JP2879779B2 - Manufacturing method of stranded conductor for coated electric wire - Google Patents

Manufacturing method of stranded conductor for coated electric wire

Info

Publication number
JP2879779B2
JP2879779B2 JP63317034A JP31703488A JP2879779B2 JP 2879779 B2 JP2879779 B2 JP 2879779B2 JP 63317034 A JP63317034 A JP 63317034A JP 31703488 A JP31703488 A JP 31703488A JP 2879779 B2 JP2879779 B2 JP 2879779B2
Authority
JP
Japan
Prior art keywords
wire
conductor
outer layer
concentration
stranded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63317034A
Other languages
Japanese (ja)
Other versions
JPH02162613A (en
Inventor
和夫 澤田
忍 高橋
久信 鳥居
由弘 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP63317034A priority Critical patent/JP2879779B2/en
Publication of JPH02162613A publication Critical patent/JPH02162613A/en
Application granted granted Critical
Publication of JP2879779B2 publication Critical patent/JP2879779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、複数本の導体素線を集合して撚線にし、
この撚線上にポリエチレンなどによって絶縁被覆を施し
た被覆電線用撚線導体の製造方法に関し、特に電柱間な
どに架線される被覆電線用撚線導体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of assembling a plurality of conductor strands into a stranded wire,
The present invention relates to a method for producing a stranded wire conductor for a covered electric wire in which an insulation coating is applied to the stranded wire with polyethylene or the like, and particularly to a method for producing a stranded wire conductor for a covered electric wire which is laid between utility poles.

[従来の技術] 電柱間などに架線される架空配電線用導体としては、
従来から硬銅線が使用されている。集合した複数本の硬
銅線は撚り合わせられ、この撚線上にポリエチレン、ポ
リ塩化ビニルなどによる絶縁被覆が施される。
[Conventional technology] As conductors for overhead distribution lines that are wired between telephone poles and the like,
Conventionally, hard copper wires have been used. The assembled plurality of hard copper wires are twisted, and an insulation coating of polyethylene, polyvinyl chloride, or the like is applied on the twisted wires.

[発明が解決しようとする課題] 撚り合わせられた各硬銅線の表面には、撚りを解除し
ようとする撚線反発力が必然的に生じる。この撚線反発
力は、各硬銅線の表面上に引張残留応力として現われ
る。また、各硬銅線には、ドラムに巻かれていたときに
ついた巻癖に起因する残留応力が存在することもある。
[Problem to be Solved by the Invention] On the surface of each twisted hard copper wire, a twisted wire repulsive force for canceling the twist is inevitably generated. This stranded wire repulsion appears as a tensile residual stress on the surface of each hard copper wire. Further, each hard copper wire may have a residual stress due to a curl generated when the hard copper wire is wound on the drum.

従来の被覆電線では、上述のような残留応力が1つの
要因となって断線を生じることがあった。すなわち、被
覆電線内に雨水が侵入したりすると、被覆層内部は腐蝕
しやすい環境となり、硬銅線表面に酸化皮膜が形成した
りする。このような腐蝕環境と上述の残留応力とが互い
に影響し合うと硬銅線に応力腐蝕割れが生じ、その結果
断線にまで至る。
In a conventional coated electric wire, the above-described residual stress may be one factor to cause disconnection. That is, when rainwater enters the covered electric wire, the inside of the covering layer becomes an easily corrosive environment, and an oxide film is formed on the surface of the hard copper wire. When such a corrosive environment and the above-mentioned residual stress interact with each other, stress corrosion cracking occurs in the hard copper wire, and as a result, the wire breaks.

被覆電線用導体として軟銅線を用いれば、上述のよう
な残留応力は小さいので応力腐蝕割れ現象の生ずる可能
性は少なくなる。しかし、その反面引張強さの低下は免
れず、そのため実際上軟銅線を被覆電線用撚線導体とし
て用いることはできない。
If a soft copper wire is used as the conductor for the covered electric wire, the possibility of occurrence of the stress corrosion cracking phenomenon is reduced because the above-mentioned residual stress is small. However, on the other hand, a decrease in tensile strength is unavoidable, and therefore, in practice, a soft copper wire cannot be used as a stranded conductor for a covered wire.

それゆえに、この発明の目的は、引張強さを維持する
とともに、応力腐蝕割れ現象を生じさせない被覆電線用
撚線導体の製造方法を提供することである。
Therefore, an object of the present invention is to provide a method for producing a stranded conductor for a covered electric wire which maintains tensile strength and does not cause a stress corrosion cracking phenomenon.

[課題を解決するための手段] この発明に従った被覆電線用撚線導体の製造方法は、
Ag、Sn、Mg、Cr、In、Ni、Al、Fe、Si、Sb、Zr、Te、Se
を含む群から選ばれた1種または2種以上の元素の濃度
が外層部よりも中心部の方が高い導体を、減面率60〜9
9.9%で伸線加工して、中心部における前記元素の濃度
と外層部における前記元素の濃度とが段差を持って分布
し、かつ横断面積に対する前記中心部の横断面積の割合
が70%以上である導体素線とし、この導体素線を複数本
集合して撚線加工した後、加熱によって各導体素線の外
層部のみを再結晶化させることを特徴とする。
[Means for Solving the Problems] The method for producing a stranded conductor for a covered electric wire according to the present invention comprises:
Ag, Sn, Mg, Cr, In, Ni, Al, Fe, Si, Sb, Zr, Te, Se
A conductor in which the concentration of one or more elements selected from the group including is higher in the center than in the outer layer is reduced to 60 to 9
Wire drawing at 9.9%, the concentration of the element in the center and the concentration of the element in the outer layer are distributed with a step, and the ratio of the cross-sectional area of the center to the cross-sectional area is 70% or more. The method is characterized in that after a certain conductor strand is formed, a plurality of the conductor strands are assembled and twisted, and then only the outer layer portion of each conductor strand is recrystallized by heating.

上記方法によって得られた被覆電線は、複数本の導体
素線を集合して撚線にし、この撚線上に絶縁被覆を施し
たものであって、上記各導体素線は、Ag、Sn、Mg、Cr、
In、Ni、Al、Fe、Si、Sb、Zr、Te、Seを含む群から選ば
れた1種または2種以上の元素の濃度が外層部よりも中
心部の方が高くなっており、しかも外層部のみが再結晶
組織を有している。
The insulated wire obtained by the above method, a plurality of conductor strands are gathered into a stranded wire, and an insulation coating is applied on the stranded wire, and the conductor strands are Ag, Sn, Mg , Cr,
The concentration of one or more elements selected from the group including In, Ni, Al, Fe, Si, Sb, Zr, Te, and Se is higher in the central part than in the outer layer part, and Only the outer layer has a recrystallized structure.

[発明の作用効果] 上記方法によって得られた導体素線の内部結晶組織
は、第1図に示すように、その外層部1が再結晶組織を
有し、その中心部2が長手方向に長く延びた伸線加工組
織を有している。このように、撚線を構成する各導体素
線の外層部1のみが再結晶するので、伸線加工や撚線加
工時に生じた残留応力が解放され、応力腐蝕割れ現象の
生じる可能性も小さくなる。一方、各導体素線の中心部
2は、伸線加工組織を有しているので、引張強度は比較
的大きい。したがって、各導体素線は、被覆電線用撚線
導体としての使用に耐え得るだけの引張強さを維持し得
る。
[Operation and Effect of the Invention] As shown in FIG. 1, the inner crystal structure of the conductor strand obtained by the above method has an outer layer portion 1 having a recrystallized structure and a central portion 2 having a longer length in the longitudinal direction. It has an extended drawing structure. As described above, since only the outer layer portion 1 of each conductor strand constituting the stranded wire is recrystallized, the residual stress generated at the time of wire drawing or stranded wire processing is released, and the possibility of the occurrence of stress corrosion cracking is reduced. Become. On the other hand, since the central portion 2 of each conductor strand has a drawn structure, the tensile strength is relatively large. Therefore, each conductor strand can maintain a tensile strength enough to withstand use as a stranded conductor for a covered electric wire.

なお、この明細書中に用いる再結晶組織とは、必ずし
も外層部の組織が完全に再結晶組織を示している場合に
限らず、外層部の転位密度が中心部に比較して少ないこ
とをも含むものとして理解されねばならない。
Note that the recrystallized structure used in this specification is not limited to the case where the structure of the outer layer part completely shows the recrystallized structure, and also that the dislocation density of the outer layer part is smaller than that of the central part. It must be understood as including.

導体が、Ag、Sn、Mg、Cr、In、Ni、Al、Fe、Si、Sb、
Zr、Te、Seを含む群から選ばれた1種または2種以上の
元素を含有すれば、その導体の再結晶温度は上昇する。
たとえば、銅がAgを0.1重量%含有すれば、その再結晶
温度は約100℃高くなる。したがって、これらの元素の
濃度が外層部よりも中心部の方が高い導体を用いれば、
その導体の再結晶温度は外層部よりも中心部の方が高く
なる。つまり、このような濃度分布を有する導体を用い
れば、適当な加熱によって第1図に示すような結晶組織
を有する導体素線を得やすくなる。たとえば、相対的に
低い外層部の再結晶温度と相対的に高い中心部の再結晶
温度との中間に位置する温度まで導体素線を加熱すれ
ば、外層部のみが再結晶化する。
The conductor is Ag, Sn, Mg, Cr, In, Ni, Al, Fe, Si, Sb,
When one or more elements selected from the group including Zr, Te, and Se are contained, the recrystallization temperature of the conductor increases.
For example, if copper contains 0.1% by weight of Ag, its recrystallization temperature will increase by about 100 ° C. Therefore, if a conductor is used in which the concentration of these elements is higher in the center than in the outer layer,
The recrystallization temperature of the conductor is higher at the center than at the outer layer. That is, if a conductor having such a concentration distribution is used, a conductor strand having a crystal structure as shown in FIG. 1 can be easily obtained by appropriate heating. For example, if the conductor strand is heated to a temperature intermediate between the relatively low recrystallization temperature of the outer layer portion and the relatively high recrystallization temperature of the central portion, only the outer layer portion is recrystallized.

上記元素の濃度は、好ましくは、中心部において0.03
〜0.2重量%であり、外層部において0.01重量%以下と
される。中心部の濃度を0.03〜0.2重量%としたのは、
0.03重量%未満であれば再結晶温度の上昇度合が少な
く、そのため中心部の再結晶温度と外層部の再結晶温度
との間の差があまり大きくならないからである。一方、
0.2重量%を越える濃度であるならば、導電率が低下し
てくる。
The concentration of the element is preferably 0.03 at the center.
To 0.2% by weight, and 0.01% by weight or less in the outer layer portion. The reason why the concentration at the center is 0.03 to 0.2% by weight is as follows.
If it is less than 0.03% by weight, the degree of increase in the recrystallization temperature is small, so that the difference between the recrystallization temperature in the central part and the recrystallization temperature in the outer layer part does not become so large. on the other hand,
If the concentration exceeds 0.2% by weight, the electrical conductivity will decrease.

各導体素線の中心部における上記元素の濃度と外層部
における上記元素の濃度とが滑らかな濃度勾配をもって
分布してもよいが、その両者が段差をもって分布するよ
うにしてもよい。ただこの場合、導体素線の横断面積に
対する中心部の横断面積の割合は、引張強さを維持する
観点から、70%以上とするのが良い。
The concentration of the element in the center of each conductor strand and the concentration of the element in the outer layer may be distributed with a smooth concentration gradient, or both may be distributed with a step. However, in this case, the ratio of the cross-sectional area of the central portion to the cross-sectional area of the conductor strand is preferably 70% or more from the viewpoint of maintaining the tensile strength.

導体素線の中心部における上記元素の濃度と外層部に
おける上記元素の濃度とを変える方法としては、たとえ
ば、外層部を構成するパイプ内に中心部を構成する材料
を嵌め入れる方法、溶融めっきや電気めっきなどによる
めっき法、鋳造時に元素の濃度分布を変える方法などが
あるが、いずれの方法を採用してもよい。
As a method of changing the concentration of the element in the central portion of the conductor strand and the concentration of the element in the outer layer portion, for example, a method of fitting a material constituting the central portion into a pipe constituting the outer layer portion, hot-dip plating, There are a plating method such as electroplating, and a method of changing the concentration distribution of elements during casting, and any method may be employed.

伸線加工の減面率を60〜99.9%としたのは、60%未満
であるならば引張強さを所定通りに維持することができ
なくなる。一方、伸線加工における減面率が高くなれば
なるほど再結晶温度は低くなる。そのため、中心部にお
ける再結晶温度を比較的高く維持するために、減面率の
上限値は99.9%に制限するのが望ましい。
If the reduction in area of the wire drawing is set to 60 to 99.9%, if it is less than 60%, the tensile strength cannot be maintained as specified. On the other hand, the higher the area reduction rate in wire drawing, the lower the recrystallization temperature. Therefore, in order to keep the recrystallization temperature in the center relatively high, it is desirable to limit the upper limit of the area reduction to 99.9%.

撚線加工した後に各導体素線を加熱するものであるの
で、この加熱によって撚線加工時に生じた残留応力も有
効に除去することができる。
Since each conductor strand is heated after the stranded wire processing, the residual stress generated during the stranded wire processing by this heating can be effectively removed.

撚線の加熱方法としては、たとえば通電加熱等が挙げ
られる。適当な条件を選んで撚線を通電加熱等によって
連続的に加熱すれば、撚線を構成する各導体素線の外層
部のみを再結晶化させることができる。
As a method for heating the stranded wire, for example, electric heating and the like can be mentioned. If the stranded wire is continuously heated by electric heating or the like while selecting appropriate conditions, only the outer layer portion of each conductor strand constituting the stranded wire can be recrystallized.

[実施例1] Sn 0.05重量%とTe 0.03重量%とAg 0.01重量%とを
含む直径8mmφの銅線を準備した。この銅線表面に純銅
を0.2mmの厚さで電気めっきした後、直径2mmφになるま
で伸線加工した。こうして得られた導体素線を19本集合
して撚線にした後、この撚線をトンネル炉内に通過させ
たところ、各導体素線の外層部(約50μm厚)のみが再
結晶した組織を呈していた。なお、冷間加工後(減面
率)は94%、また全横断面積に対する再結晶していない
含有元素濃度の高い部分の断面積の割合は、90%であっ
た。
Example 1 A copper wire having a diameter of 8 mm and containing 0.05% by weight of Sn, 0.03% by weight of Te and 0.01% by weight of Ag was prepared. After electroplating pure copper with a thickness of 0.2 mm on the surface of the copper wire, wire drawing was performed until the diameter became 2 mmφ. After assembling 19 conductor strands obtained in this way into a stranded wire, this stranded wire was passed through a tunnel furnace, and only the outer layer (about 50 μm thick) of each conductor strand was recrystallized. Was presented. After cold working (area reduction ratio), the ratio of the cross-sectional area of the portion having a high concentration of the contained element, which was not recrystallized, to the entire cross-sectional area was 90%.

上述のようにして得られた撚線上に架橋ポリエチレン
被覆を施して被覆電線とした。この被覆電線の被覆層と
撚線導体との間にアンモニア水を注入して応力腐蝕割れ
テストを実施したところ、3か月経過しても応力腐蝕割
れを生じなかった。
A crosslinked polyethylene coating was applied to the stranded wire obtained as described above to obtain a coated electric wire. Ammonia water was injected between the covering layer of the covered electric wire and the stranded conductor to conduct a stress corrosion cracking test. As a result, no stress corrosion cracking occurred even after 3 months.

比較のため、硬銅線を導体素線とする従来の被覆電線
に同様なテストを行なったところ、約1か月で応力腐蝕
割れが生じ断線した。
For comparison, a similar test was performed on a conventional insulated wire using a hard copper wire as a conductor strand, and stress corrosion cracking occurred and broke in about one month.

[実施例2] Agを0.05重量%含む直径11mmφの銅線を準備した。こ
のAg含有銅線を、溶融状態にある純銅を貯留している槽
中に通過させ、銅線表面に純銅を被覆した。こうして得
られた線材は、直径が12mmφであり、また中心部におけ
るAg濃度が0.08重量%で外層部におけるAg濃度が0.005
重量%以下であった。また、全横断面積に対する中心部
の断面積の割合は、84%であった。この線材を冷間伸線
加工によって直径2mmφにまでした。冷間加工度(減面
率)は97.2%である。
Example 2 A copper wire having a diameter of 11 mm and containing 0.05% by weight of Ag was prepared. This Ag-containing copper wire was passed through a tank storing pure copper in a molten state, and the copper wire surface was coated with pure copper. The wire thus obtained had a diameter of 12 mmφ, an Ag concentration in the center of 0.08% by weight and an Ag concentration in the outer layer of 0.005% by weight.
% By weight or less. The ratio of the cross-sectional area at the center to the total cross-sectional area was 84%. The diameter of the wire was reduced to 2 mmφ by cold drawing. The degree of cold work (area reduction rate) is 97.2%.

上記線材を19本集合して撚線した後、この撚線を250
℃において2時間加熱した。この撚線の各導体素線は、
外層部が再結晶組織を有し、中心部が長手方向に長く延
びた伸線加工組織を有していた。また、各導体素線の引
張強さは45.7kg/mm2、導電率は約98%であった。
After assembling the above 19 wires and twisting, this twisted wire is
Heated at 0 ° C for 2 hours. Each conductor strand of this stranded wire is
The outer layer had a recrystallized structure, and the center had a drawn structure elongated in the longitudinal direction. The tensile strength of each conductor strand was 45.7 kg / mm 2 , and the conductivity was about 98%.

上述のようにして得られた撚線導体上にポリエチレン
被覆を施して被覆電線とした。そして、この被覆電線の
被覆層と撚線導体との間にアンモニア水を注入して応力
腐蝕割れテストを行なったところ、3か月経過しても断
線は見られなかった。
A polyethylene wire was applied to the stranded conductor obtained as described above to obtain a covered electric wire. Then, a stress corrosion cracking test was conducted by injecting aqueous ammonia between the coating layer of the coated electric wire and the stranded conductor, and no disconnection was observed even after 3 months.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この発明の方法を実施することによって得ら
れる導体素線の内部結晶組織を模式的に示す図である。 図において、1は外層部、2は中心部を示す。
FIG. 1 is a diagram schematically showing the internal crystal structure of a conductor strand obtained by carrying out the method of the present invention. In the drawing, 1 indicates an outer layer portion, and 2 indicates a center portion.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鳥居 久信 東京都調布市西つつじケ丘2丁目4番1 号 東京電力株式会社技術研究所内 (72)発明者 中井 由弘 大阪府大阪市此花区島屋1丁目1番3号 住友電気工業株式会社大阪製作所内 (56)参考文献 特開 昭62−160611(JP,A) 特開 昭62−160610(JP,A) 特公 昭51−4258(JP,B2) (58)調査した分野(Int.Cl.6,DB名) H01B 1/00 H01B 5/08 H01B 13/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hisashibu Torii 2-4-1, Nishi-Atsujigaoka, Chofu-shi, Tokyo Inside the Tokyo Electric Power Company R & D Laboratory (72) Inventor Yoshihiro Nakai 1-1-1, Shimaya, Konohana-ku, Osaka-shi, Osaka No. 3 Sumitomo Electric Industries, Ltd. Osaka Works (56) References JP-A-62-160611 (JP, A) JP-A-62-160610 (JP, A) JP-B-51-4258 (JP, B2) (58) ) Field surveyed (Int. Cl. 6 , DB name) H01B 1/00 H01B 5/08 H01B 13/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Ag、Sn、Mg、Cr、In、Ni、Al、Fe、Si、S
b、Zr、Te、Seを含む群から選ばれた1種または2種以
上の元素の濃度が外層部よりも中心部の方が高い導体
を、減面率60〜99.9%で伸線加工して、中心部における
前記元素の濃度と外層部における前記元素の濃度とが段
差を持って分布し、かつ横断面積に対する前記中心部の
横断面積の割合が70%以上である導体素線とし、この導
体素線を複数本集合して撚線加工した後、加熱によって
各導体素線の外層部のみを再結晶化させることを特徴と
する、被覆電線用撚線導体の製造方法。
1. Ag, Sn, Mg, Cr, In, Ni, Al, Fe, Si, S
Conductors with a concentration of one or more elements selected from the group containing b, Zr, Te, and Se in the center portion higher than the outer layer portion are drawn at a surface reduction rate of 60 to 99.9%. A conductor element wire in which the concentration of the element in the central portion and the concentration of the element in the outer layer portion are distributed with a step, and the ratio of the cross-sectional area of the central portion to the cross-sectional area is 70% or more; A method for producing a stranded conductor for a covered electric wire, comprising a step of, after assembling a plurality of conductor strands, performing stranded processing, and then recrystallizing only an outer layer portion of each conductor strand by heating.
JP63317034A 1988-12-15 1988-12-15 Manufacturing method of stranded conductor for coated electric wire Expired - Lifetime JP2879779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63317034A JP2879779B2 (en) 1988-12-15 1988-12-15 Manufacturing method of stranded conductor for coated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63317034A JP2879779B2 (en) 1988-12-15 1988-12-15 Manufacturing method of stranded conductor for coated electric wire

Publications (2)

Publication Number Publication Date
JPH02162613A JPH02162613A (en) 1990-06-22
JP2879779B2 true JP2879779B2 (en) 1999-04-05

Family

ID=18083686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63317034A Expired - Lifetime JP2879779B2 (en) 1988-12-15 1988-12-15 Manufacturing method of stranded conductor for coated electric wire

Country Status (1)

Country Link
JP (1) JP2879779B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668934B2 (en) * 1986-01-09 1994-08-31 住友電気工業株式会社 Method for manufacturing stranded wire conductor for covered electric wire

Also Published As

Publication number Publication date
JPH02162613A (en) 1990-06-22

Similar Documents

Publication Publication Date Title
KR100721885B1 (en) Stranded cable and method of making
JPS6047684B2 (en) Superconducting composite and its manufacturing method
JP2879779B2 (en) Manufacturing method of stranded conductor for coated electric wire
CN117219315A (en) Aluminum alloy wire, preparation method and application thereof, and cable
JP3475433B2 (en) Insulated wire and its manufacturing method
JPH0374008A (en) Aerial transmission line
JP2879780B2 (en) Manufacturing method of stranded conductor for coated electric wire
JPH0668934B2 (en) Method for manufacturing stranded wire conductor for covered electric wire
JP2002373526A (en) Overhead wire
JPH04308611A (en) Overhead transmission line
JP3185349B2 (en) Overhead transmission line
JP3833846B2 (en) Low-sag overhead wire
JP3036229B2 (en) Overhead transmission line
JPS63138607A (en) Covered wire
JPS5911373Y2 (en) overhead insulated wire
JPH0562522A (en) Lightning-proof electric wire
JP2742436B2 (en) Method for producing compound superconducting stranded wire
JPH1166947A (en) Covered electric wire
JPH0721976B2 (en) Conductor for coated electric wire
JPS59171407A (en) Method of accelerating snowfall resistance of aerial ground wire
JP2999510B2 (en) Power cable
JPH09141324A (en) Manufacture of aluminum steel composite wire
JP2926730B2 (en) Insulated wire conductor
JP3353217B2 (en) Method for producing Nb-3 Sn-based superconducting wire
JPH11111048A (en) Covered wire