JPS62160609A - Manufacture of conductor for covered wire - Google Patents

Manufacture of conductor for covered wire

Info

Publication number
JPS62160609A
JPS62160609A JP331186A JP331186A JPS62160609A JP S62160609 A JPS62160609 A JP S62160609A JP 331186 A JP331186 A JP 331186A JP 331186 A JP331186 A JP 331186A JP S62160609 A JPS62160609 A JP S62160609A
Authority
JP
Japan
Prior art keywords
conductor
wire
copper wire
covered electric
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP331186A
Other languages
Japanese (ja)
Other versions
JPH0658767B2 (en
Inventor
澤田 和夫
悟 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP331186A priority Critical patent/JPH0658767B2/en
Publication of JPS62160609A publication Critical patent/JPS62160609A/en
Publication of JPH0658767B2 publication Critical patent/JPH0658767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野1 この発明は、ポリエチレンなどによって絶縁被覆された
被覆電線用導体の製造方法に関し、特に電柱間等に架線
される被覆電線用導体の製造方法に関Jる。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a method for manufacturing a conductor for a covered electric wire that is insulated with polyethylene or the like, and particularly for a method for manufacturing a conductor for a covered electric wire that is installed between utility poles. Seki Juru.

[従来の技術1 電柱間などに架線される架空配電線用導体としては、従
来から硬銅線が使用されている。集合した複数本の硬銅
線は撚り合わせられ、この撚線上にポリエチレン、ポリ
塩化ビニルなどによる絶縁被覆が施される。
[Prior Art 1] Hard copper wire has conventionally been used as a conductor for overhead distribution lines installed between utility poles. A plurality of assembled hard copper wires are twisted together, and an insulating coating made of polyethylene, polyvinyl chloride, or the like is applied to the twisted wires.

[発明が解決しようとする問題点] 撚り合わせられた各硬銅線の表面には、撚りを解除しよ
うとする撚線反発力が必然的に生じる。
[Problems to be Solved by the Invention] On the surface of each stranded hard copper wire, a stranded wire repulsive force that tends to untwist is inevitably generated.

この撚線反発力は、各硬銅線の表面上に引張残留応力と
して現われる。また、各硬銅線には、ドラムに巻かれて
いたときについた巻癖に起因する残留応力が存在するこ
ともある。
This twisted wire repulsive force appears as tensile residual stress on the surface of each hard copper wire. Further, each hard copper wire may have residual stress due to curling curls formed when it was wound around a drum.

従来の被覆電線では、上述のような残留応力が1つの要
因となって断線を生じることがあった。
In conventional coated electric wires, the residual stress as described above may be one of the causes of wire breakage.

すなわち、被i電線内に雨水が侵入したりすると、被覆
層内部は腐蝕しやすい環境となり、硬銅線表面に酸化被
膜が形成したりする。このような腐蝕環境と上述の残留
応力とが互いに影響し合うと硬銅線に応力腐蝕割れが生
じ、その結果断線にまで至る。
That is, when rainwater enters the covered wire, the interior of the coating layer becomes a corrosive environment, and an oxide film is formed on the surface of the hard copper wire. When such a corrosive environment and the above-mentioned residual stress interact with each other, stress corrosion cracking occurs in the hard copper wire, resulting in wire breakage.

被覆電線用導体として軟銅線を用いれば、上述のような
残留応力は小さいので応力腐蝕割れ現象の生ずる可能性
は少なくなる。しかし、その反面引張強さの低下は免れ
ず、そのため実際上軟銅線を被覆電線用導体として用い
ることはできない。
If annealed copper wire is used as the conductor for the covered electric wire, the residual stress as described above is small, so the possibility of stress corrosion cracking occurring is reduced. However, on the other hand, the tensile strength inevitably decreases, and therefore, in practice, annealed copper wire cannot be used as a conductor for coated wires.

それゆえに、この発明の目的は、引張強さを維持Jる゛
とともに、応力11g蝕割れ現象を生じさせない被覆電
線用導体を得ることのできる製造方法を提供づ゛ること
である。
Therefore, an object of the present invention is to provide a manufacturing method capable of obtaining a conductor for a coated electric wire that maintains tensile strength and does not cause corrosion under a stress of 11 g.

[問題点を解決するための手段]および[作用効果1 この発明に従った被覆電線用導体の製造方法は、冷間加
工度60〜99.5%で冷間加工された銅線を、連続的
に表面から急速加熱しながら直ちに冷yf]することに
よって撚線を構成する導体素線を得るものである。
[Means for Solving the Problems] and [Effect 1] The method for manufacturing a conductor for a covered electric wire according to the present invention continuously produces a copper wire that has been cold-worked at a degree of cold working of 60 to 99.5%. The conductor strands constituting the stranded wire are obtained by rapidly heating the surface and immediately cooling it.

第1図は、この方法を模式的に示す図である。FIG. 1 is a diagram schematically showing this method.

冷間加工された銅線1は、送りローラ2などによって連
続的に一方方向に送られる。そして、途中でレーザ光3
などの輻射によって銅線1の表面が急速加熱される。銅
線1は、その後直ちに冷却水4中に通され、冷却される
The cold-worked copper wire 1 is continuously fed in one direction by a feeding roller 2 or the like. Then, on the way, the laser beam 3
The surface of the copper wire 1 is rapidly heated by such radiation. The copper wire 1 is then immediately passed through cooling water 4 and cooled.

第2図は、上記方法を実施することによって得られる導
体素線の内部結晶組織を示す図である。
FIG. 2 is a diagram showing the internal crystal structure of a conductor strand obtained by carrying out the above method.

図示するように、導体素線は、その外層部5が再結晶組
織を有し、その中心部が長手方向に長く延びた伸線加工
組織を有している。
As shown in the figure, the outer layer portion 5 of the conductor strand 5 has a recrystallized structure, and the center portion thereof has a drawn structure extending in the longitudinal direction.

撚線を構成する各導体素線の外層部が再結晶組織を有し
ているので、各素線を撚り合わせたとき各素線の外層部
は塑性変形する。そのため、各素線表面には前述したよ
うな残留応力は生じにくく、応力腐蝕割れ現象の生ずる
可能性も小さくなる。
Since the outer layer of each conductor strand constituting the stranded wire has a recrystallized structure, the outer layer of each strand is plastically deformed when the strands are twisted together. Therefore, residual stress as described above is less likely to occur on the surface of each strand, and the possibility of stress corrosion cracking occurring is also reduced.

一方、各導体素線の中心部は伸線加工組織を有している
ので、引張強度は比較的大きい。したがって、各導体素
線は、被覆電線用導体としての使用に耐え得るだけの引
張強さを維持し得る。
On the other hand, since the central portion of each conductor strand has a drawn structure, its tensile strength is relatively high. Therefore, each conductor strand can maintain sufficient tensile strength to withstand use as a conductor for a covered electric wire.

銅線表面を連続的に急速加熱した後、直ちに冷却するの
は、上述したような結晶組織を呈するようにするためで
ある。また、冷間加工度60〜99.5%で冷間加工さ
れた銅線を用いるのは、以下の理由に基づく。すなわち
、冷間加工度が60%未満であれば、導体素線の中心部
が所望の引張強さを有しない。また、冷間加工度が高く
なればなるほど再結晶温度は低くなり、そのために第2
図に示すような結晶組織を得ることが困難になってくる
。このことを考慮して、冷間加工度の上限値は9つ。5
%に定められる。
The reason why the surface of the copper wire is rapidly heated continuously and then immediately cooled is to make it exhibit the above-mentioned crystal structure. Further, the reason why a copper wire cold-worked at a degree of cold working of 60 to 99.5% is used is based on the following reason. That is, if the degree of cold working is less than 60%, the central portion of the conductor strand does not have the desired tensile strength. In addition, the higher the degree of cold working, the lower the recrystallization temperature, and therefore the second
It becomes difficult to obtain the crystal structure shown in the figure. Taking this into consideration, the upper limit for the degree of cold working is 9. 5
%.

加熱手段としてレーザ光を用いる場合には、レーザ光の
波長が好ましくは1μm〜15μmの範囲内にあるよう
にされる。1μm未満の波長のレーザ光を1qようとす
れば、大出力のレーザ発生手段が工業的に困難となる。
When using laser light as the heating means, the wavelength of the laser light is preferably within the range of 1 μm to 15 μm. If one attempts to produce 1 q of laser light with a wavelength of less than 1 μm, it will be industrially difficult to develop a high-output laser generating means.

一方、波長が15μlを越えるようなレーザ光を用いた
場合、銅線表面からのレーザ光の反射が大きくなり、銅
線表面に対して熱を付与づ゛るという機能が小さくなる
On the other hand, when a laser beam with a wavelength exceeding 15 μl is used, the reflection of the laser beam from the surface of the copper wire becomes large, and the function of applying heat to the surface of the copper wire decreases.

加熱手段としてはレーザ光に限られるものではなく、赤
外線照射や高周波誘導加熱なども採用され1する。
The heating means is not limited to laser light, but infrared irradiation, high frequency induction heating, etc. may also be employed.

[実施例] 直径8Iφのタフピッチ銅荒引線を冷間伸線加工によっ
て直径2mmφにまでした。冷間加工度(減面率)は9
4%である。そして、波長10゜6μmの炭酸ガスレー
ザ光にてこの銅線の表面を加熱しながら直ちに冷却した
。このようにして得られた導体素線は、その外層部が中
心部に比べて軟化していた。
[Example] A rough-drawn tough pitch copper wire with a diameter of 8Iφ was made to have a diameter of 2mmφ by cold wire drawing. Cold working degree (area reduction rate) is 9
It is 4%. Then, the surface of the copper wire was heated with a carbon dioxide laser beam having a wavelength of 10.degree. 6 .mu.m and immediately cooled. The outer layer of the conductor wire thus obtained was softer than the center.

上記導体素線を19本集合して撚線にした後、ポリエチ
レン被覆を施した。そして、被覆層と導体との間に希釈
アンモニア水を注入して応力腐蝕割れテストを行なった
ところ、3か月経過しても導体の断線は見られなった。
After collecting 19 of the above conductor strands into a twisted wire, a polyethylene coating was applied. Then, when a stress corrosion cracking test was performed by injecting diluted ammonia water between the coating layer and the conductor, no breakage of the conductor was observed even after 3 months had passed.

比較のため、導体素線として硬銅線を用いた被覆電線に
同様のテストを実施したところ、1か月経適時に導体が
応力腐蝕割れを起こし断線した。
For comparison, a similar test was conducted on a coated wire using hard copper wire as the conductor wire, and the conductor suffered stress corrosion cracking and disconnection at a timely period of one month.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に従った方法を模式的に示す図であ
る。第2図は、この発明を実施することによってをられ
る導体素線の内部結晶組織を示す図である。 図において、1は銅線、2は送りローラ、3はレーザ光
、4は冷却水、5は外層部、6は中心部を示す。 第7図
FIG. 1 is a diagram schematically illustrating the method according to the invention. FIG. 2 is a diagram showing the internal crystal structure of a conductor wire obtained by implementing the present invention. In the figure, 1 is a copper wire, 2 is a feed roller, 3 is a laser beam, 4 is a cooling water, 5 is an outer layer portion, and 6 is a center portion. Figure 7

Claims (3)

【特許請求の範囲】[Claims] (1)冷間加工度60〜99.5%で冷間加工された銅
線を、連続的に表面から急速加熱しながら直ちに冷却す
ることによって撚線を構成する導体素線を得る、被覆電
線用導体の製造方法。
(1) A covered electric wire that obtains conductor wires constituting a stranded wire by continuously rapidly heating a copper wire cold-worked at a degree of cold working from 60 to 99.5% from the surface and cooling it immediately. Method of manufacturing conductors for use.
(2)レーザ光の輻射によって前記銅線表面の急速加熱
を行なう、特許請求の範囲第1項に記載の被覆電線用導
体の製造方法。
(2) The method for manufacturing a conductor for a covered electric wire according to claim 1, wherein the surface of the copper wire is rapidly heated by radiation of a laser beam.
(3)前記レーザ光の波長が1μm〜15μmの範囲内
にある、特許請求の範囲第2項に記載の被覆電線用導体
の製造方法。
(3) The method for manufacturing a conductor for a covered electric wire according to claim 2, wherein the wavelength of the laser beam is within a range of 1 μm to 15 μm.
JP331186A 1986-01-09 1986-01-09 Method for manufacturing conductor for coated electric wire Expired - Lifetime JPH0658767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP331186A JPH0658767B2 (en) 1986-01-09 1986-01-09 Method for manufacturing conductor for coated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP331186A JPH0658767B2 (en) 1986-01-09 1986-01-09 Method for manufacturing conductor for coated electric wire

Publications (2)

Publication Number Publication Date
JPS62160609A true JPS62160609A (en) 1987-07-16
JPH0658767B2 JPH0658767B2 (en) 1994-08-03

Family

ID=11553811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP331186A Expired - Lifetime JPH0658767B2 (en) 1986-01-09 1986-01-09 Method for manufacturing conductor for coated electric wire

Country Status (1)

Country Link
JP (1) JPH0658767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162802A (en) * 2011-02-04 2012-08-30 General Electric Co <Ge> Conductive component and method for treating the conductive component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162802A (en) * 2011-02-04 2012-08-30 General Electric Co <Ge> Conductive component and method for treating the conductive component

Also Published As

Publication number Publication date
JPH0658767B2 (en) 1994-08-03

Similar Documents

Publication Publication Date Title
US4039743A (en) Stranded wire with adhesive coated cone
CA2099164A1 (en) Overhead transmission conductor
GB1452774A (en) Torque balanced cable
JP2003303515A (en) Composite stranded conductor for carrying electricity
US20020129969A1 (en) Electrical cable
JP2001101929A (en) Flexible high strength and light weight conductor
JP3475433B2 (en) Insulated wire and its manufacturing method
JPS62160609A (en) Manufacture of conductor for covered wire
JPH0664944B2 (en) Method for manufacturing stranded wire conductor for covered electric wire
JPH11111071A (en) Submarine power cable
JPS62160606A (en) Conductor for covered wire
JP2003031029A (en) Overhead electric wire
JPH10223071A (en) Manufacture of cross-linked polyethylene insulation power cable
JP2831659B2 (en) Heating wire and snow melting wire using it
JPS6266505A (en) Compound strand for power cable conductor
JP2001076538A (en) Aluminum power transmission line and manufacturing method therefor
JP3036229B2 (en) Overhead transmission line
SU1665410A1 (en) Method of manufacturing aluminium multi-core cable
JP2879779B2 (en) Manufacturing method of stranded conductor for coated electric wire
JPS5914311A (en) Fallen snow deposit preventive type aerial transmission line
JPH07122116A (en) Lightning resistant type optical fiber composite overhead earth-wire
JPS63264818A (en) Manufacture of flexible electric cable containing conductor composed of a plurality of fine strands made of aluminum or aluminum alloy
JPS5941245B2 (en) Manufacturing method of flat cable
JPS63138607A (en) Covered wire
JPS5844609A (en) Ice and snow adherence resistant wire