JPS62158822A - Manufacture of high strength steel tube having low hardness and yield ratio - Google Patents

Manufacture of high strength steel tube having low hardness and yield ratio

Info

Publication number
JPS62158822A
JPS62158822A JP19986A JP19986A JPS62158822A JP S62158822 A JPS62158822 A JP S62158822A JP 19986 A JP19986 A JP 19986A JP 19986 A JP19986 A JP 19986A JP S62158822 A JPS62158822 A JP S62158822A
Authority
JP
Japan
Prior art keywords
temperature
low
cooling
steel pipe
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19986A
Other languages
Japanese (ja)
Other versions
JPH0711030B2 (en
Inventor
Hiromi Fujii
藤井 博己
Yasuo Sogo
十河 泰雄
Takaharu Shimizu
清水 高治
Kyohei Murata
村田 杏坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61000199A priority Critical patent/JPH0711030B2/en
Publication of JPS62158822A publication Critical patent/JPS62158822A/en
Publication of JPH0711030B2 publication Critical patent/JPH0711030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To manufacture a high strength steel tube having low hardness and yield ratio by cooling the outer surface part of a steel tube from a high temp. to a specified temp. at a cooling rate higher than the air cooling rate and further cooling it to a low temp. at a much higher cooling rate. CONSTITUTION:The outer surface part of a steel tube hot rolled, or subjected to reheating to a high temp. is cooled from a high temp. to 550-400 deg.C at a cooling rate higher than the air cooling rate. It is further cooled to a low temp. at a much higher cooling rate. Tempering is then carried out at the Ac1 transformation point or below are required.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は硬さと降伏比の低い高強度鋼管の製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing high-strength steel pipes with low hardness and low yield ratio.

(従来の技術とその問題点) 近年エネルギー開発の急速な進展により、石油ないしは
天然ガスのパイプライン輸送か大規模かつ長距離にわた
り行なわれるようになるとともに、破壊に対する安全性
の確保から高強度の鋼管の製造が要請されている。また
エネルギー資源の枯渇化に伴い新しく掘削される石油弁
や天然ガス井は硫化物を含む場合か多く、石油や天然ガ
スを輸送するパイプやそれらを貯蔵するタンク類に、硫
化物と鉄との反応によって発生した水素が鋼中に拡散し
、水素誘起割れや硫化物応力腐食割れを起し内容物がも
れる事故を時々起している。
(Conventional technologies and their problems) In recent years, with the rapid progress in energy development, oil or natural gas has come to be transported by pipelines on a large scale and over long distances. There is a request for manufacturing steel pipes. Additionally, as energy resources become depleted, newly drilled oil valves and natural gas wells often contain sulfides, and the pipes that transport oil and natural gas and the tanks that store them often contain sulfides and iron. Hydrogen generated by the reaction diffuses into the steel, causing hydrogen-induced cracking and sulfide stress corrosion cracking, sometimes resulting in leakage of contents.

このように石油等に含まれる硫化物が原因の割れについ
ては、一般に硬さが影響するものとして、低硬度の鋼管
の製造が要請されている。このような特性の要請に応じ
た鋼管の製造法として特開昭54−117311号公報
、特開昭55−7:1849号公報などで紹介されてい
る焼入れ焼戻し処理法(Q−T処理)、さらには特開昭
53−52228号公報、特開昭54−118325号
公報なとて紹介されているように低温で圧延する制御圧
延法(CR法)があり、−・般に広く使用されている。
Since cracks caused by sulfides contained in petroleum and the like are generally affected by hardness, there is a demand for manufacturing steel pipes with low hardness. As a manufacturing method for steel pipes that meet the demands for such characteristics, the quenching and tempering treatment method (Q-T treatment) introduced in JP-A-54-117311 and JP-A-55-7:1849, etc. Furthermore, as introduced in JP-A-53-52228 and JP-A-54-118325, there is a controlled rolling method (CR method) that rolls at low temperatures, and is generally widely used. There is.

また最近てはバイブライン建設施工期間の短縮化か要求
されるようになり、従来の短尺鋼管を現地て溶接する敷
設工法から、予め製管工場て短尺鋼管を長尺状に溶接し
てコイル状物て搬送し、これを現地でライン状に伸ばし
ながら必要個所のみを溶接する敷設工法へと転換される
方向にあり、加工性のよい低降伏点鋼管の製造か要求さ
れつつある。しかしなから高強度性と良加工性(低硬度
、低降伏点)は相反する性質てあり、両者の性質を満足
する鋼管は前記したような製管法ては得られるものでな
かった。第1図は熱間圧延のまま(AsQ)とQ−T処
理後の鋼管について鋼管外表面から深さく板厚)方向の
硬さ変化を示すように硬さの低下度合か著しく大きく、
また第1表で示すように一般に高強度鋼管は高降伏点、
高降伏比である。すなわち従来の高強度鋼管は、安全性
と割れ性、加工性を同時に具備したものでなかった。
In addition, recently there has been a demand for shortening the construction period for vibrating lines, so instead of the conventional installation method of welding short steel pipes on-site, short steel pipes are welded into long lengths at a pipe manufacturing factory in advance to form coils. There is a trend towards a new construction method in which pipes are transported in bulk, stretched into a line on site, and welded only at the necessary points, and there is a growing demand for the production of low-yield point steel pipes with good workability. However, high strength and good workability (low hardness, low yield point) are contradictory properties, and a steel pipe that satisfies both properties has not been obtained by the above-mentioned pipe manufacturing method. Figure 1 shows the hardness change in the direction from the outer surface of the steel pipe (from the outside surface to the thickness) for the as-hot-rolled (AsQ) and Q-T treated steel pipes.
In addition, as shown in Table 1, high-strength steel pipes generally have a high yield point,
High yield ratio. In other words, conventional high-strength steel pipes do not have safety, crackability, and workability at the same time.

第1表 (問題点を解決するための手段) 本発明はこのような現状に鑑みて、高強度でかつ最高硬
さおよび降伏比の低い材料か得にくい従来のQT無処理
かわって、強度、溶接性等、その他の特性を損うことな
く最高硬さの低いかつ降伏比の低い鋼管の製造法を提供
しようとするものである。すなわち本発明は、鋼管断面
内の冷却速度のずれを活用した制御冷却熱処理法で、鋼
管外表面層を強制冷却することによって、本発明か目的
とする鋼管か製造されることを知見したものである。そ
の要旨は、熱間圧延後あるいは高温度に再加熱された鋼
管を、高温度から鋼管外表層部を自然放冷よりも速い速
度で550℃〜400℃の温度に冷却し、続いてさらに
速い速度で低温度に冷却する。あるいはざらにAc+変
態点以下の温度で焼戻処理する硬さと降伏比の低い高強
度鋼管の製造法である。
Table 1 (Means for Solving the Problems) In view of the current situation, the present invention provides a material with high strength, low maximum hardness, and low yield ratio, in place of the conventional non-QT treatment, which is difficult to obtain. The purpose of this invention is to provide a method for producing steel pipes that have a low maximum hardness and a low yield ratio without impairing other properties such as weldability. In other words, the present invention is a controlled cooling heat treatment method that utilizes the deviation in cooling rate within the cross section of the steel pipe, and it has been discovered that the objective steel pipe of the present invention can be manufactured by forcibly cooling the outer surface layer of the steel pipe. be. The gist of this method is to cool a steel pipe that has been hot-rolled or reheated to a high temperature from a high temperature to a temperature of 550°C to 400°C at a faster rate than natural cooling, and then Cool to low temperature at high speed. Alternatively, it is a method for producing high-strength steel pipes with low hardness and yield ratio, which is tempered at a temperature roughly below the Ac+ transformation point.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

通常の熱間圧延や熱間制御圧延を終了した高温度の熱を
保有する鋼管あるいは熱処理する目的で高温度に加熱さ
れた鋼管を高温度から冷却する過程において、鋼管外表
層部を自然放冷(空冷)よりも速い速度て550℃〜4
00℃の任意の停止温度に冷却する。この温度範囲は、
鋼管外表層部の一部にα変態を生ぜしめ強冷却による硬
さ上昇を防止し最高硬さの低いかつ高強度でYRの低い
鋼管を得るものである。この温度範囲に満たない550
℃以上の高い温度てはα変態量か少く続いて行なわれる
速い速度での冷却により残りのγ相が低温変態生成組織
に変態し硬さを高めるため本発明にそぐわない。また4
00℃を通過した低い温度ては鋼管全体のα変態量が増
加し高強度を得ることかできない。
In the process of cooling a steel pipe that has undergone high temperature heat after normal hot rolling or hot controlled rolling, or a steel pipe that has been heated to a high temperature for the purpose of heat treatment, the outer surface layer of the steel pipe is allowed to cool naturally. Faster speed than (air cooling) 550℃ ~ 4
Cool to an arbitrary stop temperature of 00°C. This temperature range is
This method produces α transformation in a part of the outer surface layer of the steel pipe to prevent an increase in hardness due to strong cooling, thereby obtaining a steel pipe with low maximum hardness, high strength, and low YR. 550 below this temperature range
At temperatures as high as .degree. C. or higher, the amount of alpha transformation is small and subsequent rapid cooling causes the remaining gamma phase to transform into a low-temperature transformation-generated structure and increase hardness, which is not suitable for the present invention. Also 4
At temperatures as low as 00°C, the amount of alpha transformation in the entire steel pipe increases, making it impossible to obtain high strength.

さらに、この温度範囲を自然放冷よりも遅い冷却速度で
は鋼管全体のα変態量か増し、引き続く速い速度での冷
却による高強度化への効果か減少し、本発明の目的とす
る効果が十分に発揮出来ないことを知見した。
Furthermore, in this temperature range, if the cooling rate is slower than natural cooling, the amount of alpha transformation in the entire steel pipe increases, and the effect of increasing the strength due to subsequent cooling at a high rate decreases, so that the desired effect of the present invention is not sufficient. I discovered that I was unable to demonstrate my abilities.

上記のような温度条件と冷却条件により冷却された鋼管
は、続いて高強度を得るために、さらに速い速度で低温
度に冷却する。このように鋼管外表層部のみを加速冷却
した鋼管は、鋼管表層部の硬質層と鋼管中心部の軟質層
が相俟って、強度と加工性を調和した、硬さく板厚方向
の平均硬さ)と降伏比の低い高強度鋼管を製造し、製品
に供することかできる。さらに本発明は、急冷によって
鋼管表層部に発生した内部歪を除去するためにAc+変
態点以下の低い温度で焼戻処理を行う。焼戻処理は硬さ
、降伏比、強度をバランス化した鋼管に製造する。
The steel pipe that has been cooled under the temperature and cooling conditions described above is then cooled at a faster rate to a lower temperature in order to obtain high strength. In this way, a steel pipe in which only the outer surface layer of the steel pipe is acceleratedly cooled has a hard layer on the surface layer and a soft layer in the center of the steel pipe, which is hard and has an average hardness in the thickness direction that balances strength and workability. It is possible to manufacture high-strength steel pipes with low yield ratios and use them in products. Furthermore, in the present invention, tempering treatment is performed at a low temperature below the Ac+ transformation point in order to remove internal strain generated in the surface layer of the steel pipe due to rapid cooling. The tempering process produces steel pipes with balanced hardness, yield ratio, and strength.

上記のような製造法で製造された鋼管は、ラインパイプ
用鋼として適当な強度を有し、硬さと降伏比の低いもの
か得られる。
Steel pipes manufactured by the above-mentioned manufacturing method have appropriate strength as steel for line pipes, and have low hardness and yield ratio.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

第2表に示す成分組成の鋼材を供試材として、熱間圧延
後高温度(930℃)に加熱された鋼管の表層部を、気
水混合冷媒℃自然放冷より速い速度(平均冷却速度、3
0℃/秒)て任意の温度まて冷却し、続いてさらに多量
の気水混合冷媒を噴射する急速冷却(平均冷却速度、1
50℃/秒)で常温まて冷却した。さらに鋼管を温度4
50℃焼戻しだ時の鋼管の特性を第3表に比較法と共に
掲示した。なお比較法は、温度930℃から常温まで多
量の気水混合冷媒を噴射して一気に冷却した場合(胎Q
)、あるいは鋼管の表層部を気水混合冷媒て自然放冷よ
り速い速度(平均冷却速度=30℃/秒)で温度550
℃以上の任意の温度まて冷却し、 続いてさらに多量の気水温合冷媒を噴射する急速冷却(
平均冷却速度:150℃/秒)で常温まて冷却した。さ
らにAc、以下の任意の温度て焼戻しを行なった詩の鋼
管の特性を掲示した。
Using a steel material with the composition shown in Table 2 as a test material, the surface layer of the steel pipe heated to a high temperature (930°C) after hot rolling was heated at a rate faster than natural cooling (average cooling rate ,3
0℃/sec) to a desired temperature, followed by rapid cooling (average cooling rate, 1
50° C./sec) to room temperature and then cooled. Furthermore, the steel pipe is heated to a temperature of 4
The properties of the steel pipe when tempered at 50°C are listed in Table 3 along with comparative methods. The comparative method involves injecting a large amount of air-water mixed refrigerant from a temperature of 930°C to room temperature to cool it all at once.
), or the surface layer of the steel pipe is heated to a temperature of 550°C using a steam/water mixed refrigerant at a faster rate than natural cooling (average cooling rate = 30°C/sec).
Rapid cooling (cooling to any temperature above ℃) and then injecting a large amount of air/water temperature mixed refrigerant (
The mixture was cooled to room temperature at an average cooling rate of 150° C./sec. In addition, the properties of the steel pipes tempered at the desired temperatures listed below are listed.

靭性特性については本発明による場合通常のQT材に比
ベモ均的にやや低めであるか、強度−靭性ハランスてみ
る限り問題となる程の低下はみられない。強度に於ては
本発明材はモ均的に高めであるにもかかわらず、最高硬
さ、降伏比共に低いレベルにある。
Regarding the toughness properties, the toughness properties of the present invention are generally slightly lower than those of ordinary QT materials, and as far as the strength-toughness ratio is concerned, there is no significant decrease in toughness. Although the strength of the materials of the present invention is uniformly high, both the maximum hardness and yield ratio are at low levels.

このように本発明にかかる鋼管の製造法は、従来の考え
方では到達出来なかった低降伏比特性か得られるものて
あり、産業上稗益するところ極めて大である。
As described above, the method for producing steel pipes according to the present invention provides a low yield ratio characteristic that could not be achieved using conventional methods, and is of great industrial benefit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は素管(ASQ)と焼戻し管(QT)肉厚方向(
外表面からの距離)の硬さ変化を示す図。
Figure 1 shows the wall thickness direction (ASQ) and tempered tube (QT).
A diagram showing changes in hardness (distance from the outer surface).

Claims (2)

【特許請求の範囲】[Claims] (1)熱間圧延後あるいは高温度に再加熱された鋼管を
、高温度から鋼管外表層部を自然放冷よりも速い速度で
550℃〜400℃の温度に冷却し、続いてさらに速い
速度で低温度に冷却することを特徴とする硬さと降伏比
の低い高強度鋼管の製造法。
(1) After hot rolling or reheating to a high temperature, the outer surface layer of the steel pipe is cooled from the high temperature to a temperature of 550°C to 400°C at a faster rate than natural cooling, and then at an even faster rate. A method for manufacturing high-strength steel pipes with low hardness and yield ratio, characterized by cooling to low temperatures.
(2)熱間圧延後あるいは高温度に再加熱された鋼管を
、高温度から鋼管外表層部を自然放冷よりも速い速度で
550℃〜400℃の温度に冷却し、続いてさらに速い
速度で低温度に冷却した後、Ac_1変態点以下の温度
で焼戻処理することを特徴とする硬さと降伏比の低い高
強度鋼管の製造法。
(2) After hot rolling or reheating to a high temperature, the outer surface layer of the steel pipe is cooled from the high temperature to a temperature of 550°C to 400°C at a faster rate than natural cooling, and then at an even faster rate. A method for producing a high-strength steel pipe with low hardness and yield ratio, characterized by cooling to a low temperature at a temperature of 100 mL, followed by tempering at a temperature below the Ac_1 transformation point.
JP61000199A 1986-01-07 1986-01-07 Manufacturing method of high strength steel pipe with low hardness and yield ratio Expired - Lifetime JPH0711030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000199A JPH0711030B2 (en) 1986-01-07 1986-01-07 Manufacturing method of high strength steel pipe with low hardness and yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000199A JPH0711030B2 (en) 1986-01-07 1986-01-07 Manufacturing method of high strength steel pipe with low hardness and yield ratio

Publications (2)

Publication Number Publication Date
JPS62158822A true JPS62158822A (en) 1987-07-14
JPH0711030B2 JPH0711030B2 (en) 1995-02-08

Family

ID=11467312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000199A Expired - Lifetime JPH0711030B2 (en) 1986-01-07 1986-01-07 Manufacturing method of high strength steel pipe with low hardness and yield ratio

Country Status (1)

Country Link
JP (1) JPH0711030B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321A (en) * 1989-09-21 1992-01-06 Nippon Steel Corp Production of steel tube having yield point elongation, reduced in yield ratio, and excellent in toughness at low temperature
JPH0551648A (en) * 1991-06-10 1993-03-02 Kawasaki Steel Corp Manufacture of electric resistance-welded tube
JPH05171294A (en) * 1991-12-25 1993-07-09 Kawasaki Steel Corp Method for cooling welded part of electric resistance welded tube

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618046A (en) * 1979-07-25 1981-02-20 Nissan Motor Co Ltd Regenerator for heat gas machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618046A (en) * 1979-07-25 1981-02-20 Nissan Motor Co Ltd Regenerator for heat gas machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321A (en) * 1989-09-21 1992-01-06 Nippon Steel Corp Production of steel tube having yield point elongation, reduced in yield ratio, and excellent in toughness at low temperature
JPH0551648A (en) * 1991-06-10 1993-03-02 Kawasaki Steel Corp Manufacture of electric resistance-welded tube
JPH05171294A (en) * 1991-12-25 1993-07-09 Kawasaki Steel Corp Method for cooling welded part of electric resistance welded tube

Also Published As

Publication number Publication date
JPH0711030B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
AU736035B2 (en) Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
AU736037B2 (en) Method for producing ultra-high strength, weldable steels with superior toughness
JP4502011B2 (en) Seamless steel pipe for line pipe and its manufacturing method
JP4105381B2 (en) Super high strength, weldability, boron-containing steel with excellent toughness
NO157371B (en) PROCEDURE FOR PREPARING BEETS.
CN101962707B (en) Method for producing 42CrMo steel seamless steel tube
JP2004176172A (en) High strength seamless steel pipe with excellent hic (hydrogen-induced cracking) resistance, and its manufacturing method
JP2000517381A (en) Method for producing self-hardened steel wire, wire for reinforcement and use for flexible conduit
CN102022086A (en) Economical seamless oil well pipe for expansion pipe and manufacturing method thereof
US1919136A (en) Enameled metal articles and method of producing them
JPS62158822A (en) Manufacture of high strength steel tube having low hardness and yield ratio
JPS6223056B2 (en)
JPS5834132A (en) Production of api standard class x80 steel pipe having excellent low-temperature toughness
JPH02243722A (en) Production of high strength steel tube reduced in hardness and yield ratio
JPH0452226A (en) Production of high strength seamless steel tube
Wu et al. Study on Special Deformation Mechanism of 2205 Duplex Stainless Steel During Expansion Test
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPH02282427A (en) Manufacture of high strength steel pipe having low maximum hardness and yield ratio
JPH06256842A (en) Production of light-gaged high-strength steel sheet having excellent sour resistance
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JPS62270725A (en) Production of steel pipe having high hardness on inside surface and having excellent wear resistance
JPH02254122A (en) Manufacture of high strength seamless steel pipe for oil well use
JPS6024321A (en) Production of electric welded oil well steel pipe having high strength and excellent resistance to souring and crushing
JP2957717B2 (en) Manufacturing method of high strength seamless steel pipe with low yield ratio
JPS61288018A (en) Manufacture of steel pipe having high strength and low yield ratio