JPH0711030B2 - Manufacturing method of high strength steel pipe with low hardness and yield ratio - Google Patents

Manufacturing method of high strength steel pipe with low hardness and yield ratio

Info

Publication number
JPH0711030B2
JPH0711030B2 JP61000199A JP19986A JPH0711030B2 JP H0711030 B2 JPH0711030 B2 JP H0711030B2 JP 61000199 A JP61000199 A JP 61000199A JP 19986 A JP19986 A JP 19986A JP H0711030 B2 JPH0711030 B2 JP H0711030B2
Authority
JP
Japan
Prior art keywords
steel pipe
temperature
low
yield ratio
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61000199A
Other languages
Japanese (ja)
Other versions
JPS62158822A (en
Inventor
博己 藤井
泰雄 十河
高治 清水
杏坪 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP61000199A priority Critical patent/JPH0711030B2/en
Publication of JPS62158822A publication Critical patent/JPS62158822A/en
Publication of JPH0711030B2 publication Critical patent/JPH0711030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は硬さと降伏比の低い高強度鋼管の製造法に関す
るものである。
TECHNICAL FIELD The present invention relates to a method for producing a high strength steel pipe having a low hardness and a low yield ratio.

(従来の技術とその問題点) 近年エネルギー開発の急速な進展により、石油ないしは
天然ガスのパイプライン輸送が大規模かつ長距離にわた
り行なわれるようになるとともに、破壊に対する安全性
の確保から高強度の鋼管の製造が要請されている。また
エネルギー資源の枯渇化に伴い新しく掘削される石油井
や天然ガス井は硫化物を含む場合が多く、石油や天然ガ
スを輸送するパイプやそれらを貯蔵するタンク類に、硫
化物と鉄との反応によって発生した水素が鋼中に拡散
し、水素誘起割れや硫化物応力腐食割れを起し内容物が
もれる事故を時々起している。
(Prior art and its problems) Due to the rapid progress of energy development in recent years, pipeline transportation of oil or natural gas has become large-scale and long-distance, and high strength is ensured from the safety of destruction. Manufacturing of steel pipe is required. In addition, oil wells and natural gas wells that are newly drilled due to depletion of energy resources often contain sulfides, and pipes that transport oil and natural gas and tanks that store them contain sulfides and iron. Hydrogen generated by the reaction diffuses into the steel, causing hydrogen-induced cracking and sulfide stress corrosion cracking, sometimes causing accidents in which the contents are leaked.

このように石油等に含まれる硫化物が原因の割れについ
ては、一般に硬さが影響するものとして、低硬度の鋼管
の製造が要請されている。このような特性の要請に応じ
た鋼管の製造法として特開昭54−117311号公報,特開昭
55−73849号公報などで紹介されている焼入れ焼戻し処
理法(Q−T処理)、さらには特開昭53−52228号公
報,特開昭54−118325号公報などで紹介されているよう
に低温で圧延する制御圧延法(CR法)があり、一般に広
く使用されている。
As for cracks caused by sulfides contained in petroleum, etc., the hardness generally affects the production of low hardness steel pipes. As a method of manufacturing a steel pipe in response to the demand for such characteristics, Japanese Patent Laid-Open Nos. 54-111731,
The quenching and tempering treatment method (QT treatment) introduced in JP-A-55-73849 and the like, and the low temperature as introduced in JP-A-53-52228 and JP-A-54-118325. There is a controlled rolling method (CR method) for rolling in.

また最近ではパイプライン建設施工期間の短縮化が要求
されるようになり、従来の短尺鋼管を現地で溶接する敷
設工法から、予め製管工場で短尺鋼管を長尺状に溶接し
てコイル状物で搬送し、これを現地でライン状に伸ばし
ながら必要個所のみを溶接する敷設工法へと転換される
方向にあり、加工性のよい低降伏点鋼管の製造が要求さ
れつつある。しかしながら高強度性と良加工性(低硬
度,低降伏点)は相反する性質であり、両者の性質を満
足する鋼管は前記したような製管法では得られるもので
なかった。第1図は熱間圧延のまま(AsQ)とQ−T処
理後の鋼管について鋼管外表面から深さ(板厚)方向の
硬さ変化を示すように硬さの低下度合が著しく大きく、
また第1表で示すように一般に高強度鋼管は高降伏点,
高降伏比である。すなわち従来の高強度鋼管は、安全性
と割れ性、加工性を同時に具備したものでなかった。
In recent years, there has been a demand for shortening the pipeline construction work period.From the conventional laying method for welding short steel pipes on site, long steel pipes have been welded in advance at a pipe manufacturing factory to a long shape to form a coiled product. There is a need to manufacture a low yield point steel pipe with good workability because it is being transferred to a laying method in which only the required parts are welded while being linearly stretched locally. However, high strength and good workability (low hardness, low yield point) are contradictory properties, and a steel pipe satisfying both properties cannot be obtained by the above-described pipe manufacturing method. Fig. 1 shows that the degree of decrease in hardness is extremely large as shown in the change in hardness in the direction of depth (plate thickness) from the outer surface of the steel pipe after hot rolling (AsQ) and after Q-T treatment.
Also, as shown in Table 1, high strength steel pipes generally have a high yield point,
It has a high yield ratio. That is, the conventional high-strength steel pipe does not have safety, crackability, and workability at the same time.

(問題点を解決するための手段) 本発明はこのような現状に鑑みて、高強度でかつ最高硬
さおよび降伏比の低い材料が得にくい従来のQT処理にか
わって、強度、溶接性等、その他の特性を損うことなく
最高硬さの低いかつ降伏比の低い鋼管の製造法を提供し
ようとするものである。すなわち本発明は、鋼管断面内
の冷却速度のずれを活用した制御冷却熱処理法で、鋼管
外表面層を強制冷却することによって、本発明が目的と
する鋼管が製造されることを知見したものである。その
要旨は、熱間圧延後あるいはAc3変態点以上の高温度に
再加熱された鋼管を、Ar3変態点以上の高温度から鋼管
外表層部を自然放冷よりも速い速度で550℃〜400℃の温
度に冷却し、続いてさらに速い速度で低温度に冷却す
る。あるいはさらにAc1変態点以下の温度で焼戻処理す
る硬さと降伏比の低い高強度鋼管の製造法である。
(Means for Solving Problems) In view of such a current situation, the present invention replaces the conventional QT treatment in which it is difficult to obtain a material having a high strength and a maximum hardness and a low yield ratio, strength, weldability, etc. The present invention aims to provide a method for producing a steel pipe having a low maximum hardness and a low yield ratio without impairing other properties. That is, the present invention is a controlled cooling heat treatment method utilizing the deviation of the cooling rate in the cross section of the steel pipe, by finding that the steel pipe intended by the present invention is manufactured by forcibly cooling the outer surface layer of the steel pipe. is there. The gist is that the steel pipe after hot rolling or reheated to a high temperature of Ac 3 transformation point or higher is heated from Ar 3 transformation point or higher temperature to the outer surface layer of the steel pipe at a rate faster than natural cooling at 550 ° C. Cool to a temperature of 400 ° C., then cool to a lower temperature at a faster rate. Alternatively, it is a method for producing a high-strength steel pipe having a low hardness and a low yield ratio, which is tempered at a temperature not higher than the Ac 1 transformation point.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

通常の熱間圧延や熱間制御圧延を終了した高温度の熱を
保有する鋼管あるいは熱処理する目的でAc3変態点以上
の高温度に加熱された鋼管をAc3変態点以上の高温度か
ら冷却する過程において、鋼管外表層部を自然放冷(空
冷)よりも速い速度で550℃〜400℃の任意の停止温度に
冷却する。この温度範囲は、鋼管外表層部の一部にα変
態を生ぜしめ強冷却による硬さ上昇を防止し最高硬さの
低いかつ高強度で降伏比(YR)の低い鋼管を得るもので
ある。この温度範囲に満たない550℃以上の高い温度で
はα変態量が少く続いて行なわれる速い速度での冷却に
より残りのγ相が低温変態生成組織に変態し硬さを高め
るため本発明にそぐわない。また400℃を通過した低い
温度では鋼管全体のα変態量が増加し高強度を得ること
ができない。
Steel pipes that retain high temperature heat after normal hot rolling or hot control rolling or steel pipes heated to a temperature higher than the Ac 3 transformation point for the purpose of heat treatment are cooled from a temperature higher than the Ac 3 transformation point. In the process, the outer surface layer of the steel pipe is cooled to an arbitrary stop temperature of 550 ° C to 400 ° C at a faster rate than natural cooling (air cooling). This temperature range is to obtain a steel pipe having a low maximum hardness, a high strength and a low yield ratio (YR) by causing α transformation in a part of the outer surface layer of the steel pipe to prevent an increase in hardness due to strong cooling. At a high temperature of 550 ° C. or higher, which is lower than this temperature range, the amount of α transformation is small, and the remaining γ phase is transformed into a low temperature transformation-forming structure by cooling at a high speed which is subsequently performed, which is not suitable for the invention. Further, at a low temperature of over 400 ° C, the amount of α transformation of the entire steel pipe increases and high strength cannot be obtained.

さらに、この温度範囲を自然放冷よりも遅い冷 却速度では鋼管全体のα変態量が増し、引き続く速い速
度での冷却による高強度化への効果が減少し、本発明の
目的とする効果が十分に発揮出来ないことを知見した。
In addition, this temperature range is slower than natural cooling. It has been found that the α-transformation amount of the entire steel pipe increases at the cooling speed, and the effect of increasing the strength by subsequent cooling at a high speed decreases, and the effect aimed at by the present invention cannot be sufficiently exerted.

上記のような温度条件と冷却条件により冷却された鋼管
は、続いて高強度を得るために、さらに速い速度で低温
度に冷却する。このように鋼管外表層部のみを加速冷却
した鋼管は、鋼管表層部の硬質層と鋼管中心部の軟質層
が相俟って、強度と加工性を調和した、硬さ(板厚方向
の平均硬さ)と降伏比の低い高強度鋼管を製造し、製品
に供することができる。さらに本発明は、急冷によって
鋼管表層部に発生した内部歪を除去するためにAc1変態
点以下の低い温度で焼戻処理を行う。焼戻処理は硬さ、
降伏比、強度をバランス化した鋼管に製造する。
The steel pipe cooled under the temperature conditions and cooling conditions as described above is subsequently cooled to a low temperature at a higher speed in order to obtain high strength. In this way, the steel pipe with only the outer surface layer of the steel pipe accelerated cooled has a hardness (average in the plate thickness direction) that combines strength and workability with the hard layer at the steel pipe surface layer and the soft layer at the center of the steel pipe. A high-strength steel pipe having a low hardness) and a low yield ratio can be manufactured and provided as a product. Further, in the present invention, in order to remove the internal strain generated in the surface layer portion of the steel pipe by the rapid cooling, the tempering treatment is performed at a low temperature below the Ac 1 transformation point. Hardness is tempered,
It is manufactured into a steel pipe with a balanced yield ratio and strength.

上記のような製造法で製造された鋼管は、ラインパイプ
用鋼として適当な強度を有し、硬さと降伏比の低いもの
が得られる。
The steel pipe manufactured by the above-described manufacturing method has a suitable strength as a steel for line pipes and has a low hardness and a low yield ratio.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

第2表に示す成分組成の鋼材を供試材として、熱間圧延
後Ac3変態点以上の高温度(930℃)に加熱された鋼管の
表層部を、気水混合冷媒で自然放冷より速い速度(平均
冷却速度:30℃/秒)で任意の温度まで冷却し、続いて
さらに多量の気水混合冷媒を噴射する急速冷却(平均冷
却速度:150℃/秒)で常温まで冷却した。さらに鋼管を
温度450℃焼戻した時の鋼管の特性を第3表に比較法と
共に掲示した。なお比較法は、温度930℃から常温まで
多量の気水混合冷媒を噴射して一気に冷却した場合(As
Q)、あるいは鋼管の表層部を気水混合冷媒で自然放冷
より速い速度(平均冷却速度:30℃/秒)で温度550℃以
上の任意の温度まで冷却し、続いてさらに多量の気水混
合冷媒を噴射する急速冷却(平均冷却速度:150℃/秒)
で常温まで冷却した。さらにAc1以下の任意の温度で焼
戻しを行なった時の鋼管の特性を掲示した。
Using the steel materials with the composition shown in Table 2 as the test materials, the surface layer of the steel pipe heated to a high temperature (930 ° C) higher than the Ac 3 transformation point after hot rolling was allowed to cool naturally with a water-water mixed refrigerant. It was cooled to an arbitrary temperature at a high speed (average cooling rate: 30 ° C./second), and then cooled to room temperature by rapid cooling (average cooling rate: 150 ° C./second) injecting a larger amount of gas-water mixed refrigerant. Further, the characteristics of the steel pipe when tempered at a temperature of 450 ° C. are shown in Table 3 together with the comparative method. Note that the comparative method is used when a large amount of gas-water mixed refrigerant is injected from a temperature of 930 ° C to room temperature and cooled at once (As
Q), or the surface layer of the steel pipe is cooled to an arbitrary temperature of 550 ° C or higher at a rate faster than natural cooling (average cooling rate: 30 ° C / sec) with a mixture of steam and water, and then a large amount of steam is added. Rapid cooling with mixed refrigerant injection (average cooling rate: 150 ° C / sec)
And cooled to room temperature. Further, the characteristics of the steel pipe when tempered at an arbitrary temperature of Ac 1 or less are shown.

靭性特性については本発明による場合通常のQT材に比べ
平均的にやや低めであるが、強度−靭性バランスでみる
限り問題となる程の低下はみられない。強度に於ては本
発明材は平均的に高めであるにもかかわらず、最高硬
さ、降伏比共に低いレベルにある。
The toughness characteristics of the present invention are slightly lower on average than those of ordinary QT materials, but no significant deterioration is observed in terms of strength-toughness balance. In terms of strength, the material of the present invention has a high average hardness, but has a low maximum hardness and a low yield ratio.

このように本発明にかかる鋼管の製造法は、従来の考え
方では到達出来なかった低降伏比特性が得られるもので
あり、産業上稗益するところ極めて大である。
As described above, the method of manufacturing a steel pipe according to the present invention can obtain a low yield ratio characteristic that cannot be achieved by the conventional idea, and is extremely advantageous in industrial terms.

【図面の簡単な説明】[Brief description of drawings]

第1図は素管(AsQ)と焼戻し管(QT)肉厚方向(外表
面からの距離)の硬さ変化を示す図。
Fig. 1 is a diagram showing the hardness change in the thickness direction (distance from the outer surface) of the plain tube (AsQ) and tempering tube (QT).

フロントページの続き (72)発明者 村田 杏坪 福岡県北九州市八幡東区枝光1−1−1 新日本製鐵株式会社第3技術研究所内 (56)参考文献 特公 昭56−18046(JP,B2)Continuation of front page (72) Inventor Anpyo Murata, 1-1-1 Emitsu, Hachimanto-ku, Kitakyushu, Kitakyushu, Fukuoka Inside Nippon Steel Co., Ltd. 3rd Technical Research Laboratory (56) References Japanese Patent Publication No. Sho 56-18046 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】熱間圧延後あるいはAc3変態点以上の高温
度に再加熱された鋼管を、Ar3変態点以上の高温度から
鋼管外表層部を自然放冷よりも速い速度で550℃〜400℃
の温度に冷却し、続いてさらに速い速度で低温度に冷却
することを特徴とする硬さと降伏比の低い高強度鋼管の
製造法。
1. A steel pipe after hot rolling or reheated to a temperature higher than the Ac 3 transformation point is heated to a temperature higher than the Ar 3 transformation point and the outer surface layer of the steel pipe is heated to 550 ° C. at a speed faster than natural cooling. ~ 400 ℃
A method for producing a high-strength steel pipe having a low hardness and a low yield ratio, which is characterized by cooling to a low temperature and then to a low temperature at a higher speed.
【請求項2】熱間圧延後あるいはAc3変態点以上の高温
度に再加熱された鋼管を、Ar3変態点以上の高温度から
鋼管外表層部を自然放冷よりも速い速度で550℃〜400℃
の温度に冷却し、続いてさらに速い速度で低温度に冷却
した後、Ac1変態点以下の温度で焼戻処理することを特
徴とする硬さと降伏比の低い高強度鋼管の製造法。
2. A steel pipe after hot rolling or reheated to a high temperature of Ac 3 transformation point or higher, from the high temperature of Ar 3 transformation point or higher, the outer surface layer of the steel pipe is 550 ° C. at a speed faster than natural cooling. ~ 400 ℃
A method for producing a high-strength steel pipe having a low hardness and a low yield ratio, which is characterized by cooling to a temperature of 1 , then to a low temperature at a higher speed, and then tempering at a temperature not higher than the Ac 1 transformation point.
JP61000199A 1986-01-07 1986-01-07 Manufacturing method of high strength steel pipe with low hardness and yield ratio Expired - Lifetime JPH0711030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61000199A JPH0711030B2 (en) 1986-01-07 1986-01-07 Manufacturing method of high strength steel pipe with low hardness and yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61000199A JPH0711030B2 (en) 1986-01-07 1986-01-07 Manufacturing method of high strength steel pipe with low hardness and yield ratio

Publications (2)

Publication Number Publication Date
JPS62158822A JPS62158822A (en) 1987-07-14
JPH0711030B2 true JPH0711030B2 (en) 1995-02-08

Family

ID=11467312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61000199A Expired - Lifetime JPH0711030B2 (en) 1986-01-07 1986-01-07 Manufacturing method of high strength steel pipe with low hardness and yield ratio

Country Status (1)

Country Link
JP (1) JPH0711030B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2815028B2 (en) * 1989-09-21 1998-10-27 新日本製鐵株式会社 Method for producing steel pipe having yield point elongation, low yield ratio and excellent low temperature toughness
JPH0551648A (en) * 1991-06-10 1993-03-02 Kawasaki Steel Corp Manufacture of electric resistance-welded tube
JPH05171294A (en) * 1991-12-25 1993-07-09 Kawasaki Steel Corp Method for cooling welded part of electric resistance welded tube

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618046A (en) * 1979-07-25 1981-02-20 Nissan Motor Co Ltd Regenerator for heat gas machine

Also Published As

Publication number Publication date
JPS62158822A (en) 1987-07-14

Similar Documents

Publication Publication Date Title
CA2295582C (en) Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
JP4502011B2 (en) Seamless steel pipe for line pipe and its manufacturing method
CN101845596B (en) Wide thick plate for X80 pipe line steel and manufacturing method thereof
JP4105381B2 (en) Super high strength, weldability, boron-containing steel with excellent toughness
CA2295586C (en) Ultra-high strength, weldable, essentially boron-free steels with superior toughness
JP2004176172A (en) High strength seamless steel pipe with excellent hic (hydrogen-induced cracking) resistance, and its manufacturing method
CN108531814A (en) A kind of preparation method of heavy caliber X80 straight-line joint submerged arc welding tubes
JP2000517381A (en) Method for producing self-hardened steel wire, wire for reinforcement and use for flexible conduit
JPH01230713A (en) Production of high-strength and high-toughness steel having excellent stress corrosion cracking resistance
CN111996449A (en) Pipeline thick plate with excellent plastic toughness and production method thereof
Ishikawa et al. Design concept and production of high deformability linepipe
CN102022086A (en) Economical seamless oil well pipe for expansion pipe and manufacturing method thereof
JPH0711030B2 (en) Manufacturing method of high strength steel pipe with low hardness and yield ratio
JPH11158551A (en) Production of martensitic stainless steel pipe
JP2711163B2 (en) Method for producing high corrosion resistant low alloy linepipe steel with excellent corrosion resistance
JPS61174335A (en) Manufacture of drill pipe for excavation having superior toughness
JPS61272351A (en) Steel pipe for oil well having high toughness as well as high strength
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JPH02243722A (en) Production of high strength steel tube reduced in hardness and yield ratio
JP3873306B2 (en) Quenching method to prevent quench cracking of medium and high carbon content steel pipes
JP2705284B2 (en) Manufacturing method of high strength seamless steel pipe
JPH02282427A (en) Manufacture of high strength steel pipe having low maximum hardness and yield ratio
Wu et al. Study on Special Deformation Mechanism of 2205 Duplex Stainless Steel During Expansion Test
Asahi et al. Recent Progress and Application of Bainite Steels for High Strength Linepipe up to X120
CN110760753B (en) Low-yield-ratio seamless steel pipe and manufacturing method thereof