JPS63138607A - Covered wire - Google Patents

Covered wire

Info

Publication number
JPS63138607A
JPS63138607A JP28510986A JP28510986A JPS63138607A JP S63138607 A JPS63138607 A JP S63138607A JP 28510986 A JP28510986 A JP 28510986A JP 28510986 A JP28510986 A JP 28510986A JP S63138607 A JPS63138607 A JP S63138607A
Authority
JP
Japan
Prior art keywords
wire
conductor
stranded
alloy
corrosion cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28510986A
Other languages
Japanese (ja)
Inventor
奥田 繁
澤田 和夫
悟 高野
和彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28510986A priority Critical patent/JPS63138607A/en
Publication of JPS63138607A publication Critical patent/JPS63138607A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、複数本の導体素線を集合して撚線にし、こ
の1!線上にポリエチレンなどの絶縁被覆を施した被覆
電線に関し、特に電柱間等に架線される被iWi線に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention collects a plurality of conductor strands into a stranded wire, and this 1! The present invention relates to a covered electric wire in which an insulating coating such as polyethylene is applied on the wire, and in particular to a covered iWi wire that is installed between telephone poles or the like.

[従来の技術] 電柱間等に架線される架空配電線用導体とじては、従来
から硬銅線が使用されている。集合した複数本の硬銅線
は撚り合わせられ、この撚線上にポリエチレン、ポリ塩
化ビニルなどによる絶縁被覆が施される。
[Prior Art] Hard copper wire has conventionally been used as a conductor for overhead distribution lines that are installed between utility poles. A plurality of assembled hard copper wires are twisted together, and an insulating coating made of polyethylene, polyvinyl chloride, or the like is applied to the twisted wires.

[発明が解決しようとする問題点] 撚り合わせられた各硬銅線の表面には、撚りを解除しよ
うとする撚線反発力が必然的に生じる。
[Problems to be Solved by the Invention] On the surface of each stranded hard copper wire, a stranded wire repulsive force that tends to untwist is inevitably generated.

この撚線反発力は、各硬銅線の表面上に引張残留応力と
して現われる。また、各硬銅線には、ドラムに巻かれて
いたときについた巻き癖に起因する残留応力が存在する
こともある。
This twisted wire repulsive force appears as tensile residual stress on the surface of each hard copper wire. In addition, each hard copper wire may have residual stress due to curling curls formed when it was wound around a drum.

従来の被覆i!線では、上述のような残留応力が1つの
要因となって断線を生じることがあった。
Conventional coating i! In the case of wires, the residual stress as described above may be one of the causes of wire breakage.

すなわち、被覆電線内に雨水が浸入したりすると、被覆
層内部は腐蝕しやすい環境となり、硬銅線表面に酸化被
膜が形成したりする。このような腐蝕環境と上述の残留
応力とが互いに影響し合うと硬銅線に応力腐蝕割れが生
じ、その結果断線にまで至る。
That is, when rainwater enters the covered wire, the inside of the covering layer becomes a corrosive environment, and an oxide film is formed on the surface of the hard copper wire. When such a corrosive environment and the above-mentioned residual stress interact with each other, stress corrosion cracking occurs in the hard copper wire, resulting in wire breakage.

被覆電線用導体として軟銅線を用いれば、上述のような
残留応力は小さいので応力腐蝕割れ現象の生ずる可能性
は小さくなる。しかし、その反面引張強さの低下は免れ
ず、そのため実際上、軟銅線を被覆電線用導体として用
いることはできない。
If annealed copper wire is used as the conductor for the covered electric wire, the residual stress as described above is small, so the possibility of stress corrosion cracking occurring is reduced. However, on the other hand, the tensile strength inevitably decreases, and therefore, in practice, annealed copper wire cannot be used as a conductor for coated wires.

CuにNiを添加すれば、耐食性が向上する。Adding Ni to Cu improves corrosion resistance.

そこで、耐食性が要求される構造材料には、しばしば、
Niを含有するCu合金が用いられている。
Therefore, structural materials that require corrosion resistance often have
A Cu alloy containing Ni is used.

しかし、CuにNiを添加すれば、電気伝導度が低下す
る。そのため、Niを含有するCu合金を被覆電線用導
体として全面的に用いることは、好ましくない。
However, when Ni is added to Cu, the electrical conductivity decreases. Therefore, it is not preferable to entirely use a Cu alloy containing Ni as a conductor for a covered electric wire.

それゆえに、この発明の目的は、所定の引張強さおよび
電気伝導度を維持するとともに、応力腐蝕割れ現象を生
じさせない被覆電線を提供することである。
Therefore, an object of the present invention is to provide a coated wire that maintains a predetermined tensile strength and electrical conductivity and does not suffer from stress corrosion cracking phenomena.

[問題点を解決するための手段] この発明は、複数本の導体素線を集合して撚線にし、こ
の撚線上に絶縁被覆を施した被覆電線である。そして、
少なくとも撚線の最外層に位置する導体素線は、その芯
部がQuで、その表層部がNiを5〜70重量%含有す
るCIJ合金となっていることを特徴とする。
[Means for Solving the Problems] The present invention provides a covered electric wire in which a plurality of conductor strands are assembled into a stranded wire, and an insulating coating is applied to the stranded wire. and,
The conductor wire located at least in the outermost layer of the stranded wire is characterized in that its core portion is made of Qu, and its surface layer portion is made of a CIJ alloy containing 5 to 70% by weight of Ni.

[発明の作用効果] 応力腐蝕割れによって破断した導体の破面が、必ず黒色
の被膜によって覆われていることはよく知られている。
[Operations and Effects of the Invention] It is well known that the fractured surface of a conductor broken due to stress corrosion cracking is always covered with a black coating.

この黒色の被膜は、銅の酸化被膜である。これは、以下
のような現象に基づくものと考えられる。絶縁被覆層と
撚線導体との間に浸入した雨水の影響によって、導体素
線の表面が乾いたり湿ったりする。この乾湿の繰返しに
よって、導体素線の表面には酸化被膜が形成される。そ
して、導体索線に応力が加わると、導体素線表面に形成
された酸化被膜が破壊され、新たに現われた表面上にさ
らに酸化被膜が形成される。このような現象が何回も繰
返されると、酸化被膜の形成が中心部に向かって進み、
最終的に導体素線を破断するに至る。
This black film is a copper oxide film. This is considered to be based on the following phenomenon. Due to the influence of rainwater that has entered between the insulation coating layer and the stranded conductor, the surface of the conductor strands becomes dry or wet. Through this repeated drying and wetting, an oxide film is formed on the surface of the conductor wire. When stress is applied to the conductor wire, the oxide film formed on the surface of the conductor wire is destroyed, and another oxide film is formed on the newly appeared surface. When this phenomenon is repeated many times, the formation of an oxide film progresses toward the center.
Eventually, the conductor wire will break.

したがって、応力腐蝕割れを防ぐためには、導体素線が
雨水と接触したとしても、その表面に酸化被膜が形成さ
れなければよい。この発明は、このような知見に暴づく
ものである。
Therefore, in order to prevent stress corrosion cracking, an oxide film should not be formed on the surface of the conductor wire even if it comes into contact with rainwater. This invention uncovers this knowledge.

第1図は、この発明に従った被覆電線用の撚線の一例を
示す断面図である。図示する撚線は、複数本の導体素線
1を集合して撚り合わせている。
FIG. 1 is a sectional view showing an example of a stranded wire for a covered electric wire according to the present invention. The illustrated stranded wire is made by twisting a plurality of conductor wires 1 together.

この撚線上にポリエチレンなどの絶縁被覆が施されて、
被覆電線となる。撚線を構成する各導体素線は、その芯
部2がCuであり、その表層部3が。
An insulating coating such as polyethylene is applied to this stranded wire,
It becomes a covered wire. Each conductor strand constituting the stranded wire has a core 2 made of Cu and a surface layer 3 made of Cu.

Niを含有するCu合金となっている。It is a Cu alloy containing Ni.

各導体素線1の表層部が、Niを含有するCu合金とな
っているので導体素J111の表面に酸化被膜が形成さ
れることを防止することができる。したがって、たとえ
導体素線1に応力が加わったとしても、前述したような
応力腐蝕割れ現象の進行を効果的に防止することができ
る。また、各導体索線1の芯部2はCuであるので、導
体全体としての電気伝導度の低下を防ぐことができる。
Since the surface layer portion of each conductor element wire 1 is made of a Cu alloy containing Ni, it is possible to prevent an oxide film from being formed on the surface of the conductor element J111. Therefore, even if stress is applied to the conductor strand 1, the progress of the stress corrosion cracking phenomenon described above can be effectively prevented. Furthermore, since the core portion 2 of each conductor cable wire 1 is made of Cu, it is possible to prevent a decrease in the electrical conductivity of the conductor as a whole.

第1図に示した撚線では、各導体素s1の表層部がNi
を含有するCu合金となっている。しかし、撚線を構成
するすべての導体素線の表層部をそのようなCu合金と
する必要はない。たとえば、応力があまり加わらないと
考えられるM線の中心部を構成する導体素線としてはC
uを用い、大きな応力が加わると考えられる撚線の最外
層部を構成する導体素線に対して、前述したようなC0
Ni /Cu複合体を用いるようにしてもよい。
In the stranded wire shown in FIG. 1, the surface layer of each conductor element s1 is made of Ni.
It is a Cu alloy containing. However, it is not necessary that the surface layer portions of all the conductor wires constituting the stranded wires be made of such a Cu alloy. For example, C
The C0
A Ni/Cu composite may also be used.

導体素線の表i!部のCu合金中のNi含有■は、良好
な耐食性向上効果を発揮するために、5〜70重量%の
範囲内に限定される。
Table i of conductor strands! The amount of Ni contained in the Cu alloy (2) is limited within the range of 5 to 70% by weight in order to exhibit a good corrosion resistance improvement effect.

また、N1を5〜70重量%含有する表層部の体積率は
、好ましくは、5%未満とされる。これは、以下のよう
な理由に基づく。Niを含有するCu合金は、タフピッ
チ銅や無酸素銅に比較して、その比抵抗が大きい。その
ため、Niを含有するCu合金の体積率が5%以上であ
れば、電線用の導体としては導体仝休としての比抵抗が
大きくなりすぎる。
Further, the volume fraction of the surface layer containing 5 to 70% by weight of N1 is preferably less than 5%. This is based on the following reasons. A Cu alloy containing Ni has a higher specific resistance than tough pitch copper or oxygen-free copper. Therefore, if the volume fraction of the Cu alloy containing Ni is 5% or more, the specific resistance as a conductor rest becomes too large as a conductor for an electric wire.

表層部がN1を含有するCu合金となっている導体素線
の製造方法として、CuNi管にC1を挿入侵、減面加
工するクラッド法、CuNi管とCLI棒とを熱間押出
や静水圧押出などで押出加工した後、伸線する押出法な
どがある。あるいは、Cu線の表面にcaNtsを、熱
CVD法、プラズマCVD法、減圧CVD法等のCVD
法によって形成させる方法、スパッタリング法、めっき
法、なども採用し得る。また、CVD法、スパッタリン
グ法、めっき法によって素線表面にCuNi1llを形
成した後、伸縮等の減面加工を施すようにしてもよい。
Methods for producing conductor wires whose surface layer is made of a Cu alloy containing N1 include the cladding method, which involves inserting C1 into a CuNi tube and reducing its surface area, and hot extrusion or isostatic pressure extrusion of the CuNi tube and CLI rod. There is an extrusion method in which wire is drawn after extrusion processing. Alternatively, caNts can be applied to the surface of the Cu wire by CVD such as thermal CVD, plasma CVD, or low pressure CVD.
It is also possible to adopt a method of forming the layer by a method such as a sputtering method, a plating method, or the like. Further, after forming CuNi1ll on the surface of the wire by CVD, sputtering, or plating, surface reduction processing such as stretching may be performed.

なお、前述したような体積率を満足させるためには、ク
ラッド法や熱間押出法によるよりも、CVD法、スパッ
タリング法あるいはめっき法による方が適当である。
In order to satisfy the above-mentioned volume ratio, CVD, sputtering, or plating is more suitable than cladding or hot extrusion.

さらに、芯部を構成するCuと表層部を構成するCuN
i合金との密着性を向上させるために、界面に単金属あ
るいは2元素以上の合金を1層あるいは複数層配置する
ようにしてもよい。また、素線の周囲にポリマー被覆層
を形成して、耐応力腐蝕割れ性あるいは絶縁性を向上さ
せるようにしてもよい。
Furthermore, Cu constituting the core and CuN constituting the surface layer.
In order to improve the adhesion with the i-alloy, one or more layers of a single metal or an alloy of two or more elements may be disposed at the interface. Furthermore, a polymer coating layer may be formed around the strands to improve stress corrosion cracking resistance or insulation.

[実施例1] 直径6.0!Illφのタフピッチ銅線を用意した。[Example 1] Diameter 6.0! Illφ tough pitch copper wire was prepared.

また、Niを10重量%含有し、外径が6.8111φ
、内径が6.4■φのCuNi合金管を用意した。そし
て、CuNi合金管内にタフピッチ銅線を挿入し、高角
度ダイスによって直径6.151111+1φにクラツ
ディングした。このCu Ni /Ctl 複合体を2
.0111+1φにまで伸線して、導体素線とした。
It also contains 10% by weight of Ni and has an outer diameter of 6.8111φ.
A CuNi alloy tube with an inner diameter of 6.4 φ was prepared. Then, a tough pitch copper wire was inserted into the CuNi alloy tube and cladded to a diameter of 6.151111+1φ using a high-angle die. This Cu Ni /Ctl complex is
.. The wire was drawn to a diameter of 0111+1φ to obtain a conductor strand.

上記導体素線を19本集合して撚線にした後、ポリエチ
レン被覆を施した。そして、被[4と導体との間に希釈
アンモニア水を注入して応力腐蝕割れテストを行なった
ところ、3力月経過しても導体の断線は見られなかった
After collecting 19 of the above conductor strands into a twisted wire, a polyethylene coating was applied. Then, when a stress corrosion cracking test was conducted by injecting diluted ammonia water between the conductor and the conductor, no breakage of the conductor was observed even after 3 months had passed.

比較のため、硬銅線を導体素線として用いた被覆′I!
11mに同様のテストを実施したところ、1力月経過時
に導体が応力腐蝕割れを起こし、l!1si1シた。
For comparison, a coating using hard copper wire as the conductor element 'I!
When a similar test was conducted on 11m, the conductor developed stress corrosion cracking after 1 month, and l! 1si1shita.

[実施例2] Niを301ff1%含有し、外径が260mmφ、内
径が240■φ、長さが5001IllのCuNi合金
管を用意した。また、外径が238fflI!lφ、長
さが480m5の無酸素銅棒を用意した。そして、Cu
Ni合金管内に無酸素銅棒を挿入し、管の両側を無酸素
銅で蓋をした後、電子ビーム溶接で真空封入をした。こ
れを700℃の温度に保持した炉中に入れ、3時liS
!iに熱間押出によって3Q+ms+φとなるように押
出加工した。そして、両端のCu部を切取り、cu N
i /CI複合体のみを2′、0IllWφになるまで
伸線加工し、それを導体素線とした。
[Example 2] A CuNi alloy tube containing 301ff1% of Ni, having an outer diameter of 260 mmφ, an inner diameter of 240 mmφ, and a length of 5001 Ill was prepared. Also, the outer diameter is 238fflI! An oxygen-free copper rod with lφ and length of 480 m5 was prepared. And Cu
An oxygen-free copper rod was inserted into a Ni alloy tube, both sides of the tube were covered with oxygen-free copper, and then vacuum sealed by electron beam welding. This was placed in a furnace maintained at a temperature of 700°C, and at 3 hours
! i was extruded by hot extrusion to give 3Q+ms+φ. Then, cut off the Cu parts at both ends, and
Only the i/CI composite was wire-drawn to a wire of 2', 0IllWφ, which was used as a conductor wire.

上記導体素線を19本集合して撚線にした後、ポリエチ
レン被覆を施した。そして、被覆層と導体との間に希釈
アンモニア水を注入して応力腐蝕割れテストを行なった
ところ、3力月経過しても導体の断線は見られなかった
After collecting 19 of the above conductor strands into a twisted wire, a polyethylene coating was applied. Then, when a stress corrosion cracking test was performed by injecting diluted ammonia water between the coating layer and the conductor, no breakage of the conductor was observed even after 3 months had passed.

[実施例3] 直径2.0IIIlφのタフピッチ銅線を、4面がCu
−30%N:となっているターゲットによって囲まれて
いるスパッタリング装置内に連続的に供給することによ
って、タフピッチ銅線の表面にCuNiの膜を生成させ
て、導体素線とした。CuNiの膜厚は10μ慎であっ
た。
[Example 3] A tough pitch copper wire with a diameter of 2.0IIIlφ was made of Cu on four sides.
-30% N: By continuously supplying the CuNi film to the surface of the tough pitch copper wire into a sputtering device surrounded by a target, a conductor element wire was formed. The CuNi film thickness was approximately 10 μm.

上記導体素線を19本集合して撚線にした後、ポリエチ
レン被覆を施した。そして、被覆層と導体との間に希釈
アンモニア水を注入して応力腐蝕割れテストを行なった
ところ、3力月経過しても導体の断線は見られなかった
After collecting 19 of the above conductor strands into a twisted wire, a polyethylene coating was applied. Then, when a stress corrosion cracking test was conducted by injecting diluted ammonia water between the coating layer and the conductor, no breakage of the conductor was observed even after 3 months had passed.

[実施例4] 直径2.○Illφの無酸素銅線を、プラズマ反応容器
内に連続的に供給した。プラズマ反応容器内へは、cu
caaガスを0.3fl/ll1inの速度で、Ni 
 (Go)、ガスを0.2fL/l1inの速度で、ま
たArガスを1u/winの速度でそれぞれ送り込んで
いる。そして、13.56MHzのラジオ波によって平
行平板電極間にプラズマを発生させ、無酸素銅線上にC
uNi合金層を形成して、導体素線とした。CuNi合
金層の厚みは5μmであった。
[Example 4] Diameter 2. An oxygen-free copper wire of ○Illφ was continuously supplied into the plasma reaction vessel. Into the plasma reaction vessel, cu
caa gas at a rate of 0.3fl/ll1in, Ni
(Go), gas is fed at a rate of 0.2 fL/l1in, and Ar gas is fed at a rate of 1u/win. Plasma was generated between the parallel plate electrodes using 13.56 MHz radio waves, and carbon was applied to the oxygen-free copper wire.
A uNi alloy layer was formed to obtain a conductor wire. The thickness of the CuNi alloy layer was 5 μm.

上記導体素線を19本集合して撚線にした俄、ポリエチ
レン被覆を施した。そして、被覆層と導体との間に希釈
アンモニア水を注入して応力腐蝕割れテストを行なった
ところ、3力月経過しても導体の断線は見られなかった
The 19 conductor strands were assembled into a stranded wire, which was then covered with polyethylene. Then, when a stress corrosion cracking test was conducted by injecting diluted ammonia water between the coating layer and the conductor, no breakage of the conductor was observed even after 3 months had passed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従った被N電線用の撚線導体の一
例を示す断面図である。 図において、1は導体素線、2は芯部、3は表層部を示
す。 第1図
FIG. 1 is a cross-sectional view showing an example of a stranded conductor for N electric wires according to the present invention. In the figure, 1 is a conductor strand, 2 is a core portion, and 3 is a surface layer portion. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)複数本の導体素線を集合して撚線にし、この撚線
上に絶縁被覆を施した被覆電線であつて、少なくとも撚
線の最外層に位置する導体素線は、その芯部がCuで、
その表層部がNiを5〜70重量%含有するCu合金と
なつていることを特徴とする、被覆電線。
(1) It is a covered electric wire in which a plurality of conductor strands are assembled into a stranded wire and an insulating coating is applied to the stranded wires, and at least the conductor strand located in the outermost layer of the stranded wire has a core. With Cu,
A coated electric wire, the surface layer of which is made of a Cu alloy containing 5 to 70% by weight of Ni.
(2)前記表層部は、その体積率が5%未満である、特
許請求の範囲第1項に記載の被覆電線。
(2) The covered electric wire according to claim 1, wherein the surface layer portion has a volume percentage of less than 5%.
JP28510986A 1986-11-29 1986-11-29 Covered wire Pending JPS63138607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28510986A JPS63138607A (en) 1986-11-29 1986-11-29 Covered wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28510986A JPS63138607A (en) 1986-11-29 1986-11-29 Covered wire

Publications (1)

Publication Number Publication Date
JPS63138607A true JPS63138607A (en) 1988-06-10

Family

ID=17687234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28510986A Pending JPS63138607A (en) 1986-11-29 1986-11-29 Covered wire

Country Status (1)

Country Link
JP (1) JPS63138607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284717A (en) * 1987-05-15 1988-11-22 Furukawa Electric Co Ltd:The Heat-resistant and oxidation-resistant conductor for coil winding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284717A (en) * 1987-05-15 1988-11-22 Furukawa Electric Co Ltd:The Heat-resistant and oxidation-resistant conductor for coil winding

Similar Documents

Publication Publication Date Title
JPH04138616A (en) Electric wire conductor for harness
JPH0731939B2 (en) High strength, highly flexible conductor
JPH0374008A (en) Aerial transmission line
JP2992501B2 (en) Powder-in-tube type manufacturing method of HTc superconducting multi-wire strand having silver-based matrix
JPS63138607A (en) Covered wire
CN210606715U (en) Novel super corrosion-resistant overhead transmission conductor
JP2879780B2 (en) Manufacturing method of stranded conductor for coated electric wire
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
CN212541928U (en) Copper conductor stranding structure
RU204344U1 (en) ONBOARD AIRCRAFT ELECTRIC WIRE
JP2879779B2 (en) Manufacturing method of stranded conductor for coated electric wire
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP2997006B2 (en) Molded stranded wire
JP2675249B2 (en) Coaxial ribbon cable for batch crimping connector
JPS59211909A (en) Composite superconductor
JP3257703B2 (en) Pulse or AC current lead and method for connecting A15 type compound superconducting stranded wire to said current lead
JP2931020B2 (en) Cu or Al stabilized superconducting wire and method for producing the same
JPS6319714A (en) Manufacture of conductor for covered wire
JPH0689620A (en) Manufacture of high conductivity and high strength stranded wire
SU752507A1 (en) Method of manufacturing winding multi-wire conductor
JPS6042413Y2 (en) Covered wire for overhead power distribution
JPH01248405A (en) Aerial insulated wire
JP2926730B2 (en) Insulated wire conductor
JP4096406B2 (en) Oxide superconducting stranded wire and oxide superconducting cable conductor, and oxide superconducting stranded wire and oxide superconducting cable manufacturing method
CN117558492A (en) Torsion-resistant rubber jacketed flexible cable and preparation method thereof