JPH05171294A - Method for cooling welded part of electric resistance welded tube - Google Patents

Method for cooling welded part of electric resistance welded tube

Info

Publication number
JPH05171294A
JPH05171294A JP34322091A JP34322091A JPH05171294A JP H05171294 A JPH05171294 A JP H05171294A JP 34322091 A JP34322091 A JP 34322091A JP 34322091 A JP34322091 A JP 34322091A JP H05171294 A JPH05171294 A JP H05171294A
Authority
JP
Japan
Prior art keywords
cooling
welded
cooling rate
ceq
electric resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34322091A
Other languages
Japanese (ja)
Inventor
Motoaki Itaya
元晶 板谷
Asao Narimoto
朝雄 成本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP34322091A priority Critical patent/JPH05171294A/en
Publication of JPH05171294A publication Critical patent/JPH05171294A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve the low temp. toughness at the welded part of the resistance welded tube by resistance-welding a strip steel composed of a material specifying the thickness and the carbon equivalent and heating and cooling the welded part in a specific condition. CONSTITUTION:The strip steel composed of the material having the carbon equivalent shown in the equation I in the range of 0.25-0.45% is resistant-welded to apply this strip steel to the resistance welded tube having the thickness t=5-17mm. After the welded part of the resistant welded steel pipe is heated at the Ac3 transformation point temp. or higher and <=1050 deg.C, this part is cooled with cooling water in the range of water flow rate Qmin and Qmax shown in the equation II and the equation III. From the time, when the outer surface temp. of the resistant welded steel pipe reaches to 500-400 deg.C, this welded part is cooled with the water flow rate exceeding Qmax until the outer surface temp. becomes <=200 deg.C. The cooling water flow rate is made to l/min.m<2>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接部の靭性が優れた
電縫鋼管を製造する際の熱処理における冷却方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling method in a heat treatment for producing an electric resistance welded steel pipe having excellent toughness at a welded portion.

【0002】[0002]

【従来の技術】電縫鋼管の溶接部の靭性を向上させるた
めに、従来一般的に行われていたノルマライジング処理
に代えて、焼入れ焼戻しをする方法が例えば特開昭59
−43827号公報あるいは特開昭59−153839
号公報等に開示されている。これらの熱処理は、焼入れ
による結晶粒の微細化を狙ったものであり、微細なフェ
ライト組織を得ることによって靭性の向上を図るもので
ある。このような従来の熱処理方法では加熱温度、冷却
開始温度及び冷却速度によって熱処理の条件のみを規定
している。加熱温度に関しては一般的にミルラインに直
列に配置した誘導加熱装置を用いるためその出力調整に
より、また冷却開始温度に関しては冷却開始位置の調整
により容易に実現可能である。しかしながら焼入れ時の
冷却速度に関しては、発明者らの検討によれば、実際的
な冷却方法としては管外面側一方向からの冷却になるこ
とから、外面側と内面側で冷却速度の差が生じてしまい
板厚方向に均一な冷却速度は得られず、従って目標とす
る微細なフェライト組織が板厚方向で均一に得られない
ことが明らかになった。
2. Description of the Related Art In order to improve the toughness of a welded portion of an electric resistance welded steel pipe, a method of quenching and tempering is used instead of the normalizing treatment which has been generally performed in the past.
-43827 or JP-A-59-153839.
It is disclosed in Japanese Patent Publication No. These heat treatments are aimed at refining the crystal grains by quenching, and are intended to improve the toughness by obtaining a fine ferrite structure. In such a conventional heat treatment method, only the heat treatment conditions are defined by the heating temperature, the cooling start temperature and the cooling rate. Since the heating temperature is generally an induction heating device arranged in series with the mill line, it can be easily realized by adjusting its output, and the cooling start temperature by adjusting the cooling start position. However, regarding the cooling rate at the time of quenching, according to the study of the inventors, since a cooling method is a cooling from one direction on the outer surface side of the pipe as a practical cooling method, a difference in cooling rate occurs between the outer surface side and the inner surface side. It was found that a uniform cooling rate was not obtained in the plate thickness direction, and therefore the target fine ferrite structure could not be obtained uniformly in the plate thickness direction.

【0003】従来技術では、たとえ冷却速度を提示して
いたとしても、その具体的な冷却方法を示していない。
一般的には通常の冷却方法では板厚方向に均一な冷却速
度は得られない。特に板厚が10mmを越える場合、管
内面側の冷却速度を確保するため冷却水量を多くすれば
管外面側の冷却速度が過大となり、管外面側にベーナイ
ト組織が生じて靭性が劣化する。一方管外面側の冷却速
度を抑えるため冷却水量を絞れば、管内面側の冷却速度
が過小となり、組織の微細化が十分に行われず、やはり
靭性が劣化する。このように通常の冷却方法では板厚方
向に冷却速度の差があり、内外面で組織の不均一が生
じ、その結果靭性の劣化を招くという悪影響がある。さ
らに微細なフェライト組織を得るためには、板厚、鋼種
毎に適正な冷却速度が異なり、従ってその冷却速度を実
現するためには冷却水量を板厚、鋼種によって適宜調整
する必要がある。
The prior art does not show a specific cooling method, even if the cooling rate is presented.
Generally, a normal cooling method cannot obtain a uniform cooling rate in the plate thickness direction. In particular, when the plate thickness exceeds 10 mm, if the cooling water amount is increased in order to secure the cooling rate on the inner surface side of the tube, the cooling rate on the outer surface side of the tube becomes excessively high, and a bainite structure is generated on the outer surface side of the tube to deteriorate the toughness. On the other hand, if the amount of cooling water is reduced in order to suppress the cooling rate on the outer surface side of the tube, the cooling rate on the inner surface side of the tube becomes too small, the structure is not sufficiently refined, and the toughness also deteriorates. As described above, in the normal cooling method, there is a difference in the cooling rate in the plate thickness direction, which causes nonuniformity of the structure on the inner and outer surfaces, resulting in deterioration of toughness. In order to obtain a finer ferrite structure, the appropriate cooling rate differs depending on the plate thickness and the steel type, and therefore the amount of cooling water needs to be appropriately adjusted depending on the plate thickness and the steel type in order to realize the cooling rate.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは上記の点
に関して、種々の板厚、鋼種の電縫管について実験を行
い、板厚方向の冷却速度の均一化及び適正な冷却速度を
実現するための冷却水量について検討を加えた結果、次
の(a)〜(d)の知見を得るに至った。 (a)管内面側は主に管外面側の温度が下がることによ
り熱伝導によって冷却されるため、管内面側ほど冷却速
度が小さく、また管外面側とは冷却に時間差がある。
With respect to the above points, the present inventors have conducted experiments on electric resistance welded pipes of various plate thicknesses and steel types to realize a uniform cooling rate in the plate thickness direction and an appropriate cooling rate. As a result of investigating the amount of cooling water for this purpose, the following findings (a) to (d) were obtained. (A) The inner surface of the pipe is cooled by heat conduction mainly due to a decrease in temperature on the outer surface of the pipe. Therefore, the cooling rate is smaller toward the inner surface of the pipe, and there is a time difference in cooling from the outer surface of the pipe.

【0005】(b)Ar1 変態点付近の500℃より低
い温度域であれば冷却速度が組織に及ぼす影響はほとん
どない。 (c)上記(a)のことから管外面側が500℃の時点
でも、肉厚の中央や、管内面側はそれ以上の温度になっ
ており、ここで冷却水量を増やして外面温度を速く下げ
ればその分、肉厚の中央部や管内面側は冷却速度が大き
くなり、管外面側の冷却速度に近づく。
(B) In the temperature range below 500 ° C. near the Ar 1 transformation point, the cooling rate has almost no effect on the structure. (C) From the above (a), even at the temperature of 500 ° C. on the outer surface of the pipe, the temperature at the center of the wall thickness and the inner surface of the pipe are higher than that. Therefore, the amount of cooling water can be increased to quickly lower the outer surface temperature. As a result, the cooling rate increases at the central portion of the wall thickness and on the pipe inner surface side, and approaches the cooling rate on the pipe outer surface side.

【0006】(d)最初の緩冷ゾーンの冷却水量を板厚
t、炭素当量Ceqの関数である最小値Qmin 以上、最
大値Qmax 以下の範囲内に設定すれば、外表面温度が8
00℃から500℃〜400℃までの範囲を毎秒10℃
以上かつフェライトが析出する冷却速度で冷却するとい
う条件を満足することができる。本発明は上記知見に基
いて完成されたもので、電縫管の溶接部の冷却過程に改
善を加え、かつ板厚、鋼種毎に冷却水量を調整すること
によって、溶接部の肉厚方向の組織を適正化し、溶接部
の靭性を向上させることを目的とする。
(D) If the amount of cooling water in the first slow cooling zone is set within the range of the minimum value Q min or more and the maximum value Q max or less which is a function of the plate thickness t and the carbon equivalent Ceq, the outer surface temperature is 8
The range from 00 ℃ to 500 ℃ to 400 ℃ is 10 ℃ per second.
The above and the condition of cooling at the cooling rate at which ferrite precipitates can be satisfied. The present invention has been completed based on the above findings, and by improving the cooling process of the welded portion of the electric resistance welded pipe, and by adjusting the amount of cooling water for each plate thickness and steel type, in the thickness direction of the welded portion. The purpose is to optimize the structure and improve the toughness of the weld.

【0007】[0007]

【課題を解決するための手段】本発明は上記知見に基づ
いてなされたものであって、管厚t、炭素当量Ceqが
それぞれt=5〜17mm、Ceq=0.25〜0.4
5%の範囲内の材料から成る電縫鋼管に適用され、次の
技術手段から構成されている。すなわち、連続的に成形
した帯鋼を電縫溶接し、これに引き続いて溶接部をAc
3 変態点以上、1050℃以下の温度に加熱し、次式で
示される水量Qmin 〜Qmax の範囲内の冷却水で冷却
し、外表面温度が500℃〜400℃に到達した時点か
らQmax を越える水量で該外表面が200℃以下になる
まで冷却することを特徴とする電縫鋼管溶接部の冷却方
法である。
The present invention has been made on the basis of the above findings, and the tube thickness t and the carbon equivalent Ceq are t = 5 to 17 mm and Ceq = 0.25 to 0.4, respectively.
It is applied to electric resistance welded steel pipes made of materials within the range of 5%, and consists of the following technical means. That is, continuously formed band steel is electric resistance welded, and subsequently the welded portion is Ac-welded.
It is heated to a temperature of 3 transformation points or more and 1050 ° C. or less, and cooled with cooling water within the range of water amount Q min to Q max shown by the following formula, and when the outer surface temperature reaches 500 ° C. to 400 ° C., Q A method for cooling a welded portion of an electric resistance welded steel pipe, which comprises cooling the outer surface to 200 ° C. or less with an amount of water exceeding max .

【0008】 Qmin =(−0.00805t2 +0.204t)(Ceq-4.4−3) …(1) Qmax =(−0.0184t2 +0.467t)(Ceq-4.4−3) …(2) ただし、 Qmin ,Qmax ;冷却水量[1/min.m2 ] t;管厚[mm]=5〜17mm Ceq;炭素当量[%] =C+(Mn/6)+(Si/24)+(Ni/40)
+Cr/5)+(Mo/4)+(V/14) =0.25〜0.45%
Q min = (− 0.00805t 2 + 0.204t) (Ceq −4.4 −3) (1) Q max = (− 0.0184t 2 + 0.467t) (Ceq −4.4 −3) (2) ) However, Q min , Q max ; cooling water amount [1 / min. m 2 ] t; tube thickness [mm] = 5 to 17 mm Ceq; carbon equivalent [%] = C + (Mn / 6) + (Si / 24) + (Ni / 40)
+ Cr / 5) + (Mo / 4) + (V / 14) = 0.25 to 0.45%

【0009】[0009]

【作用】以下この発明について作用と共に詳細に説明す
る。高靭性を示す微細なフェライト組織を得るために
は、材料の800℃から500℃までの冷却速度を毎秒
10℃以上かつフェライトが析出する範囲に制御する必
要がある。先ず冷却の前段では管外表面の冷却速度を上
述の範囲内に入れなければならない。
The operation of the present invention will be described in detail below. In order to obtain a fine ferrite structure exhibiting high toughness, it is necessary to control the cooling rate of the material from 800 ° C. to 500 ° C. within the range of 10 ° C. or more per second and the precipitation of ferrite. First, in the preceding stage of cooling, the cooling rate of the outer surface of the tube must be within the above range.

【0010】(a)実験によって管外表面を950℃に
加熱した場合の、板厚、冷却水量と管外表面の800℃
から500℃の冷却速度との関係を調査した。 (b)一方、冷却速度の上限であるフェライト析出限界
冷却速度は、Ceq、冷却前の加熱温度により異なる。
すなわち、Ceqが大きい程、冷却前の加熱温度が高い
程フェライト析出限界冷却速度は遅くなる。種々のCC
T(連続冷却変態)曲線から加熱温度を950℃におけ
るCeqとフェライト析出限界冷却速度の関係を求め
た。
(A) When the outer surface of the pipe was heated to 950 ° C. by an experiment, the plate thickness, the amount of cooling water and the outer surface of the pipe of 800 ° C.
To 500 ° C. to the cooling rate was investigated. (B) On the other hand, the ferrite precipitation limit cooling rate, which is the upper limit of the cooling rate, differs depending on Ceq and the heating temperature before cooling.
That is, the larger the Ceq and the higher the heating temperature before cooling, the slower the ferrite precipitation limit cooling rate. Various CC
The relationship between Ceq at the heating temperature of 950 ° C. and the ferrite precipitation limit cooling rate was determined from the T (continuous cooling transformation) curve.

【0011】組織の微細化のためには、冷却速度はフェ
ライト析出限界冷却速度が最も望ましいので、上記
(a)、(b)の結果を組合せて、加熱温度が950℃
におけるフェライト析出限界冷却速度を得るための、板
厚、Ceqと冷却水量Q0 との関係を実験式として次式
のように求めた。 Q0 =(−0.0115t2 +0.292t)(Ceq-4.4−3) この式を基準にして加熱温度がAc3 変態点から105
0℃に至るフェライト析出限界冷却速度変化を考慮し、
加熱温度がAc3 変態点のとき最も速い冷却速度が得ら
れるようQmax を次式のように設定し、 Qmax =(−0.0184t2 +0.467t)(Ceq-4.4−3) 加熱温度が1050℃のとき最も遅い冷却速度が得られ
るようQmin を次式のように設定した。
Since a ferrite precipitation limit cooling rate is the most desirable cooling rate for the refinement of the structure, the heating temperature is 950 ° C. by combining the results of the above (a) and (b).
The relationship between the plate thickness, Ceq, and the amount of cooling water Q 0 for obtaining the ferrite precipitation limit cooling rate in was obtained as an empirical formula as follows. Q 0 = (− 0.0115t 2 + 0.292t) (Ceq −4.4 −3) Based on this formula, the heating temperature is 105 from the Ac 3 transformation point.
Considering the change of the ferrite precipitation limit cooling rate up to 0 ° C,
The Q max as the heating temperature is the fastest cooling rate when the Ac 3 transformation point is obtained and set as follows, Q max = (- 0.0184t 2 + 0.467t) (Ceq -4.4 -3) heating temperature When Q is 1050 ° C., Q min was set according to the following equation so that the slowest cooling rate was obtained.

【0012】 Qmin =(−0.00805t2 +0.204t)(Ceq-4.4−3) なお、Qmin での冷却速度は、板厚、Ceqによらず毎
秒10℃以上であることを確認した。すなわち、上述の
前提知見により、本発明は、板厚、鋼種毎に上述の
(1),(2)式に従って水量を調整するのであり、板
厚、炭素当量の他に加熱温度、水温等の因子を考慮し
て、緩冷ゾーンの冷却水量がこの範囲内に入っていれ
ば、外表面温度が800℃から500℃〜400℃まで
の範囲を毎秒10℃以上かつフェライトが析出する冷却
速度以下で冷却するという条件を満足し、かつ細粒化に
適した冷却速度が得られるものである。
Q min = (− 0.00805t 2 + 0.204t) (Ceq −4.4 −3) It was confirmed that the cooling rate at Q min was 10 ° C. or more per second regardless of the plate thickness and Ceq. .. That is, the present invention adjusts the amount of water according to the above equations (1) and (2) for each plate thickness and steel type based on the above-mentioned premise knowledge. In addition to the plate thickness and carbon equivalent, heating temperature, water temperature, etc. Considering factors, if the cooling water amount in the slow cooling zone is within this range, the outer surface temperature range from 800 ° C to 500 ° C to 400 ° C is 10 ° C or more per second and less than the cooling rate at which ferrite precipitates. The cooling rate satisfying the condition of cooling with, and a cooling rate suitable for atomization can be obtained.

【0013】但し上記(1),(2)式が有効な板厚、
炭素当量の範囲はそれぞれt=5〜17mm、Ceq=
0.25〜0.45%である。ここで、板厚及び炭素当
量が限定される理由を説明する。 (ア)板厚が5〜17mmに限定される理由は、板厚が
5mm未満では加熱部分の熱容量が小さいため適正冷却
速度を得るためには本発明の数式で示される冷却水量以
下にしなければならず、17mmを超えると加熱時の鋼
管の内外面温度差が大きくなり、多段冷却を用いても板
厚全体の組織を均一化することは困難となるからであ
る。
However, the plate thickness for which the above equations (1) and (2) are effective,
The carbon equivalent range is t = 5 to 17 mm, Ceq =
It is 0.25 to 0.45%. Here, the reason why the plate thickness and the carbon equivalent are limited will be described. (A) The reason why the plate thickness is limited to 5 to 17 mm is that if the plate thickness is less than 5 mm, the heat capacity of the heating portion is small, so in order to obtain an appropriate cooling rate, the cooling water amount must be equal to or less than the cooling water amount shown by the mathematical formula of the present invention. However, if it exceeds 17 mm, the temperature difference between the inner and outer surfaces of the steel pipe at the time of heating becomes large, and it is difficult to make the structure of the entire plate thickness uniform even if multi-stage cooling is used.

【0014】(イ)炭素当量Ceqが0.25〜0.4
5%に限定される理由は、0.25%未満では限界冷却
速度がより大きくなり、本発明の数式で示される冷却水
量以上を必要とし、また、0.45%を超えると、適正
な冷却速度でも微細なフェライト組織とはならず材質が
異なるためである。図2にCeq=0.3%の場合の板
厚と冷却水量の関係を示す。板厚が大きくなると加熱部
分の熱容量も大きくなるので、板厚とともに水量も増え
ることになるが、t=12〜13mm付近をピークに水
量が減少するのは、板厚が厚くなるほど外面の加熱温度
が上昇し、フェライト生成限界冷却速度が下がるためで
ある。
(A) Carbon equivalent Ceq is 0.25 to 0.4
The reason for being limited to 5% is that if it is less than 0.25%, the limit cooling rate becomes higher, and the amount of cooling water shown by the mathematical formula of the present invention is required, and if it exceeds 0.45%, proper cooling is achieved. This is because the material does not become a fine ferrite structure even at the speed and the material is different. FIG. 2 shows the relationship between the plate thickness and the amount of cooling water when Ceq = 0.3%. As the plate thickness increases, the heat capacity of the heating part also increases, so the water amount increases with the plate thickness. However, the water amount decreases at the peak around t = 12 to 13 mm because the heating temperature of the outer surface increases as the plate thickness increases. Is increased, and the ferrite formation limit cooling rate is decreased.

【0015】図3に板厚t=12.7mmの場合のCe
qと冷却水量の関係を示す。Ceqが大きいほど焼入れ
性が高くフェライト生成限界冷却速度が低いため、水量
を減らしてやる必要がある。緩冷ゾーン長に関しては、
加熱温度と水量に対応する冷却速度及び造管速度から外
表面が500℃〜400℃になる位置が計算で求められ
るので、それにより決定することができる。
FIG. 3 shows Ce when the plate thickness t = 12.7 mm.
The relationship between q and the amount of cooling water is shown. As the Ceq is larger, the hardenability is higher and the ferrite formation limit cooling rate is lower, so it is necessary to reduce the amount of water. Regarding the slow cooling zone length,
The position where the outer surface becomes 500 ° C. to 400 ° C. can be calculated from the cooling rate and the pipe forming rate corresponding to the heating temperature and the amount of water, and can be determined accordingly.

【0016】[0016]

【実施例】本発明を実施する電縫鋼管製造設備の概略を
図1に示す。連続的に成形された鋼帯1のエッジを溶接
電極3で加熱し、スクイズロール4で加圧、接合し、電
縫溶接部2をもつ電縫鋼管9を製造する。この電縫溶接
部2を誘導加熱装置5,6によって所定温度まで加熱し
た後、水冷装置8により外面側から所定の方法で所定温
度まで冷却する。さらに、その後焼入れ焼戻しを施す場
合は、誘導加熱装置7で再加熱し、焼戻し処理を施す。
EXAMPLE An outline of an electric resistance welded pipe manufacturing facility for carrying out the present invention is shown in FIG. The edge of the continuously formed steel strip 1 is heated by the welding electrode 3, pressed and joined by the squeeze roll 4, and the electric resistance welded steel pipe 9 having the electric resistance welded portion 2 is manufactured. After the electric resistance welded portion 2 is heated to a predetermined temperature by the induction heating devices 5 and 6, the water cooling device 8 cools it from the outer surface side to a predetermined temperature by a predetermined method. Further, when quenching and tempering is performed thereafter, the induction heating device 7 reheats and performs tempering.

【0017】表1に示される化学成分組成の鋼を用い、
図1に概略を示す装置で、電縫溶接と熱処理を実施し、
外径508mmφ、肉厚はそれぞれ9.5mm,12.
7mm,15.9mmの電縫鋼管を製造した。このとき
の冷却パターンの例を図4〜図6に示す。それぞれの板
厚t、炭素当量Ceqに対して前記(1),(2)式か
ら求まる水量Qmin 以上Qmax 以下となるように緩冷ゾ
ーンの水量が決められており、以後のゾーンはQmax
越える水量設定とした。
Using steel having the chemical composition shown in Table 1,
With the equipment outlined in Fig. 1, we perform electric resistance welding and heat treatment,
Outer diameter 508 mmφ, wall thickness 9.5 mm, 12.
7 mm and 15.9 mm ERW steel pipes were manufactured. Examples of cooling patterns at this time are shown in FIGS. The water amount of the slow cooling zone is determined so that the water amount Q min or more and Q max or less obtained from the equations (1) and (2) with respect to each plate thickness t and carbon equivalent Ceq are determined. The amount of water was set to exceed max .

【0018】表2には、ゾーンを3分し、水量Qmin
max 及び各ゾーンの冷却水量とゾーン長さが示してあ
る。 (1)ゾーンを3つに分ける理由は、材料の板厚方向の
各位置で800〜500℃の冷却速度を毎秒10℃以上
かつフェライトが析出する範囲とする必要があるが、外
表面が500〜400℃になった点で急冷すると、板
厚、Ceqによって外表面から2〜3mmの表層部の冷
却速度が過大となり靭性に悪影響を及ぼす。従って、こ
の部分の冷却速度を毎秒10℃以上かつフェライトが析
出する範囲に入るようにするため、間に中間流量のゾー
ン配設した。
In Table 2, the zone is divided into 3 minutes and the amount of water Q min ,
Q max, the amount of cooling water in each zone and the zone length are shown. (1) The reason for dividing the zone into three is that the cooling rate of 800 to 500 ° C. at each position in the plate thickness direction of the material needs to be 10 ° C. or more per second and the range in which ferrite precipitates, but the outer surface is 500 If the material is rapidly cooled at a temperature of up to 400 ° C., the cooling rate of the surface layer portion of 2 to 3 mm from the outer surface becomes excessive due to the plate thickness and Ceq, which adversely affects toughness. Therefore, in order to keep the cooling rate of this portion at 10 ° C. or more per second and within the range in which ferrite precipitates, a zone having an intermediate flow rate was provided therebetween.

【0019】(2)ゾーン長を示したのは、或る冷却水
量で冷却速度が決まった場合、冷却開始から外表面が5
00〜400℃になるまでに要する冷却時間が求められ
るので、その冷却時間を実現するためにはライン速度に
よってゾーン長を調整する必要があるからである。次
に、このようにして製造された電縫鋼管の溶接部から、
肉厚9.5mmに関しては10mm×7.5mm,2V
ノッチ、肉厚12.7mm,15.9mmに関しては1
0mm×10mm,2Vノッチのシャルピー試験片を切
り出して試験を実施し、シャルピー遷移曲線から破面遷
移温度を調査した。
(2) The zone length is shown because when the cooling rate is determined by a certain amount of cooling water, the outer surface is 5 from the start of cooling.
This is because the cooling time required to reach the temperature of 00 to 400 ° C. is required, and in order to realize the cooling time, it is necessary to adjust the zone length according to the line speed. Next, from the welded portion of the electric resistance welded steel pipe manufactured in this way,
10mm x 7.5mm, 2V for wall thickness of 9.5mm
1 for notch, wall thickness 12.7mm, 15.9mm
A Charpy test piece of 0 mm × 10 mm, 2V notch was cut out to carry out the test, and the fracture surface transition temperature was investigated from the Charpy transition curve.

【0020】表3にフェライトが析出する限界冷却速度
及び溶接部の熱処理条件と溶接部シャルピー衝撃試験に
よる遷移温度を示す。なお、表3から分るように、本発
明例では、本発明のように冷却水量がQmin 〜Qmax
範囲内であれば管外面の800〜500℃の冷却速度
は、必ず10℃/sec以上でかつフェライト生成限界
冷却速度の範囲内に入っている。因に、従来例では、フ
ェライト生成限界冷却速度の範囲外にあることが分か
る。
Table 3 shows the critical cooling rate at which ferrite precipitates, the heat treatment conditions for the weld zone, and the transition temperature in the weld zone Charpy impact test. As can be seen from Table 3, in the present invention example, if the amount of cooling water is in the range of Q min to Q max as in the present invention, the cooling rate of 800 to 500 ° C. on the outer surface of the pipe is always 10 ° C. / It is equal to or more than sec and is within the range of the ferrite formation limit cooling rate. Incidentally, it can be seen that in the conventional example, it is outside the range of the ferrite formation limit cooling rate.

【0021】本発明例では、緩冷ゾーンの水量及び以後
のゾーンの水量はいずれも本発明の条件を満たしてい
る。さらに本発明例では管外面側、管内面側の冷却速度
はいずれも限界冷却速度以下であり、かつ10℃/se
c以上で、これも本発明の条件に合致している。表2、
表3の結果から明らかなように、本発明の条件に合致す
る実施例は、本発明の条件を外れた比較例に対して溶接
部低温靭性が非常に優れた電縫鋼管となっている。
In the example of the present invention, the amount of water in the slow cooling zone and the amount of water in the subsequent zones both satisfy the conditions of the present invention. Further, in the examples of the present invention, the cooling rate on the outer surface side of the pipe and the cooling rate on the inner surface side of the pipe were both below the limit cooling rate and at 10 ° C / se
Above c, this also meets the conditions of the invention. Table 2,
As is clear from the results shown in Table 3, the examples satisfying the conditions of the present invention are ERW steel pipes having extremely excellent low-temperature toughness at the welded portion, as compared with the comparative examples deviating from the conditions of the present invention.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】本発明方法によれば、溶接部低温靭性が
非常に優れた電縫鋼管の製造が可能である。
According to the method of the present invention, it is possible to manufacture an electric resistance welded steel pipe having excellent low temperature toughness at the welded portion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する電縫鋼管製造設備の概略図で
ある。
FIG. 1 is a schematic view of an electric resistance welded steel pipe manufacturing facility for carrying out the present invention.

【図2】本発明法の管厚と冷却水量の関係を示す一例の
グラフである。
FIG. 2 is an example graph showing the relationship between the pipe thickness and the amount of cooling water according to the method of the present invention.

【図3】本発明法の炭素当量と冷却水量の関係を示す一
例のグラフである。
FIG. 3 is an example graph showing the relationship between the carbon equivalent and the amount of cooling water in the method of the present invention.

【図4】本発明の冷却パターンの例を示すチャートであ
る。
FIG. 4 is a chart showing an example of a cooling pattern of the present invention.

【図5】本発明の冷却パターンの例を示すチャートであ
る。
FIG. 5 is a chart showing an example of a cooling pattern of the present invention.

【図6】本発明の冷却パターンの例を示すチャートであ
る。
FIG. 6 is a chart showing an example of a cooling pattern of the present invention.

【符号の説明】[Explanation of symbols]

1 鋼帯 2 電縫溶
接部 3 溶接電極 4 スクイ
ズロール 5,6,7 誘導加熱装置 8 水冷装
置 9 電縫鋼管
1 Steel strip 2 ERW welded part 3 Welding electrode 4 Squeeze roll 5, 6, 7 Induction heating device 8 Water cooling device 9 ERW steel pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 管厚t=5〜17mm、炭素当量Ceq
=0.25〜0.45%の範囲内の帯鋼を電縫溶接し、
引き続き溶接部をAc3 変態点以上、1050℃以下の
温度に加熱し、次式で示される水量Qmin 〜Qmax の範
囲内の冷却水で冷却し、外表面温度が500℃〜400
℃に到達した時点からQmax を越える水量で該外表面が
200℃以下になるまで冷却することを特徴とする電縫
鋼管溶接部の冷却方法。 Qmin =(−0.00805t2 +0.204t)(Ceq-4.4−3) …(1) Qmax =(−0.0184t2 +0.467t)(Ceq-4.4−3) …(2) 但し、 Qmin ,Qmax ;冷却水量[1/分.m2 ] t;管厚[mm] Ceq;炭素当量[%] =C+(Mn/6)+(Si/24)+(Ni/40)
+(Cr/5)+(Mo/4)+(V/14)
1. Tube thickness t = 5 to 17 mm, carbon equivalent Ceq
= 0.25 to 0.45% band steel in a range of electric resistance welding,
Subsequently, the welded portion is heated to a temperature not lower than the Ac 3 transformation point and not higher than 1050 ° C. and cooled with cooling water within the range of water amount Q min to Q max represented by the following equation, and the outer surface temperature is 500 ° C. to 400 ° C.
A method for cooling a welded portion of an electric resistance welded steel pipe, which comprises cooling the outer surface to 200 ° C. or less with a water amount exceeding Q max from the time when the temperature reaches 0 ° C. Q min = (-0.00805t 2 + 0.204t) (Ceq -4.4 -3) (1) Q max = (-0.0184t 2 + 0.467t) (Ceq -4.4 -3) (2) However, Q min , Q max ; cooling water amount [1 / min. m 2 ] t; tube thickness [mm] Ceq; carbon equivalent [%] = C + (Mn / 6) + (Si / 24) + (Ni / 40)
+ (Cr / 5) + (Mo / 4) + (V / 14)
JP34322091A 1991-12-25 1991-12-25 Method for cooling welded part of electric resistance welded tube Pending JPH05171294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34322091A JPH05171294A (en) 1991-12-25 1991-12-25 Method for cooling welded part of electric resistance welded tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34322091A JPH05171294A (en) 1991-12-25 1991-12-25 Method for cooling welded part of electric resistance welded tube

Publications (1)

Publication Number Publication Date
JPH05171294A true JPH05171294A (en) 1993-07-09

Family

ID=18359847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34322091A Pending JPH05171294A (en) 1991-12-25 1991-12-25 Method for cooling welded part of electric resistance welded tube

Country Status (1)

Country Link
JP (1) JPH05171294A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128542A (en) * 1979-03-23 1980-10-04 Kawasaki Steel Corp Cooling method for induction heating and quenching of large diameter steel tubing
JPS62158822A (en) * 1986-01-07 1987-07-14 Nippon Steel Corp Manufacture of high strength steel tube having low hardness and yield ratio

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128542A (en) * 1979-03-23 1980-10-04 Kawasaki Steel Corp Cooling method for induction heating and quenching of large diameter steel tubing
JPS62158822A (en) * 1986-01-07 1987-07-14 Nippon Steel Corp Manufacture of high strength steel tube having low hardness and yield ratio

Similar Documents

Publication Publication Date Title
CN102203303B (en) Method for manufacturing steel plate and steel pipe for ultrahigh-strength line pipe
EP2171104B1 (en) Method for annealing a strip of steel having a variable thickness in length direction
TWI493051B (en) High carbon steel sheet and method for producing the same
CN105378131A (en) Thick-walled electric resistance welded steel pipe for line pipe, and method for manufacturing said steel pipe
JP3711896B2 (en) Manufacturing method of steel sheets for high-strength line pipes
CN107429339A (en) High strength steel and its manufacture method and steel pipe and its manufacture method
CN107429354A (en) High strength steel and its manufacture method and steel pipe and its manufacture method
JP5206755B2 (en) Manufacturing method of steel sheet for high-strength line pipe
JPH05171294A (en) Method for cooling welded part of electric resistance welded tube
CA1199684A (en) Production of electrical resistance welded steel tubes with welds having improved toughness
JP2004218081A (en) Method for producing high-tension steel plate
JPH0551648A (en) Manufacture of electric resistance-welded tube
JP3666457B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JP6947332B1 (en) Electric pipe and its manufacturing method
JPH0319286B2 (en)
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPH062037A (en) Production of non-heattreated high tensile strength steel having &gt;=70kgf/mm2 tensile strength
JPH09201688A (en) Manufacture of welded steel tube excellent in strength in weld zone
JP3666458B2 (en) Manufacturing method of high yield steel with low yield ratio and small material difference in thickness direction
JPH0331423A (en) Production of high tensile electric welded steel tube having excellent low temp. toughness
JPS6148518A (en) Manufacture of hot rolled steel plate
JPH066750B2 (en) Method for producing high strength ERW oil well steel pipe with excellent low temperature toughness
JPS5925931A (en) Production of electric welded steel pipe for automobile
JPH0920921A (en) Production of high toughness steel plate by means of separation
JPS61127849A (en) Steel for pipe for working to bent pipe

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980721