置全体の集積
度は減少しない。以上述べた第1図、第2図、および第
3図に示した実施例においてはいずれも外部接続端子と
なる金属層のコンタクト部直下にP一型領域を形成して
いるがこのP一型碩域のかわりに第4図に示すように、
N型基板61より不純物濃度の低いN一型領域63を形
成しても良い。
This P-type resistor area is connected between the external input terminal 50 and the P-type base area 43. The P-type region 47 is formed directly below the contact portion 45 of the external input terminal 50. In this structure, even if an unexpected surge voltage is applied to the external input terminal 50, the resistance region 48 has improved breakdown strength due to the P-type region 47. In this case as well, since the P-type resistance region 47 exists only directly below the contact portion 45, the P-type resistance region 48
The area of the integrated circuit device does not increase significantly, and the degree of integration of the entire integrated circuit device does not decrease. In the embodiments shown in FIGS. 1, 2, and 3 described above, a P-type region is formed directly under the contact portion of the metal layer that serves as an external connection terminal. As shown in Figure 4, instead of a sub-region,
An N1 type region 63 having a lower impurity concentration than the N type substrate 61 may be formed.

さらに上記したP一型領域又はN一型領域のかわりに第
5図に示すように真性半導体領域71としても良い。本
発明は、第1図、第2図、第3図に示すように、バイポ
ーラ型集積回路およびMOS型東積回 シ路への適用は
もちろんのこと、一般に、半導体装置において、接地用
端子、電源接続用端子、信号入力端子等の外部接続用端
子が直接接続されるPN接合を有する半導体素子に対す
る破壊防止として広く適用されるものである。
Further, instead of the above-mentioned P type region or N type region, an intrinsic semiconductor region 71 may be used as shown in FIG. As shown in FIGS. 1, 2, and 3, the present invention is applicable not only to bipolar integrated circuits and MOS integrated circuits, but also generally to ground terminals, It is widely applied to prevent destruction of semiconductor elements having PN junctions to which external connection terminals such as power supply connection terminals and signal input terminals are directly connected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは、本発明を適用したバイポーラ型集積回路装
置の回路図を示す。 第1図bは、同図aに示したバイポーラ型集積回路装置
のトランジスタQ1の断面図を示す。第1図cは、同図
bに示したバイポーラトランジスタQ1にサージ電圧が
印加された時のP型ベース領域とN型領域とに加わる電
界の分布を示す。第1図dは、同図bに示したトランジ
スタQ1の外部入力端子7と、P−型須域10、P型領
域3との関係を示す平面図である。第2図A,bは、本
発明を、MOS型集積回路のゲート保護用抵抗領域に応
用した場合を示す。第3図A,bは、本発明をバイポー
ラ型集積回路の入力抵抗部分に応用した場合を示す。第
4図、第5図は本発明の他の実施例を示す。1,41・
・・・・・P型領域、2,42・・・・・・N型島領域
、3,43・・・・・・P型ベース領域、4,44・・
・・・・N+型エミツタ領域、7,32,50・・・・
・・外部入力端子、9,39,49・・・・・・PN接
合、8,35,45・・・・・・外部入力端子とP型領
域とのコンタクト部、10,33,47・・・・・・P
一型領域、37・・・・・・ソース領域、38・・・・
・・ドレイン領域、34・・・・・・ゲート保護用抵抗
領域、48・・・・・・抵抗領域、61,71・・・・
・・N型領域、62,72・・・・・・P型領域、63
・・・・・・N一型領域、73・・・・・・真性半導体
領域、105,52・・・・・・コレクタ電極取出し層
FIG. 1a shows a circuit diagram of a bipolar integrated circuit device to which the present invention is applied. FIG. 1b shows a sectional view of the transistor Q1 of the bipolar integrated circuit device shown in FIG. 1a. FIG. 1c shows the distribution of the electric field applied to the P-type base region and the N-type region when a surge voltage is applied to the bipolar transistor Q1 shown in FIG. 1B. FIG. 1d is a plan view showing the relationship between the external input terminal 7 of the transistor Q1 shown in FIG. 1b, the P-type region 10, and the P-type region 3. FIGS. 2A and 2B show a case where the present invention is applied to a gate protection resistor region of a MOS type integrated circuit. FIGS. 3A and 3B show a case where the present invention is applied to an input resistance portion of a bipolar integrated circuit. FIGS. 4 and 5 show other embodiments of the present invention. 1,41・
...P type region, 2,42...N type island region, 3,43...P type base region, 4,44...
...N+ type emitter region, 7, 32, 50...
...External input terminal, 9,39,49...PN junction, 8,35,45...Contact part between external input terminal and P-type region, 10,33,47... ...P
Type 1 region, 37... Source region, 38...
...Drain region, 34...Resistance region for gate protection, 48...Resistance region, 61, 71...
...N-type region, 62,72...P-type region, 63
. . . N-type region, 73 . . . Intrinsic semiconductor region, 105, 52 . . . Collector electrode extraction layer.

Claims (1)

【特許請求の範囲】 1 第1導電型の第1の半導体領域と、該第1の半導体
領域中に形成され、該第1の半導体領域とPN接合を形
成して1つの終端部から他の終端部に延長する第2導電
型の第2の半導体領域と、前記第2の半導体領域の両終
端部に対応してそれぞれ接続された2つの外部接続手段
と、前記外部接続手段が設けられた前記第2の半導体領
域の少なくとも一つの終端部において形成され、該終端
部に存在する前記PN接合を包囲する第3の半導体領域
とから成り、前記第3の半導体領域は、前記第2の半導
体領域よりも濃度が低い第2導電型の領域もしくは前記
第1の半導体領域よりも濃度が低い第1導電型の領域、
または真性半導体領域のいずれか一つの領域より成るこ
とを特徴とする半導体装置。 2 前記2つの外部接続手段は、前記第2の半導体領域
の両終端部にそれぞれ直接的にオーミック接続された金
属層より成る特許請求の範囲第1項記載の半導体装置。 3 前記2つの外部接続手段の1つは、前記第2の半導
体領域の一つの終端部に直接的にオーミック接続された
金属層より成り、また、前記外部接続手段の他は、前記
第2の半導体領域の他の終端部の前記第2の半導体領域
中に形成された第1導電型の第4の半導体領域を具備し
て成り、さらに、前記第3の半導体領域は前記一つの終
端部を包囲するように形成されて成ることを特徴とする
特許請求の範囲第1項記載の半導体装置。 4 第3項記載の半導体装置であつて、第1の半導体領
域はコレクタ、第2の半導体領域はベース、第4の半導
体領域はエミッタとしてそれぞれ作用するバイポーラト
ランジスタであることを特徴とする半導体装置。
[Claims] 1. A first semiconductor region of a first conductivity type; A second semiconductor region of a second conductivity type extending to a termination portion, two external connection means respectively connected to both termination portions of the second semiconductor region, and the external connection means are provided. a third semiconductor region formed at at least one terminal end of the second semiconductor region and surrounding the PN junction present at the terminal end, the third semiconductor region a second conductivity type region having a lower concentration than the first conductivity type region or a first conductivity type region having a lower concentration than the first semiconductor region;
or a semiconductor device comprising any one of an intrinsic semiconductor region. 2. The semiconductor device according to claim 1, wherein the two external connection means each comprise a metal layer that is directly ohmically connected to both end portions of the second semiconductor region. 3. One of the two external connection means is made of a metal layer that is directly ohmically connected to one end of the second semiconductor region, and the other external connection means are connected to the second semiconductor region. a fourth semiconductor region of the first conductivity type formed in the second semiconductor region at the other end of the semiconductor region; 2. The semiconductor device according to claim 1, wherein the semiconductor device is formed so as to surround the semiconductor device. 4. The semiconductor device according to item 3, wherein the semiconductor device is a bipolar transistor in which the first semiconductor region acts as a collector, the second semiconductor region acts as a base, and the fourth semiconductor region acts as an emitter. .
JP11771075A 1975-10-01 1975-10-01 semiconductor equipment Expired JPS5916413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11771075A JPS5916413B2 (en) 1975-10-01 1975-10-01 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11771075A JPS5916413B2 (en) 1975-10-01 1975-10-01 semiconductor equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP59278879A Division JPS60246662A (en) 1984-12-28 1984-12-28 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5243374A JPS5243374A (en) 1977-04-05
JPS5916413B2 true JPS5916413B2 (en) 1984-04-16

Family

ID=14718378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11771075A Expired JPS5916413B2 (en) 1975-10-01 1975-10-01 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS5916413B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314646Y2 (en) * 1983-01-20 1988-04-25

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115162A (en) * 1979-02-26 1980-09-04 Toshiba Corp Skew check unit
JPS55128858A (en) * 1979-03-28 1980-10-06 Mitsubishi Electric Corp Surge preventive circuit for bipolar integrated circuit
DE3035462A1 (en) * 1980-09-19 1982-05-13 Siemens AG, 1000 Berlin und 8000 München SEMICONDUCTOR ELEMENT
JPS61263285A (en) * 1985-05-17 1986-11-21 Matsushita Electronics Corp Semiconductor device
JPH0682788B2 (en) * 1989-11-02 1994-10-19 ローム株式会社 Semiconductor device with built-in resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314646Y2 (en) * 1983-01-20 1988-04-25

Also Published As

Publication number Publication date
JPS5243374A (en) 1977-04-05

Similar Documents

Publication Publication Date Title
JP3214818B2 (en) High voltage power integrated circuit with level shifting operation and no metal crossover
KR860000712B1 (en) Integrated circuit protection device
JP3418436B2 (en) Power transistor
KR100208632B1 (en) Semiconductor integrated circuit and method of fabricating it
JPH0324791B2 (en)
US4543593A (en) Semiconductor protective device
CN100514678C (en) Low capacitance ESD-protection structure under a bond pad
US4261004A (en) Semiconductor device
JPH07130963A (en) Monolithic integrated circuit and protective device
EP0703621A2 (en) Electrostatic discharge protection device for MOS integrated circuits
TW454328B (en) ESD protection circuit triggered by diodes
JP2680788B2 (en) Integrated structure active clamp device
US3748547A (en) Insulated-gate field effect transistor having gate protection diode
JPS5916413B2 (en) semiconductor equipment
US4260910A (en) Integrated circuits with built-in power supply protection
US6570225B2 (en) Method for improved electrostatic discharge protection
EP0966042B1 (en) Monolithically integrated device with protective structure
US20010002717A1 (en) Protection device and protection method for semiconductor device
JPH11168181A (en) Protection circuit for static discharge, transistor having circuit thereof, and semiconductor element
JPS60246662A (en) Semiconductor device
JPS6211787B2 (en)
JPS5823471A (en) Semiconductor device
JP2009141071A (en) Semiconductor element for electrostatic protection
EP0948050A1 (en) Electronic semiconductor power device with polycrystalline silicon components
JP3135277B2 (en) Overvoltage protection device