JPS6215541Y2 - - Google Patents

Info

Publication number
JPS6215541Y2
JPS6215541Y2 JP1982169545U JP16954582U JPS6215541Y2 JP S6215541 Y2 JPS6215541 Y2 JP S6215541Y2 JP 1982169545 U JP1982169545 U JP 1982169545U JP 16954582 U JP16954582 U JP 16954582U JP S6215541 Y2 JPS6215541 Y2 JP S6215541Y2
Authority
JP
Japan
Prior art keywords
bearing
sliding
air
sliding shaft
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982169545U
Other languages
Japanese (ja)
Other versions
JPS5972316U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16954582U priority Critical patent/JPS5972316U/en
Publication of JPS5972316U publication Critical patent/JPS5972316U/en
Application granted granted Critical
Publication of JPS6215541Y2 publication Critical patent/JPS6215541Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【考案の詳細な説明】 この考案は摺動型静圧軸受に関するものであ
る。分光光度計におけるマイケルソン干渉計のよ
うに、精密な直線移動を必要とする場合、摺動型
静圧軸受が使用されている。第1図はマイケルソ
ン干渉計の移動鏡の摺動に使用されている従来の
静圧軸受を示す垂直断面図、第2図はその−
断面図である。図において、1は円筒状の軸受で
あつて、中央部に摺動孔2を有している。3はこ
の摺動孔2に摺動するように設けられた中空円筒
状の摺動軸であつて、内部に空気室4を有し、周
辺部にはこの空気室4から摺動間隙5へ空気を吹
出す2列の吹出口6が設けられている。7は摺動
軸3の張出部分、8は給気接続管、9は給気管で
ある。
[Detailed description of the invention] This invention relates to a sliding type hydrostatic bearing. Sliding hydrostatic bearings are used when precise linear movement is required, such as the Michelson interferometer in a spectrophotometer. Figure 1 is a vertical sectional view showing a conventional hydrostatic bearing used for sliding the movable mirror of a Michelson interferometer, and Figure 2 is a vertical cross-sectional view of the conventional hydrostatic bearing used for sliding the movable mirror of a Michelson interferometer.
FIG. In the figure, reference numeral 1 denotes a cylindrical bearing, which has a sliding hole 2 in the center. 3 is a hollow cylindrical sliding shaft provided to slide in this sliding hole 2, and has an air chamber 4 inside, and a peripheral portion from this air chamber 4 to a sliding gap 5. Two rows of air outlets 6 are provided to blow out air. 7 is an overhanging portion of the sliding shaft 3, 8 is an air supply connection pipe, and 9 is an air supply pipe.

以上のように構成された静圧軸受においては、
給気管9から空気を供給すると、空気は空気室4
から吹出口6を通つて摺動間隙5に吹出し、ここ
でそれぞれ軸端部に向つてF1およびF2方向に流
れ、摺動軸3はこの空気の流れによつて軸受1中
に浮く。吹出口6は軸方向に間隔をおいて2列に
設けられているので、吹出した空気の流れはF1
およびF2方向のラインフローとなり、摺動間隙
5を一様に流れる。摺動軸3は、マイケルソン干
渉計では図の左側に移動鏡が接続しており、図の
右側に設けられたボイスコイル等の駆動装置(い
ずれも図示せず)により、浮いた状態で摺動孔2
内を左右に摺動する。
In the hydrostatic bearing configured as above,
When air is supplied from the air supply pipe 9, the air flows into the air chamber 4.
The air is blown out from the air through the air outlet 6 into the sliding gap 5, where it flows in directions F 1 and F 2 respectively towards the shaft end, and the sliding shaft 3 is floated in the bearing 1 by this air flow. Since the blow-off ports 6 are arranged in two rows at intervals in the axial direction, the flow of the blown air is F 1
and F The line flow is in the 2 direction, and flows uniformly through the sliding gap 5. In the Michelson interferometer, the sliding shaft 3 is connected to a movable mirror on the left side of the figure, and is slid in a floating state by a driving device such as a voice coil (none of which is shown) installed on the right side of the figure. Moving hole 2
Slide inside left and right.

上記のような構成の静圧軸受は円筒基調であ
り、精度必要部分(マイケルソン干渉計では移動
鏡)と摺動中心が一致しているため、温度変化、
振動等による外乱の摺動精度への影響が少なく、
軸受1のみの精度で摺動精度が決まるため、多数
の部品の精度を出す必要がないという利点を有す
るが、給気管9が摺動の邪魔をしないように、長
さLの張出部分7を設ける必要があり、移動量を
α増加すると、Lは2αだけ伸びることになり、
また3列以上の多列吹出ができないなどの欠点が
あつた。
The hydrostatic bearing with the above configuration is cylindrical, and the sliding center coincides with the part that requires precision (the movable mirror in the Michelson interferometer), so it is sensitive to temperature changes,
Disturbances such as vibrations have little effect on sliding accuracy.
Since the sliding accuracy is determined by the accuracy of the bearing 1 alone, it has the advantage that there is no need to improve the accuracy of many parts. It is necessary to provide a
Further, there were drawbacks such as the inability to perform multi-row blowing with three or more rows.

この考案は上記のような従来の欠点を改善する
ためのもので、軸受および摺動軸の少なくとも一
方の摺動面に流体吹出口を避けるようにして流体
流出路を軸方向に、しかも軸受の軸心を中心に対
称な位置にそれぞれ設けることにより、給気管を
側壁に設けることができ、これにより張出部分を
省略して装置を小形化できるとともに、安定した
摺動を行うことができ、摺動精度の高い静圧軸受
を提供することを目的としている。
This idea is intended to improve the above-mentioned drawbacks of the conventional technology, and is designed to avoid the fluid outlet on the sliding surface of at least one of the bearing and the sliding shaft, and to direct the fluid outflow path in the axial direction of the bearing. By arranging them at symmetrical positions with respect to the axis, the air supply pipes can be installed on the side wall, which allows the overhanging part to be omitted and the device to be made more compact, as well as allowing for stable sliding. The purpose is to provide a hydrostatic bearing with high sliding accuracy.

この考案は軸受と、この軸受の摺動孔に摺動可
能に設けられた中空円筒状の摺動軸と、前記軸受
および摺動軸の少なくとも一方の摺動面に軸方向
に沿つて形成され、かつ軸受の軸心を中心にして
対称な位置にそれぞれ形成された流体流出路と、
この流体流出路を避けるように前記摺動軸の外周
部に設けられ、かつ加圧流体を摺動間隙に向けて
噴出させる流体吹出口と、前記流体流出路に対応
する位置で前記摺動軸に接続され、かつ加圧流体
を摺動軸の内部に供給する流体供給管とを備えた
ことを特徴とする静圧軸受である。
This invention includes a bearing, a hollow cylindrical sliding shaft slidably provided in a sliding hole of the bearing, and a sliding surface of at least one of the bearing and the sliding shaft formed along the axial direction. , and fluid outflow passages formed at symmetrical positions with respect to the axis of the bearing,
A fluid outlet is provided on the outer periphery of the sliding shaft so as to avoid the fluid outflow path and jets pressurized fluid toward the sliding gap, and a fluid outlet is provided on the sliding shaft at a position corresponding to the fluid outflow path. This is a hydrostatic bearing characterized by comprising a fluid supply pipe connected to the sliding shaft and supplying pressurized fluid to the inside of the sliding shaft.

以下、この考案を図示実施例により説明する。
第3図はこの考案をマイケルソン干渉計の移動鏡
の摺動に実施した実施例による静圧軸受を示す水
平断面図、第4図はその−断面図、第5図は
摺動軸の斜視図、第6図はその横断面図、第7図
は軸受の斜視図、第8図は組立状態を示す斜視図
であり、第1図および第2図と同一符号は同一ま
たは相当部分を示している。各図は理解しやすい
ように切断面および方向を変えて図示されてい
る。
This invention will be explained below with reference to illustrated embodiments.
Fig. 3 is a horizontal sectional view showing a hydrostatic bearing according to an embodiment in which this invention is applied to the sliding of a moving mirror of a Michelson interferometer, Fig. 4 is a sectional view thereof, and Fig. 5 is a perspective view of the sliding shaft. 6 is a cross-sectional view thereof, FIG. 7 is a perspective view of the bearing, and FIG. 8 is a perspective view showing the assembled state. The same reference numerals as in FIGS. 1 and 2 indicate the same or equivalent parts. ing. Each figure is illustrated with different cut planes and orientations for ease of understanding.

第3図ないし第8図において、軸受1および摺
動軸3は第1図および第2図のものとほぼ同様に
構成されているが、吹出口6は第4図に示すよう
に、摺動軸3のY方向の上側および下側に集中し
て放射方向に等間隔で設けられ、吹出口が設けら
れていない横方向、すなわちY方向と直角の方向
の摺動部分における摺動軸3の外周には、軸方向
に溝状の空気流出路10が軸受1(および摺動軸
3)の軸心を挟んで対称にそれぞれ設けられてい
る。一方の空気流出路10の中央に給気接続管8
を介して給気管9が接続しており、給気接続管8
は軸受1の側壁に設けられた長穴11を貫通して
摺動可能に設けられている。
In FIGS. 3 to 8, the bearing 1 and the sliding shaft 3 are constructed almost the same as those in FIGS. 1 and 2, but the air outlet 6 has a sliding The sliding shaft 3 is concentrated on the upper and lower sides of the Y direction of the shaft 3 and is provided at equal intervals in the radial direction, and the sliding portion of the sliding shaft 3 in the horizontal direction where no air outlet is provided, that is, in the direction perpendicular to the Y direction. On the outer periphery, groove-shaped air outflow passages 10 are provided in the axial direction symmetrically across the axis of the bearing 1 (and sliding shaft 3). An air supply connecting pipe 8 is connected to the center of one air outlet passage 10.
The air supply pipe 9 is connected through the air supply connecting pipe 8.
is slidably provided through an elongated hole 11 provided in the side wall of the bearing 1.

上記のように構成された静圧軸受においては、
給気管9より空気を供給すると、空気は空気室4
から吹出口6を通つて、摺動間隙5に吹出し、
F1およびF2方向に流れ、摺動軸3はこの空気の
流れによつて軸受1中に浮く。この場合、空気流
出路10近くの吹出口6から吹出す空気は第5図
に示すように空気流出路10の方向に流れて、ラ
インフローではなくなる。吹出口6とY軸との角
度をθとすると、摺動軸3はY方向にはcosθ分
の浮力が生じ、X方向にはsinθ分の浮力が生ず
る。
In the hydrostatic bearing configured as above,
When air is supplied from the air supply pipe 9, the air flows into the air chamber 4.
from the air outlet 6 to the sliding gap 5,
The air flows in the F 1 and F 2 directions, and the sliding shaft 3 floats in the bearing 1 due to this air flow. In this case, the air blown out from the outlet 6 near the air outflow path 10 flows in the direction of the air outflow path 10, as shown in FIG. 5, and is no longer a line flow. When the angle between the air outlet 6 and the Y axis is θ, the sliding shaft 3 generates a buoyant force of cos θ in the Y direction, and a buoyant force of sin θ in the X direction.

このように吹出口6をY方向に集中して放射状
に設けることにより、X方向にも浮力を生じるこ
とになる。そして空気流出路10の部分に加工を
施しても軸受1の精度に及ぼす影響は少ないの
で、この部分に給気管9を接続することができ、
第1図および第2図における張出部分7を省略す
ることができる。また軸受1の空気流出路10の
部分には長穴11が設けられるので、種々の応用
が可能となる。
By arranging the air outlets 6 radially in the Y direction in this manner, buoyancy is also generated in the X direction. Even if the air outflow path 10 is processed, it will have little effect on the accuracy of the bearing 1, so the air supply pipe 9 can be connected to this part.
The overhanging portion 7 in FIGS. 1 and 2 can be omitted. Further, since the elongated hole 11 is provided in the air outlet path 10 of the bearing 1, various applications are possible.

また、大気に開放される空気流出路10は軸受
1(および摺動軸3)の軸心を中心にして対称な
位置にそれぞれ形成してあるため、摺動軸3の移
動時にこの摺動軸が一方の空気流出路10側に偏
ることなく、安定した状態で移動させることがで
きる。その結果、摺動をスムースにできるととも
に、摺動精度の低下を防止することができる。
Furthermore, since the air outflow passages 10 that are open to the atmosphere are formed at symmetrical positions with respect to the axis of the bearing 1 (and the sliding shaft 3), when the sliding shaft 3 moves, the sliding shaft can be moved in a stable state without being biased toward one side of the air outflow path 10. As a result, it is possible to make the sliding movement smooth and prevent a decrease in sliding accuracy.

第9図は他の実施例を示す水平断面図であり、
この実施例では摺動軸3の両側に設けられた空気
流出路10に、それぞれ給気接続管8を介して給
気管9が接続しており、これらに対応して軸受1
の両側に長穴11が形成されている。これにより
対称性が増し、バランスが良くなる。
FIG. 9 is a horizontal sectional view showing another embodiment,
In this embodiment, air supply pipes 9 are connected to air outlet passages 10 provided on both sides of the sliding shaft 3 via air supply connection pipes 8, and bearings 1
Elongated holes 11 are formed on both sides. This increases symmetry and improves balance.

第10図はさらに他の実施例を示す垂直横断面
図であり、給気管9は一方の空気流出路10に接
続しているが、長穴11は両側に設けられてお
り、対称性を増しており、加工時の歪を少なくし
ている。この場合、給気管9が設けられていない
長穴11から摺動軸3の出力を取り出すことがで
きる。
FIG. 10 is a vertical cross-sectional view showing yet another embodiment, in which the air supply pipe 9 is connected to one air outlet path 10, but the elongated holes 11 are provided on both sides to increase the symmetry. This reduces distortion during processing. In this case, the output of the sliding shaft 3 can be extracted from the elongated hole 11 where the air supply pipe 9 is not provided.

第11図は別の実施例を示す軸受の斜視図であ
り、この実施例では空気流出路10は軸受1の内
壁の摺動部分に溝状に形成されており、摺動軸3
は図示しないが、完全な円筒状となつている。効
果は前記のものと同等である。
FIG. 11 is a perspective view of a bearing showing another embodiment. In this embodiment, the air outflow passage 10 is formed in the shape of a groove in the sliding portion of the inner wall of the bearing 1, and the sliding shaft 3
Although not shown, it has a perfect cylindrical shape. The effect is similar to that described above.

第12図はさらに別の実施例を示す分解斜視図
であり、この例ではX方向だけでなく、Y方向の
上下にも空気流出路10および長穴11が設けら
れており、同様の効果を奏する。
FIG. 12 is an exploded perspective view showing yet another embodiment. In this example, air outflow passages 10 and elongated holes 11 are provided not only in the X direction but also above and below in the Y direction, and the same effect can be achieved. play.

第13図はさらに他の実施例を示す分解斜視図
であり、3列以上の吹出口6を有していて、軸受
剛性を増大している。従来の摺動軸受ではライン
フローであり、空気の逃げ場所がなくなるため多
列吹出は困難であつたが、空気流出路10を設け
ることにより、回転軸受と同様な多列吹出が可能
となる。この場合空気流出路10と直角方向に補
助流出路を設けてもよい。
Fig. 13 is an exploded perspective view showing yet another embodiment, which has three or more rows of air outlets 6 to increase the bearing rigidity. Conventional sliding bearings use line flow, and since there is no place for the air to escape, it is difficult to achieve multi-row air outlet, but by providing air outlet passages 10, it is possible to achieve multi-row air outlet similar to that of a rotary bearing. In this case, an auxiliary outlet passage may be provided perpendicular to the air outlet passage 10.

なお、上記実施例では流体として空気を用いた
場合を示したが、空気以外のガスまたは液体でも
よい。また流体流出路は軸受、摺動軸のいずれに
設けてもよく、その構造も溝状に限らず、面取り
状その他の構造とすることができる。さらに流体
流出路を設ける場所X,Y方向に限らず、他の方
向に設けてもよく、その数も制限されない。また
本考案はマイケルソン干渉計の移動鏡の移動に限
らず、他の直線運動を必要とする装置にも適用可
能である。
In addition, although the case where air was used as a fluid was shown in the said Example, gas or liquid other than air may be sufficient. Further, the fluid outflow path may be provided on either the bearing or the sliding shaft, and its structure is not limited to the groove shape, but may be chamfered or other structures. Further, the locations where the fluid outflow channels are provided are not limited to the X and Y directions, but may be provided in other directions, and the number thereof is not limited. Furthermore, the present invention is applicable not only to the movement of the movable mirror of a Michelson interferometer, but also to other devices that require linear motion.

以上説明してきたように、この考案によれば、
流体吹出口を避けるようにして軸受および摺動軸
の少なくとも一方の摺動面に形成した流体流出路
を軸方向に、しかも軸受の軸心を中心にして対称
な位置にそれぞれ設けるように構成したので、ラ
インフローの制約がなくなり、これにより軸受設
計上の制約が少なくなるとともに、側面給気が可
能となり、軸方向の張出部分を省略して、装置を
小形化することができる。また多列吹出が可能と
なり、軸受剛性を増すことができるとともに、摺
動軸が一方の空気流出路側に偏ることなく、安定
した状態で摺動させることができ、その結果移動
をスムースにでき、かつ摺動精度の低下を防止で
きるなどの効果が得られる。
As explained above, according to this idea,
The fluid outflow passages are formed on the sliding surface of at least one of the bearing and the sliding shaft so as to avoid the fluid outlet, and are arranged in the axial direction and at symmetrical positions with respect to the axis of the bearing. Therefore, there are no restrictions on line flow, thereby reducing restrictions on bearing design, and it is also possible to supply air from the side, and the axially extending portion can be omitted, making it possible to downsize the device. In addition, multi-row blowout is possible, which increases bearing rigidity, and allows the sliding shaft to slide in a stable state without being biased to one side of the air outlet path, resulting in smooth movement. Moreover, effects such as being able to prevent a decrease in sliding accuracy can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の静圧軸受を示す垂直断面図、第
2図はその−断面図、第3図ないし第8図は
この考案の一実施例を示し、第3図は静圧軸受の
水平断面図、第4図はその−断面図、第5図
は摺動軸の斜視図、第6図はその横断面図、第7
図は軸受の斜視図、第8図は組立状態を示す斜視
図、第9図ないし第13図はそれぞれ他の実施例
を示し、第9図は静圧軸受の水平断面図、第10
図は静圧軸受の垂直断面図、第11図は軸受の斜
視図、第12図および第13図は軸受の分解斜視
図である。 各図中、同一符号は同一または相当部分を示
し、1は軸受、3は摺動軸、4は空気室、6は吹
出口、9は給気管、10は空気流出路、11は長
穴である。
Fig. 1 is a vertical sectional view showing a conventional hydrostatic bearing, Fig. 2 is a vertical sectional view thereof, Figs. 3 to 8 show an embodiment of this invention, and Fig. 3 is a horizontal sectional view of a conventional hydrostatic bearing. 4 is a cross-sectional view thereof, FIG. 5 is a perspective view of the sliding shaft, FIG. 6 is a cross-sectional view thereof, and FIG. 7 is a cross-sectional view thereof.
FIG. 8 is a perspective view of the bearing, FIG. 8 is a perspective view showing the assembled state, FIGS. 9 to 13 each show other embodiments, FIG. 9 is a horizontal sectional view of the hydrostatic bearing, and FIG.
The figure is a vertical sectional view of the hydrostatic bearing, FIG. 11 is a perspective view of the bearing, and FIGS. 12 and 13 are exploded perspective views of the bearing. In each figure, the same reference numerals indicate the same or equivalent parts, 1 is a bearing, 3 is a sliding shaft, 4 is an air chamber, 6 is an air outlet, 9 is an air supply pipe, 10 is an air outlet path, and 11 is a long hole. be.

Claims (1)

【実用新案登録請求の範囲】 (1) 軸受と、この軸受の摺動孔に摺動可能に設け
られた中空円筒状の摺動軸と、前記軸受および
摺動軸の少なくとも一方の摺動面に軸方向に沿
つて形成され、かつ軸受の軸心を中心にして対
称な位置にそれぞれ形成された流体流出路と、
この流体流出路を避けるように前記摺動軸の外
周部に設けられ、かつ加圧流体を摺動間隙に向
けて噴出させる流体吹出口と、前記流体流出路
に対応する位置で前記摺動軸に接続され、かつ
加圧流体を摺動軸の内部に供給する流体供給管
とを備えたことを特徴とする静圧軸受。 (2) 流体吹出口は2列以上設けられている実用新
案登録請求の範囲第1項記載の静圧軸受。 (3) 加圧流体は空気である実用新案登録請求の範
囲第1項または第2項記載の静圧軸受。
[Claims for Utility Model Registration] (1) A bearing, a hollow cylindrical sliding shaft slidably provided in a sliding hole of the bearing, and a sliding surface of at least one of the bearing and the sliding shaft. fluid outflow passages formed along the axial direction and at symmetrical positions with respect to the axis of the bearing;
A fluid outlet is provided on the outer periphery of the sliding shaft so as to avoid the fluid outflow path and jets pressurized fluid toward the sliding gap, and a fluid outlet is provided on the sliding shaft at a position corresponding to the fluid outflow path. What is claimed is: 1. A hydrostatic bearing comprising a fluid supply pipe connected to the sliding shaft and supplying pressurized fluid to the inside of the sliding shaft. (2) The hydrostatic bearing according to claim 1, wherein two or more rows of fluid outlets are provided. (3) The hydrostatic bearing according to claim 1 or 2, wherein the pressurized fluid is air.
JP16954582U 1982-11-09 1982-11-09 hydrostatic bearing Granted JPS5972316U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16954582U JPS5972316U (en) 1982-11-09 1982-11-09 hydrostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16954582U JPS5972316U (en) 1982-11-09 1982-11-09 hydrostatic bearing

Publications (2)

Publication Number Publication Date
JPS5972316U JPS5972316U (en) 1984-05-16
JPS6215541Y2 true JPS6215541Y2 (en) 1987-04-20

Family

ID=30370373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16954582U Granted JPS5972316U (en) 1982-11-09 1982-11-09 hydrostatic bearing

Country Status (1)

Country Link
JP (1) JPS5972316U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005331048A (en) * 2004-05-20 2005-12-02 Imv Corp Vibration-proof x-y table

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126117A (en) * 1979-03-22 1980-09-29 Hitachi Ltd Main rotary shaft unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210486Y2 (en) * 1978-01-13 1987-03-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126117A (en) * 1979-03-22 1980-09-29 Hitachi Ltd Main rotary shaft unit

Also Published As

Publication number Publication date
JPS5972316U (en) 1984-05-16

Similar Documents

Publication Publication Date Title
US2756115A (en) Pneumatic bearing construction
CN112276384A (en) Air floating platform for semiconductor wafer laser cutting
JP2007002862A (en) Hydrostatic bearing
KR900014800A (en) Fluid Directional Valve
JPS6215541Y2 (en)
US3257854A (en) Fluid bearing gyroscopes
US6735867B2 (en) Method of making a static pressure air bearing
US3719405A (en) Gas bearing
US5700092A (en) Integrated shaft self-compensating hydrostatic bearing
ATE53108T1 (en) AXIAL MULTIPORT VALVE WITH A BALANCED ROTOR.
JP2007078126A (en) Non-contact support device
JP4234874B2 (en) Frictionless air cylinder
JPH07103235A (en) Static pressure direct action gas bearing
JPH0615176Y2 (en) Gas seal device
JPWO2008004306A1 (en) Static pressure linear motion guide unit
JPS6348809Y2 (en)
JPS621211B2 (en)
JPH0510330A (en) Static pressure bearing device
JP2948010B2 (en) Linear driving apparatus
RU99109029A (en) REGENERATIVE HEAT EXCHANGER
JPS63125820A (en) Static pressure bearing
JPS6030522Y2 (en) Pressure equalization structure of shaft sealing device
JPS62141309A (en) Porous static pressure gas bearing
JPS6376911A (en) Gas journaling device
JPH0459681B2 (en)