JPS621211B2 - - Google Patents

Info

Publication number
JPS621211B2
JPS621211B2 JP55124870A JP12487080A JPS621211B2 JP S621211 B2 JPS621211 B2 JP S621211B2 JP 55124870 A JP55124870 A JP 55124870A JP 12487080 A JP12487080 A JP 12487080A JP S621211 B2 JPS621211 B2 JP S621211B2
Authority
JP
Japan
Prior art keywords
shaft
floating shaft
cylinder
air
bearing base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55124870A
Other languages
Japanese (ja)
Other versions
JPS5749833A (en
Inventor
Teruomi Nakatani
Yoshio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKU UCHU GIJUTSU KENKYU SHOCHO
Original Assignee
KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKU UCHU GIJUTSU KENKYU SHOCHO filed Critical KOKU UCHU GIJUTSU KENKYU SHOCHO
Priority to JP55124870A priority Critical patent/JPS5749833A/en
Publication of JPS5749833A publication Critical patent/JPS5749833A/en
Publication of JPS621211B2 publication Critical patent/JPS621211B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
  • Joints Allowing Movement (AREA)
  • Quick-Acting Or Multi-Walled Pipe Joints (AREA)

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) この発明は、自由度の多い流体継手、特に風洞
実験において高圧空気配管の剛性に伴う力を小に
し、配管系の装着を容易にし、空気力の測定精度
向上をはかりうる偏心ジヤーナル空気継手として
利用するに適する流体継手にかんする。
[Detailed Description of the Invention] Purpose of the Invention (Field of Industrial Application) The present invention provides a fluid coupling with many degrees of freedom, particularly in wind tunnel experiments, by reducing the force associated with the rigidity of high-pressure air piping and making it easier to install the piping system. The present invention relates to a fluid coupling suitable for use as an eccentric journal air coupling that can improve the measurement accuracy of aerodynamic forces.

(従来技術) 風洞内で航空機の動力付模型試験を行なう場
合、ジエツトエンジンを模擬するために高圧空気
の噴射を用いることが多い。模型に働く力、回転
モーメントは天秤で測定される。しかし、この際
天秤が計測するのは空気力と高圧空気供給用配管
の剛性に伴う力との合力となる。この配管の剛性
に伴う力(以下配管干渉力と呼ぶ)は、しばしば
空気力の数倍にも達する。したがつて空気力の測
定精度を上げるためには、天秤の計測する合力に
対して配管干渉力を小さくし、相対的に空気力の
割合を高めることが重要である。
(Prior Art) When conducting powered model tests of aircraft in a wind tunnel, a jet of high pressure air is often used to simulate a jet engine. The force and rotational moment acting on the model are measured with a balance. However, what the balance measures at this time is the resultant force of the air force and the force associated with the rigidity of the high-pressure air supply piping. This force associated with the rigidity of the piping (hereinafter referred to as piping interference force) often reaches several times the aerodynamic force. Therefore, in order to improve the measurement accuracy of aerodynamic force, it is important to reduce the piping interference force with respect to the resultant force measured by the balance and to relatively increase the proportion of aerodynamic force.

このような配管干渉力を小さくする方法とし
て、第1図に示すように、航空機模型1に高圧空
気を供給するため、柔軟な小口径パイプ2を複数
配管することによつて天秤3にかかる配管干渉力
を小にしようとするものがある(例えばAIAA
Aero−dynamic Testing Conferenceワシントン
D.C.1964年3月におけるJ.Williams,S.F.J.
Butlerのレポート)。この方法においては、供給
空気圧に比例してパイプ2の剛性が増して配管干
渉力が増大し、供給空気圧が高い場合に配管干渉
力を小さくすることが不可能であり、配管干渉力
の再現性が悪く、その上配管系を小型にまとめる
ことが不可能であるという欠点をもつている。
As a method of reducing such piping interference force, as shown in FIG. There are some methods that try to reduce the interference force (for example, AIAA
Aero-dynamic Testing Conference Washington
J. Williams, SFJ in DC March 1964
Butler's report). In this method, the rigidity of the pipe 2 increases in proportion to the supply air pressure, increasing the pipe interference force, and it is impossible to reduce the pipe interference force when the supply air pressure is high, making it difficult to reproduce the pipe interference force. Moreover, it has the disadvantage that it is impossible to organize the piping system into a compact size.

また、空気ベアリングの原理を利用した空気継
手を用いて、配管干渉力のいくつかの成分を極力
小さくしようとする方法もある(例えばTRANS
−ACTIONS OF THE ASME1957年1月第11頁
〜第21頁)。
There is also a method that attempts to minimize some components of piping interference force by using air joints that utilize the principle of air bearings (for example, TRANS
- ACTIONS OF THE ASME January 1957, pp. 11-21).

第2図のジヤーナル式空気継手は、1つの並進
運動と1つの回転運動の合計2つの自由度を持た
せたものであり、空気供給パイプ4の周りの回転
運動と、継手部5の環状内溝6の幅に見合つた左
右動が、バイプ4と継手部5の間隙7を流れる高
圧空気流のベアリング作用の下に行われる。
The journal type air joint shown in FIG. 2 has a total of two degrees of freedom, one translational movement and one rotational movement. Lateral movement commensurate with the width of the groove 6 is performed under the bearing action of the high-pressure air flow flowing through the gap 7 between the pipe 4 and the joint portion 5.

第3図のスラスト式空気継手は2つの並進運動
と1つの回転運動の合計3つの自由度を持たせた
もので、パイプ4の周りの回転運動と、継手部5
の内周とパイプ4の延長部8の外径の差だけの継
手部5の並進運動が許される。
The thrust type air joint shown in Fig. 3 has a total of three degrees of freedom: two translational movements and one rotational movement.
A translational movement of the joint part 5 is allowed by the difference between the inner circumference of the pipe 4 and the outer diameter of the extension part 8 of the pipe 4.

第4図のボール式空気継手は、3つの回転自由
度をもつ。すなわち、継手部はボール状であり、
継手は出口パイプ9の軸の周りの回転と共に、ボ
ールの外殻10の開口11によつて許容される範
囲でパイプ4の軸と直角の軸を持つ回転が可能で
ある。
The ball type air joint of FIG. 4 has three rotational degrees of freedom. That is, the joint part is ball-shaped,
The coupling is capable of rotation about the axis of the outlet pipe 9 as well as rotation with an axis perpendicular to the axis of the pipe 4 to the extent permitted by the opening 11 in the shell 10 of the ball.

第2図のジヤーナル式に比べ、第3図のスラス
ト式は、継手の接触面が平坦なため、一様な空気
層を作ることが困難であり、両方式とも出口パイ
プは入り口パイプに対して直角の方向を向くこと
となる。。第4図のボール式は球面を高精度に仕
上げることが工作上困難となる。比較的製作が容
易なのは、第2図のジヤーナル式であるが、運動
の自由度が少なく、減少させうる配管干渉力成分
が少ないという欠点をもつている。
Compared to the journal type shown in Figure 2, the thrust type shown in Figure 3 has a flat joint contact surface, making it difficult to create a uniform air layer, and in both types the outlet pipe is relative to the inlet pipe. It will face at right angles. . In the ball type shown in Fig. 4, it is difficult to finish the spherical surface with high precision. The journal type shown in FIG. 2 is relatively easy to manufacture, but it has the disadvantage that it has a small degree of freedom of movement and there are few piping interference force components that can be reduced.

(この発明が解決しようとする問題点) 風洞実験において配管干渉力を少なくするため
に空気継手を用いる場合、模型と空気供給配管の
間に空気継手を装着しなければならないが、模型
と空気供給用配管の相対位置は天秤によつて固定
拘束されているので、空気ベアリング部分の狭い
間隙を保持したままで、空気継手を模型と空気供
給用配管の間に装着することは、従来の自由度の
少ない空気継手では容易なことではない。
(Problems to be Solved by the Invention) When using air joints to reduce pipe interference forces in wind tunnel experiments, it is necessary to install air joints between the model and the air supply piping; Since the relative positions of the air supply piping are fixed and constrained by the balance, it is possible to install the air joint between the model and the air supply piping while maintaining the narrow gap between the air bearings, which is a conventional method of freedom. This is not an easy task for air fittings with a small amount of air.

この発明は偏心軸の組合せによつて、上記のよ
うな欠点を伴わない自由度の多い流体継手を得よ
うとするものである。
The present invention aims to provide a fluid coupling with many degrees of freedom without the above-mentioned drawbacks by combining eccentric shafts.

発明の構成 (問題点を解決するための手段) この発明においては流体継手の構成を、軸受基
盤、外側浮軸、内側浮軸および軸筒からなるもの
とし、上記外側浮軸および内側浮軸はそれぞれ円
筒外壁に対して偏心した円筒内壁を有し、上記軸
筒は内側浮軸の円筒内壁内に、内側浮軸は外側浮
軸の円筒内壁内に、さらに外側浮軸は軸受基盤の
円筒内壁内にそれぞれ回転自在に挿入保持される
ようにすると共に、上記軸受基盤と外側浮軸、外
側浮軸と内側浮軸、内側浮軸と軸筒とのそれぞれ
の相接する円筒内外壁の少なくとも一方に環状溝
を設け、外側浮軸、内側浮軸および軸筒の各軸の
該環状溝に対応位置には適当数の通孔が設けら
れ、これによつてその内外壁が連通されて軸受基
盤から軸筒までの流体通路を形成する。そして、
上記軸受基盤には上記軸受基盤と外側浮軸との相
接する円筒壁の環状溝部に連通する流体吸入口で
ある連通孔を有し、上記軸筒の円筒内から外部に
流体が供給される。
Structure of the Invention (Means for Solving Problems) In this invention, the structure of the fluid coupling is composed of a bearing base, an outer floating shaft, an inner floating shaft, and a shaft cylinder, and the outer floating shaft and the inner floating shaft are Each has an inner cylindrical wall that is eccentric to the outer cylindrical wall, the shaft cylinder is located within the cylindrical inner wall of the inner floating shaft, the inner floating shaft is located within the cylindrical inner wall of the outer floating shaft, and the outer floating shaft is located within the cylindrical inner wall of the bearing base. The bearing base and the outer floating shaft, the outer floating shaft and the inner floating shaft, and the inner floating shaft and the shaft cylinder are arranged to be rotatably inserted and held in each of the inner and outer cylinders, and at least one of the inner and outer cylindrical walls that are in contact with each other. An annular groove is provided in the outer floating shaft, an inner floating shaft, and a shaft of the shaft cylinder, and an appropriate number of through holes are provided at positions corresponding to the annular grooves on each axis of the outer floating shaft, inner floating shaft, and shaft cylinder. A fluid passage is formed from the shaft to the shaft cylinder. and,
The bearing base has a communication hole that is a fluid intake port that communicates with the annular groove of the cylindrical wall where the bearing base and the outer floating shaft are in contact with each other, and fluid is supplied from the inside of the cylinder of the shaft cylinder to the outside. .

(作用) この発明の流体継手はXYZの三次元の並進運動
と軸筒を軸とする回転運動の4つの自由度を持
つ。すなわち、軸受基盤A、外側浮軸B、内側浮
軸Cおよび軸筒Dで構成されるが、軸受基盤A
は、第9図に示すように、継手本体21の中心軸
Pを中心軸とする同心円筒構造をもつ。外側浮軸
Bは、第9図に示すように、継手本体21の中心
軸Pを軸とする外側円筒面と、この軸Pからl3
け離れたQを中心軸とする内側円筒面とを持ち、
軸受基盤Aの円筒内壁に沿つて挿入されている。
(Operation) The fluid coupling of the present invention has four degrees of freedom: three-dimensional translational movement in XYZ and rotational movement around the shaft cylinder. That is, it is composed of a bearing base A, an outer floating shaft B, an inner floating shaft C, and a shaft cylinder D.
As shown in FIG. 9, it has a concentric cylindrical structure whose central axis is the central axis P of the joint body 21. As shown in FIG. 9, the outer floating axis B has an outer cylindrical surface centered on the central axis P of the joint body 21, and an inner cylindrical surface centered on Q, which is separated by l3 from this axis P. have,
It is inserted along the cylindrical inner wall of the bearing base A.

内側浮軸Cは第9図に示す軸Qを中心軸とする
外側円筒面と軸Qからl2だけ離れた軸Oを中心軸
とする内側円筒面とを持ち、外側浮軸の円筒内壁
に沿つて挿入される。
The inner floating shaft C has an outer cylindrical surface whose central axis is the axis Q shown in FIG. inserted along.

軸筒Dは軸Oを中心軸とする同心円筒構造であ
り、内側浮軸Cの円筒内壁に沿つて挿入される。
The shaft cylinder D has a concentric cylindrical structure with the axis O as the central axis, and is inserted along the inner wall of the cylinder of the inner floating shaft C.

このような偏心円筒の回転運動の重ね合せによ
つて円筒軸に直角な平面内で2自由度の並進運動
が、次のようにして実現出来る。すなわち第9図
において、例えば軸筒Dの中心軸OにX方向に力
F1が作用した場合、内側浮軸Cには軸Qを中心
とする時計回りの回転モーメントF1l2cosθ
働き、内側浮軸Cは黒矢印のように時計回りに回
転する。同時に外側浮軸Bには、軸Pを中心とす
る時計回りの回転モーメントF1l1cosθが働
き、外側浮軸Bは軸Pを中心軸として黒矢印のよ
うに時計回りに回転する。この2つの浮軸の回転
運動の合成によつて、軸筒の中心軸OはY軸方向
の運動が相殺されX軸方向に移動する。
By superimposing such rotational movements of the eccentric cylinder, translational movement with two degrees of freedom in a plane perpendicular to the cylinder axis can be realized as follows. In other words, in Fig. 9, for example, a force is applied to the central axis O of the shaft cylinder D in the X direction.
When F 1 acts, a clockwise rotational moment F 1 l 2 cosθ 2 about the axis Q acts on the inner floating axis C, and the inner floating axis C rotates clockwise as shown by the black arrow. At the same time, a clockwise rotational moment F 1 l 1 cosθ 1 about the axis P acts on the outer floating shaft B, and the outer floating shaft B rotates clockwise about the axis P as the black arrow. By combining the rotational motions of the two floating shafts, the central axis O of the shaft cylinder moves in the X-axis direction with the motion in the Y-axis direction cancelled.

別の場合として、軸筒中心軸OにY方向に力
F2が作用した場合、内側浮軸Cは軸Qを中心と
する時計回りの回転モーメントF2l2sinθが働
き、内側浮軸Cは軸Qを中心として時計回りに白
矢印のように回転する。同時に外側浮軸Bには軸
Pを中心とする反時計回りの回転モーメント
F2l1sinθが働き、外側浮軸Bは軸Pを中心軸
として白矢印のように反時計回りに回転する。こ
の2つの浮軸の回転運動の合成によつて、軸筒の
中心軸OはX軸方向の運動が相殺されY軸方向に
移動する。
In another case, a force is applied to the cylinder center axis O in the Y direction.
When F 2 acts, the inner floating axis C receives a clockwise rotation moment F 2 l 2 sin θ 2 about the axis Q, and the inner floating axis C rotates clockwise about the axis Q as shown by the white arrow. Rotate. At the same time, the outer floating axis B has a counterclockwise rotational moment about the axis P.
F 2 l 1 sin θ 1 acts, and the outer floating shaft B rotates counterclockwise about the axis P as the white arrow. By combining the rotational motions of these two floating shafts, the central axis O of the shaft cylinder is moved in the Y-axis direction, with the motion in the X-axis direction cancelled.

内側と外側の浮軸の回転運動の合成によつて、
軸筒Dの中心軸Oがそれに垂直な平面内、つまり
第9図の紙面内で移動できる範囲はP点を中心と
する半径R=l3+l2の円内(図の2点鎖線円内)
となり、従来の継手に対して可動範囲を非常に広
くとることが出来る。この他に、軸筒Dの軸方向
の並進運動と、軸筒Dの軸の回りの回転運動と、
合計4つの自由度を持つことが出来る。
By combining the rotational motion of the inner and outer floating axes,
The range in which the central axis O of the shaft cylinder D can move within a plane perpendicular to it, that is, within the plane of the paper in Fig. 9, is within a circle with radius R = l 3 + l 2 centered on point P (within the double-dashed line circle in the figure). )
This allows for a much wider range of motion than conventional joints. In addition, translational movement in the axial direction of the shaft cylinder D, rotational movement around the axis of the shaft cylinder D,
It can have a total of four degrees of freedom.

これらの軸受基盤A、外側浮軸B、内側浮軸C
及び軸筒Dのそれぞれ対応する内外面には少なく
ともその一方の面に環状溝が設けられると共に、
外側浮軸B、内側浮軸C及び軸筒Dの内外の円筒
壁はその環状溝に対応する部分で適当な数のは通
孔によつて連通されているので、軸受基盤Aの環
状内溝に導入された高圧空気は、各軸の相対的な
回転運動及び許容された範囲での軸方向の変位に
よつても、上記環状溝及び通孔を通つて軸筒Dの
内部へと流入することが出来る。
These bearing base A, outer floating shaft B, inner floating shaft C
An annular groove is provided on at least one of the corresponding inner and outer surfaces of the shaft cylinder D, and
The inner and outer cylindrical walls of the outer floating shaft B, the inner floating shaft C, and the shaft cylinder D are connected to each other by an appropriate number of through holes in the portions corresponding to the annular grooves, so that the inner and outer cylindrical walls of the outer floating shaft B, the inner floating shaft C, and the shaft cylinder D are connected to each other by an appropriate number of through holes. The high-pressure air introduced into the shaft flows into the inside of the shaft cylinder D through the annular groove and the through hole due to the relative rotational movement of each shaft and axial displacement within a permissible range. I can do it.

(実施例) 実施例について詳細に説明する。(Example) Examples will be described in detail.

第5図以下に示す実施例において、偏心ジヤー
ナル空気継手本体21は上記のように軸受基盤
A、外側浮軸B、内側浮軸Cおよび軸筒Dで構成
される。軸受基盤Aは、第9図に示すように、継
手本体21の中心軸Pを中心軸とする同心円筒構
造をなす。円筒下面には1ケないし数ケの高圧空
気吸入口22を持つが、空気供給パイプと軸筒D
を直角に配置する必要がある場合は、円筒外壁面
28に開口する吸入口を設けても差支えない。円
筒内壁中央部に環状内溝23aを設け、高圧空気
吸入口22との間を連通孔24によつて連通させ
て高圧空気路を形成する。環状内溝23aの上下
の円筒内壁部分は精密加工され、空気ベアリング
潤滑面25a,25a′を形成する。この潤滑面2
5a,25a′の中央部に環状の小溝26a,26
a′を設け、多数の空気放出孔27a,27a′で円
筒外壁面28と連通させ、潤滑用空気を放出させ
る。また環状内溝23aから軸受基盤A上面に多
数の噴出孔29aを垂設し、外側浮軸B上部に設
けられた浮力用フランジ30bの下面との間に空
気クツシヨン潤滑面31aを形成し、外側浮軸B
を軸受基盤Aに対して浮上させる作用を持つ。
In the embodiment shown in FIG. 5 and below, the eccentric journal air joint body 21 is composed of the bearing base A, the outer floating shaft B, the inner floating shaft C, and the shaft cylinder D as described above. As shown in FIG. 9, the bearing base A has a concentric cylindrical structure having the central axis P of the joint body 21 as its central axis. The lower surface of the cylinder has one or several high-pressure air intake ports 22, but the air supply pipe and the shaft cylinder D
If it is necessary to arrange the cylinder at a right angle, an inlet opening to the cylindrical outer wall surface 28 may be provided. An annular inner groove 23a is provided in the center of the inner wall of the cylinder, and communicates with the high pressure air intake port 22 through a communication hole 24 to form a high pressure air path. The upper and lower cylindrical inner wall portions of the annular inner groove 23a are precisely machined to form air bearing lubricating surfaces 25a, 25a'. This lubricating surface 2
There are annular small grooves 26a, 26 in the center of 5a, 25a'.
a' is provided and communicated with the cylindrical outer wall surface 28 through a large number of air discharge holes 27a, 27a' to discharge lubricating air. In addition, a large number of ejection holes 29a are vertically provided from the annular inner groove 23a to the upper surface of the bearing base A, and an air cushion lubricating surface 31a is formed between the lower surface of the buoyancy flange 30b provided on the upper part of the outer floating shaft B, and the outer Floating axis B
It has the effect of floating the bearing base A relative to the bearing base A.

外側浮軸Bは、第9図で説明したように、継手
本体1の中心軸Pを軸とする外側円筒面と、この
軸Pからl3だけ離れたQを中心軸とする内側円筒
面とを持ち、上端に上述の浮力用フランジ30b
を設けた偏心円筒からなり、軸受基盤Aの円筒内
壁に沿つて挿入されている。外側浮軸Bの円筒外
壁面の軸受基盤Aの環状内溝23aに対応する位
置には環状外溝32bを、円筒内壁面の対応位置
には環状内溝23bが設けられ、両環状溝は放射
状通孔33で結ばれ高圧空気通路を形成する。環
状外溝32bの上下の円筒外壁面および環状内溝
23bの上下の円筒内壁面は精密加工を施し、そ
れぞれ軸受基盤A、内側浮軸Cとの間に空気ベア
リング潤滑面を形成する。環状外溝32bから潤
滑空気供給用噴出孔34b,34b′が潤滑面25
b,25b′に開口し、潤滑面25aと25bとの
間隙、25a′と25b′との間隙に潤滑用空気を供
給する。さらに、潤滑効率を上げるために、軸受
基盤Aと外側浮軸Bの間隙上部に形成された空気
クツシヨン潤滑面31aを通過した空気を放出す
るための孔35bを浮力用フランジ30b部分に
適当数設ける。
As explained in FIG. 9, the outer floating axis B has an outer cylindrical surface centered on the central axis P of the joint body 1, and an inner cylindrical surface centered on the center axis Q, which is separated by l3 from this axis P. , and the above-mentioned buoyancy flange 30b is attached to the upper end.
It is inserted along the inner wall of the cylinder of the bearing base A. An annular outer groove 32b is provided on the cylindrical outer wall surface of the outer floating shaft B at a position corresponding to the annular inner groove 23a of the bearing base A, and an annular inner groove 23b is provided at a corresponding position on the cylindrical inner wall surface. They are connected by a through hole 33 to form a high pressure air passage. The upper and lower cylindrical outer wall surfaces of the annular outer groove 32b and the upper and lower cylindrical inner wall surfaces of the annular inner groove 23b are precision-machined to form air bearing lubricating surfaces between the bearing base A and the inner floating shaft C, respectively. The lubricating air supply jet holes 34b and 34b' from the annular outer groove 32b are connected to the lubricating surface 25.
b, 25b', and supplies lubricating air to the gap between the lubricating surfaces 25a and 25b and the gap between 25a' and 25b'. Furthermore, in order to increase the lubrication efficiency, an appropriate number of holes 35b are provided in the buoyancy flange 30b for releasing air that has passed through the air cushion lubricating surface 31a formed above the gap between the bearing base A and the outer floating shaft B. .

環状内溝23bの上下の潤滑面のそれぞれ中央
部に環状の小溝26b,26b′を設け、ここに外
界に通じる多数の空気放出孔27b,27b′を設
ける点は軸受基盤における環状小溝26a、空気
放出孔27aと同様であるが、放出孔27b,2
7b′は外側浮軸Bの上下面にそれぞれ開口する。
また環状内溝23bから外側浮軸B上面に通ずる
多数の噴出孔29bを設け、後述の内側浮上軸C
上部の浮力フランジ30Cの下面との間に空気ク
ツシヨン潤滑面を形成して内側浮軸Cを外側浮軸
Bに対して浮上させる作用をする。肉抜き穴36
bは外側浮軸Bの重量分布を釣り合わせ、重心が
軸P上にあるようにするために設けられる。
Small annular grooves 26b, 26b' are provided in the center of the upper and lower lubricating surfaces of the annular inner groove 23b, and a large number of air release holes 27b, 27b' communicating with the outside world are provided here. It is similar to the discharge hole 27a, but the discharge holes 27b, 2
7b' opens on the upper and lower surfaces of the outer floating shaft B, respectively.
In addition, a large number of ejection holes 29b are provided which communicate from the annular inner groove 23b to the upper surface of the outer floating shaft B.
An air cushion lubricating surface is formed between the lower surface of the upper buoyant flange 30C and the inner floating shaft C floats relative to the outer floating shaft B. Thickening hole 36
b is provided to balance the weight distribution of the outer floating axis B so that the center of gravity is on the axis P.

内側浮軸Cは第9図で見たように軸Qを中心軸
とする外側円筒面と、軸Qからl2だけ離れた軸O
を中心軸とする内側円筒面とを持ち、上部に浮力
用フランジ30cを設けた偏心円筒であり、外側
浮軸の円筒内壁に沿つて挿入される。内外壁面に
それぞれ環状溝を設け、これらを放射状の通孔で
連通して高圧空気通路を形成すること、環状溝の
上下には内外それぞれに空気ベアリング潤滑面を
設けること等、その構造は外側浮軸Bと同じであ
る。ただし、軸筒Dは浮力用フランジを持たない
ので、空気噴出孔29bに相当する構造を欠いて
いる。また、肉抜き穴36Cは、重心が軸Q上に
あるように設けられる。
As seen in Fig. 9, the inner floating axis C is the outer cylindrical surface centered on the axis Q, and the axis O is located l2 apart from the axis Q.
It is an eccentric cylinder having an inner cylindrical surface with the center axis at , and a buoyancy flange 30c provided on the upper part, and is inserted along the inner wall of the cylinder of the outer floating shaft. The structure consists of annular grooves on the inner and outer walls, which are communicated through radial holes to form high-pressure air passages, and air bearing lubricating surfaces on the upper and lower sides of the annular grooves. It is the same as axis B. However, since the shaft cylinder D does not have a buoyancy flange, it lacks a structure corresponding to the air jet hole 29b. Further, the lightening hole 36C is provided so that the center of gravity is on the axis Q.

軸筒Dは、上面に模型側配管結合用フランジ3
0d、下面にストツパー板38を設け、軸Oを中
心軸とする同心円筒構造をなし、内側浮軸Cの円
筒内壁に沿つて挿入される。軸筒の外壁面の内側
浮軸Cの環状内溝23cに対応する位置に、環状
外溝32dを設け、軸筒Dの内部41との間を通
孔39で結び、高圧空気通路を形成する。環状外
溝32dの上下の円筒外壁は、内外側浮軸B,C
と同様、精密加工されて空気ベアリング潤滑面を
形成し、内側浮軸Cとの間隙には軸筒内部41か
ら噴出孔34dによつて潤滑用空気を供給する。
外側浮軸B、内側浮軸Cおよび軸筒Dが限界量以
上に上方に移動しないように、ストツパー板38
を軸筒D下面に取付け、軸受基盤底面42に当り
係止されるようにされている。
The shaft cylinder D has a flange 3 for connecting the model side piping on the upper surface.
0d, a stopper plate 38 is provided on the lower surface, forming a concentric cylindrical structure with the axis O as the central axis, and is inserted along the inner wall of the cylinder of the inner floating shaft C. An annular outer groove 32d is provided at a position corresponding to the annular inner groove 23c of the inner floating shaft C on the outer wall surface of the shaft cylinder, and is connected to the inside 41 of the shaft cylinder D by a through hole 39 to form a high-pressure air passage. . The upper and lower cylindrical outer walls of the annular outer groove 32d have inner and outer floating axes B and C.
Similarly, the air bearing lubricating surface is formed by precision machining, and lubricating air is supplied to the gap between the inner floating shaft C and the inner floating shaft C from the shaft cylinder interior 41 through the jet hole 34d.
A stopper plate 38 is installed to prevent the outer floating shaft B, inner floating shaft C, and shaft cylinder D from moving upward by more than the limit amount.
is attached to the lower surface of the shaft cylinder D, and is adapted to hit and be locked against the bottom surface 42 of the bearing base.

次に、この空気継手の作用を説明する。 Next, the function of this air joint will be explained.

この実施例の偏心ジヤーナル空気継手本体21
は、第5図、第6図に示すように、中心軸Zが垂
直になるように風洞壁に設置され、軸受基盤Aの
下面の高圧空気吸入口22に別に設けた高圧空気
源からの配管40が固着される。次に外側浮軸
B、内側浮軸C、最後に軸筒Dが各軸間の円筒壁
間間隙数十ミクロンを保持して挿入される。高圧
空気は、配管40から高圧空気吸入口22、連通
孔24を経て環状内溝23aに流入する。ここ
に、流入した高圧空気は、各軸間に、通孔33,
37,39で連通した内外の環状溝23a,b,
c,32b,c,dを配置したことにより、各軸
がどのような位置関係にあつても、常に安定した
高圧空気流として軸筒Dの内部41に流入し、軸
筒上面から風洞内模型へと供給される。この際、
高圧空気通路内の少量の空気は、次に詳しく説明
するように、空気ベアリング潤滑面の潤滑用空気
として、また外側浮軸Bと内側浮軸Cとを浮上さ
せるための空気クツシヨン用空気として使用され
る。
Eccentric journal air joint body 21 of this embodiment
As shown in Figs. 5 and 6, the pipe is installed on the wind tunnel wall so that the center axis Z is vertical, and a pipe from a high-pressure air source separately provided is connected to the high-pressure air intake port 22 on the lower surface of the bearing base A. 40 is fixed. Next, the outer floating shaft B, the inner floating shaft C, and finally the shaft cylinder D are inserted while maintaining a gap of several tens of microns between the cylinder walls between each shaft. High pressure air flows from the pipe 40 through the high pressure air intake port 22 and the communication hole 24 into the annular inner groove 23a. The high pressure air that has flowed in here is passed through the through holes 33 and 33 between each shaft.
Inner and outer annular grooves 23a, b, communicating at 37, 39,
c, 32b, c, and d, no matter what positional relationship the respective axes have, a stable high-pressure air flow always flows into the interior 41 of the shaft cylinder D, and the model inside the wind tunnel is supplied to. On this occasion,
A small amount of air in the high-pressure air passage is used as lubricating air for the air bearing lubricated surfaces and as air cushion air to levitate the outer floating shaft B and the inner floating shaft C, as will be explained in detail next. be done.

空気ベアリング及び空気クツシヨンの構造と作
用は、第6図の一部を拡大した第8図に見られる
ように、軸受基盤Aと外側浮軸Bのベアリング潤
滑面a、25bは数十ミクロンの間隙を持つてお
り、この円筒壁間間隙には環状内溝23aと環状
外溝32bとで形成される高圧空気室から直接
と、外側浮軸Bに設けられた噴出口34bとから
小量の潤滑用高圧空気が供給され、この空気は一
部は軸受基盤Aの環状小溝26aから放出口27
aを通り、他の一部は外側浮軸Bの浮力用フラン
ジ30bに設けられた放出孔35bから大気中に
放出され、この流れによつて数十ミクロンの円筒
形間隙には一様な高圧空気層が形成される。この
ような高圧空気層は軸受基盤Aと外側浮軸Bとの
間と同様、外側浮軸Bと内側浮軸C、内側浮軸C
と軸筒D間の空気ベアリング潤滑面間に形成さ
れ、これら各軸相互の回転と並進運動が極めて低
い抵抗で行われる。
The structure and operation of the air bearing and the air cushion are as shown in FIG. 8, which is a partially enlarged view of FIG. A small amount of lubrication is supplied to the gap between the cylindrical walls directly from the high-pressure air chamber formed by the annular inner groove 23a and the annular outer groove 32b, and from the jet nozzle 34b provided on the outer floating shaft B. High-pressure air is supplied for use, and a portion of this air is passed from the annular small groove 26a of the bearing base A to the discharge port 27.
a, and the other part is released into the atmosphere from the discharge hole 35b provided in the buoyancy flange 30b of the outer floating shaft B, and this flow creates a uniform high pressure in the cylindrical gap of several tens of microns. An air layer is formed. Such a high-pressure air layer exists between the bearing base A and the outer floating shaft B, as well as between the outer floating shaft B and the inner floating shaft C, and the inner floating shaft C.
It is formed between the air bearing lubricated surfaces between the shaft cylinder D and the shaft cylinder D, and mutual rotation and translation of these shafts is performed with extremely low resistance.

一方、軸受基盤Aの上面と外側浮軸B上端の浮
力用フランジ30bの下面との間隙には、環状内
溝23aから垂設された噴出孔29aから高圧空
気が供給され、一部は外側浮軸Bのフランジ外縁
から、一部は外側浮軸Bのフランジ30bに設け
られた放出孔35bから大気中に放出され、この
間隙の潤滑面に一様な高圧空気層が形成される。
外側浮軸Bの自重は、この空気クツシヨン圧によ
つて支えられる。このような空気クツシヨン機能
は、外側浮軸Bの上面と内側浮軸C上端のフラン
ジ下面の潤滑面でも達成される。これによつて外
側浮軸B、内側浮軸Cは摩擦なく軸受基盤Aに支
えられ、相互の位置を保つことが出来る。
On the other hand, high-pressure air is supplied to the gap between the upper surface of the bearing base A and the lower surface of the buoyancy flange 30b at the upper end of the outer floating shaft B from the jet hole 29a vertically installed from the annular inner groove 23a, and some of the air is supplied to the outer floating shaft. A part of the air is released into the atmosphere from the outer edge of the flange of the shaft B through a discharge hole 35b provided in the flange 30b of the outer floating shaft B, and a uniform high-pressure air layer is formed on the lubricated surface of this gap.
The weight of the outer floating shaft B is supported by this air cushion pressure. Such an air cushion function is also achieved by the lubricating surfaces of the upper surface of the outer floating shaft B and the lower surface of the flange at the upper end of the inner floating shaft C. As a result, the outer floating shaft B and the inner floating shaft C are supported by the bearing base A without friction and can maintain their mutual positions.

この実施例においては、空気継手本体21が垂
直に保持されているので、上部を空気クツシヨン
によつて支えればよいが、これを横置しあるいは
倒置しても使用できるようにする場合は、上下両
側に浮軸フランジを持つ構造とすればよい。
In this embodiment, the air joint main body 21 is held vertically, so the upper part can be supported by the air cushion, but if it is to be used horizontally or upside down, The structure may have floating shaft flanges on both sides.

また、この実施例においては、軸受基盤Aと外
側浮軸B、外側浮軸Bと内側浮軸C、内側浮軸C
と軸筒Dとのそれぞれの相接する円筒内外壁の両
方に環状溝が設けられているが、相接する円筒内
外壁の少なくとも一方に環状溝を設ければ高圧空
気の流体通路を形成することが出来る。さらに、
軸受基盤側から高圧流体を供給するだけでなく、
逆に軸筒側から軸受基盤側に供給してもよいこと
は言うまでもない。
In this embodiment, the bearing base A and the outer floating shaft B, the outer floating shaft B and the inner floating shaft C, and the inner floating shaft C
An annular groove is provided on both the inner and outer walls of the adjoining cylindrical cylinders D, and if an annular groove is provided on at least one of the adjoining inner and outer walls of the cylinder, a fluid passage for high-pressure air is formed. I can do it. moreover,
In addition to supplying high pressure fluid from the bearing base side,
It goes without saying that, on the contrary, it may be supplied from the shaft cylinder side to the bearing base side.

(応用例) 以上説明したこの発明の実施例の偏心ジヤーナ
ル空気継手の使用例として、高圧空気使用の模擬
エンジンを搭載した航空機模型の風洞試験におい
て、模型に働く空気力を天秤で精度良く測定する
ために、高圧空気配管の途中にこの空気継手を設
置した場合を、第10図に示す。
(Application example) As an example of the use of the eccentric journal air joint according to the embodiment of the invention described above, in a wind tunnel test of an aircraft model equipped with a simulated engine using high-pressure air, the aerodynamic force acting on the model is accurately measured using a balance. Figure 10 shows a case in which this air joint is installed in the middle of a high-pressure air piping for this purpose.

模擬エンジン43を搭載した航空機の半載模型
44の風洞試験において、風洞壁45の外側に接
して設けられた基台46にこの実施例の偏心ジヤ
ーナル空気継手本体21を固定し、その下面の高
圧空気吸入口に高圧管40を配管し高圧空気を供
給すると共に風Wを送る。模型に働く空気力を測
定するための天秤本体47は、風洞壁45と空気
継手本体21の中間、軸筒Dの周囲に配設し、天
秤受感素子の一端を固定した内側固定環49を軸
筒Dに固着し、他端の外側固定端部48は基台4
6に載設する。軸筒Dは風洞壁45の孔50を貫
通し、そのフランジ面51を模型44の胴体に固
着された空気供給口52に接続され、模型44と
一体となつて動く。
In a wind tunnel test of a semi-mounted aircraft model 44 equipped with a simulated engine 43, the eccentric journal air joint body 21 of this embodiment was fixed to a base 46 provided in contact with the outside of the wind tunnel wall 45, and the high pressure A high-pressure pipe 40 is connected to the air intake port to supply high-pressure air and send wind W. The balance body 47 for measuring the aerodynamic force acting on the model is arranged around the shaft cylinder D between the wind tunnel wall 45 and the air joint body 21, and has an inner fixing ring 49 to which one end of the balance sensing element is fixed. It is fixed to the shaft cylinder D, and the other outer fixed end 48 is attached to the base 4.
It will be posted on 6. The shaft cylinder D passes through a hole 50 in the wind tunnel wall 45, has a flange surface 51 connected to an air supply port 52 fixed to the body of the model 44, and moves integrally with the model 44.

主翼を垂直に設置した航空機の半載模型風洞試
験において、測定が要求される力の成分は、揚力
Y、抵抗(推力)X、縦揺モーメントMの3成分
である。このうち、揚力と抵抗(推力)成分は、
先にこの発明の継手の作用について説明したよう
に、実施例の空気継手本体21の外側浮軸Bと内
側浮軸Cの円筒軸まわりの低摩擦回転運動の合成
により、また縦揺モーメントは軸筒Dの円筒軸ま
わりの低摩擦回転運動によつて天秤受感素子に作
用し、配管干渉力を非常に小さくして精度良く測
定できる。その上、軸筒Dの平面内の可動範囲が
広いために、天秤47、空気継手本体21、模型
44および高圧配管の組込み作業は容易となる。
In a semi-mounted model wind tunnel test of an aircraft with the main wing vertically installed, the force components that are required to be measured are lift force Y, resistance (thrust force) X, and pitching moment M. Of these, the lift and drag (thrust) components are:
As previously explained about the operation of the joint of the present invention, due to the combination of the low-friction rotational motion around the cylindrical axis of the outer floating shaft B and the inner floating shaft C of the air joint body 21 of the embodiment, the pitching moment is The low-friction rotational motion of the tube D around the cylindrical axis acts on the balance sensing element, making the pipe interference force extremely small and allowing highly accurate measurement. Moreover, since the movable range within the plane of the shaft cylinder D is wide, the work of assembling the balance 47, the air joint body 21, the model 44, and the high-pressure piping becomes easy.

以上はこの発明をジヤーナル空気継手として利
用した場合の実施例について説明したが、空気継
手に限らず、他の種類のガス、液体等にも利用可
能である。そして軸筒Dにかかる力が大きいとき
にはこの実施例のような流体ベアリングでなく、
例えばボールベアリング等、他の型式のベアリン
グも利用可能である。
The embodiments in which the present invention is used as a journal air joint have been described above, but the invention is not limited to air joints, but can also be used for other types of gases, liquids, etc. When the force applied to the shaft cylinder D is large, instead of using a fluid bearing as in this embodiment,
Other types of bearings can also be used, for example ball bearings.

発明の効果 この発明は、上記のように偏心軸を用いること
により高精度の工作が容易な円筒形状の組合せに
よつて4つの自由度を持つ流体継手を実現し、し
かも空気ベアリングの導入によつて配管干渉力を
従来のものに比べて2桁程度低減させることが出
来た。その上、流体継手本体21に対する流体供
給管40と軸筒Dとは三次元の並進運動が可能な
ので、流体移送の配管途中に組み込むことによ
り、配管のずれを吸収出来るという効果をも奏す
るものである。
Effects of the Invention As described above, this invention realizes a fluid coupling with four degrees of freedom by combining a cylindrical shape that is easy to work with high precision by using an eccentric shaft, and moreover, by introducing an air bearing. As a result, we were able to reduce piping interference force by about two orders of magnitude compared to conventional systems. Furthermore, since the fluid supply pipe 40 and the shaft cylinder D relative to the fluid coupling body 21 are capable of three-dimensional translational movement, by incorporating them in the middle of the fluid transfer piping, there is also the effect that misalignment of the piping can be absorbed. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は公知の空気継手の説明
図、第5図はこの発明の偏心流体継手の1実施例
の1部を切欠いた斜視図、第6図は同じく垂直断
面図、第7図は同じく水平断面図、第8図は第6
図右上部の円輪郭内の拡大図、第9図はこの実施
例の偏心ジヤーナル空気継手の作動説明図、第1
0図は風洞試験への使用例の斜視図である。図中
の符号はそれぞれ以下のものを示す。 1:航空機模型、2:柔軟パイプ、3:天秤、
4:空気供給パイプ、5:継手部、6:環状溝、
9:出口パイプ、10:ボール外殻、21:偏心
ジヤーナル空気継手本体、22:空気吸入口、2
3:環状内溝、24:連通孔、25:空気ベアリ
ング、26:小溝、27:空気放出孔、28:外
壁面、29:噴出孔、30:浮力用フランジ、3
1:空気クツシヨン潤滑面、32:環状外溝、3
3,37,39:通孔、34:空気噴出孔、3
5:空気放出孔、36:肉抜き穴、38:ストツ
パー、40:高圧空気配管、41:軸筒、42:
軸受基盤底面、43:模擬エンジン、44:半載
模型、45:風洞壁、46:基台、47:天秤本
体、48:外側固定端、49:内側固定端、5
0:孔、51:フランジ、52:空気供給口。
1 to 4 are explanatory diagrams of a known air coupling, FIG. 5 is a partially cutaway perspective view of an embodiment of the eccentric fluid coupling of the present invention, FIG. 6 is a vertical sectional view, and FIG. The figure is also a horizontal sectional view, and Figure 8 is the 6th section.
An enlarged view of the circular outline in the upper right part of the figure, FIG. 9 is an explanatory diagram of the operation of the eccentric journal air joint of this embodiment, and
Figure 0 is a perspective view of an example of use in a wind tunnel test. The symbols in the figure indicate the following, respectively. 1: Aircraft model, 2: Flexible pipe, 3: Balance,
4: Air supply pipe, 5: Joint part, 6: Annular groove,
9: Outlet pipe, 10: Ball shell, 21: Eccentric journal air joint body, 22: Air intake port, 2
3: Annular inner groove, 24: Communication hole, 25: Air bearing, 26: Small groove, 27: Air release hole, 28: Outer wall surface, 29: Ejection hole, 30: Buoyancy flange, 3
1: Air cushion lubricating surface, 32: Annular outer groove, 3
3, 37, 39: Through hole, 34: Air blowout hole, 3
5: Air release hole, 36: Lightening hole, 38: Stopper, 40: High pressure air piping, 41: Shaft cylinder, 42:
Bearing base bottom, 43: Simulated engine, 44: Half-mounted model, 45: Wind tunnel wall, 46: Base, 47: Balance body, 48: Outside fixed end, 49: Inside fixed end, 5
0: hole, 51: flange, 52: air supply port.

Claims (1)

【特許請求の範囲】 1 軸受基盤、外側浮軸、内側浮軸および軸筒か
らなり、上記外側浮軸および内側浮軸はそれぞれ
円筒外壁に対して偏心した円筒内壁を有し、上記
軸筒は内側浮軸の円筒内壁内に、内側浮軸は外側
浮軸の円筒内壁内に、そして外側浮軸は軸受基盤
の円筒内壁内に、それぞれ、回転自在に挿入保持
されると共に、上記軸受基盤と外側浮軸、外側浮
軸と内側浮軸、内側浮軸と軸筒とのそれぞれの相
接する円筒内外壁の少なくとも一方に環状溝を設
け、外側浮軸、内側浮軸および軸筒の各軸の上記
環状溝に対応する位置は適当数の通孔によつてそ
の内外壁が連通されて軸受基盤から軸筒までの流
体通路を形成し、上記軸受基盤は上記軸受基盤と
外側浮軸との相接する円筒壁の環状溝部に連通す
る連通孔を有し、該連通孔と上記軸筒の円筒内と
がそれぞれ流体供給源および被供給体に連結され
ることを特徴とする偏心流体継手。 2 上記軸受基盤、外側浮軸、内側浮軸および軸
筒の相接する円筒内外壁が、環状溝以外の部分で
は微少な間隙を隔てて相対し、この間隙に高圧流
体を導入して流体ベアリングを形成したことを特
徴とする特許請求の範囲第1項の偏心流体継手。 3 上記高圧流体は上記環状溝内を流れる高圧流
体が導入されることを特徴とする特許請求の範囲
第2項の偏心流体継手。 4 上記外側浮軸、内側浮軸および軸筒の上端に
浮力用フランジを設け、これらフランジと軸受基
盤、外側浮軸および内側浮軸の上面との間隙に高
圧流体を導入し、この流体層によつて外側浮軸、
内側浮軸および軸筒を支持するようにしたことを
特徴とする特許請求の範囲第2項の偏心流体継
手。
[Scope of Claims] 1 Consists of a bearing base, an outer floating shaft, an inner floating shaft, and a shaft cylinder, each of the outer floating shaft and the inner floating shaft having a cylindrical inner wall eccentric with respect to the cylindrical outer wall, and the shaft cylinder The inner floating shaft is rotatably inserted and held within the cylindrical inner wall of the inner floating shaft, the outer floating shaft is inserted and held within the cylindrical inner wall of the outer floating shaft, and the outer floating shaft is rotatably inserted and held within the cylindrical inner wall of the bearing base. An annular groove is provided in at least one of the adjoining inner and outer walls of each of the outer floating shaft, the outer floating shaft and the inner floating shaft, and the inner floating shaft and the shaft cylinder, and each shaft of the outer floating shaft, the inner floating shaft, and the shaft cylinder is provided with an annular groove. Its inner and outer walls are communicated through a suitable number of holes at positions corresponding to the annular groove to form a fluid passage from the bearing base to the shaft cylinder, and the bearing base is connected to the bearing base and the outer floating shaft. An eccentric fluid coupling characterized in that it has a communication hole that communicates with annular grooves of adjacent cylindrical walls, and the communication hole and the inside of the cylinder of the shaft cylinder are connected to a fluid supply source and a supplied body, respectively. 2 The inner and outer cylindrical walls of the bearing base, outer floating shaft, inner floating shaft, and shaft cylinder face each other with a small gap in the area other than the annular groove, and high-pressure fluid is introduced into this gap to create a fluid bearing. The eccentric fluid coupling according to claim 1, characterized in that the eccentric fluid coupling is formed with: 3. The eccentric fluid coupling according to claim 2, wherein the high-pressure fluid flows within the annular groove. 4. Buoyancy flanges are provided at the upper ends of the outer floating shaft, inner floating shaft, and shaft cylinder, and high-pressure fluid is introduced into the gaps between these flanges and the upper surfaces of the bearing base, outer floating shaft, and inner floating shaft, and this fluid layer is Therefore, the outer floating shaft,
The eccentric fluid coupling according to claim 2, characterized in that it supports an inner floating shaft and a shaft cylinder.
JP55124870A 1980-09-09 1980-09-09 Eccentric fluid joint Granted JPS5749833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55124870A JPS5749833A (en) 1980-09-09 1980-09-09 Eccentric fluid joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55124870A JPS5749833A (en) 1980-09-09 1980-09-09 Eccentric fluid joint

Publications (2)

Publication Number Publication Date
JPS5749833A JPS5749833A (en) 1982-03-24
JPS621211B2 true JPS621211B2 (en) 1987-01-12

Family

ID=14896130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55124870A Granted JPS5749833A (en) 1980-09-09 1980-09-09 Eccentric fluid joint

Country Status (1)

Country Link
JP (1) JPS5749833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372728B2 (en) * 1987-10-13 1991-11-19 Shuuberuto Unto Zarutsuaa Mas Fab Ag

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585611A (en) * 1983-03-04 1986-04-29 General Electric Company Undervessel arrangement
JPS60249029A (en) * 1984-05-25 1985-12-09 Chinkou Higashijima No-reaction force air supplying device
US5169593A (en) * 1989-11-03 1992-12-08 General Electric Company Control rod drive handling tools for nuclear reactor
JPH0312151U (en) * 1990-07-04 1991-02-07
JP6558634B2 (en) * 2015-08-11 2019-08-14 正裕 岩永 Lift / drag force measuring device
CN106768828B (en) * 2017-03-06 2023-05-23 浙江工业大学 Non-contact type gas static pressure main shaft gas film flow field test system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372728B2 (en) * 1987-10-13 1991-11-19 Shuuberuto Unto Zarutsuaa Mas Fab Ag

Also Published As

Publication number Publication date
JPS5749833A (en) 1982-03-24

Similar Documents

Publication Publication Date Title
US2695199A (en) Bearing
CN112051027A (en) Two-degree-of-freedom supporting device for supersonic wind tunnel model
JPS621211B2 (en)
US4798478A (en) Self-aligning fluid bearing
CN106438701B (en) More piece discharge orifice is knockdown to cross the enhanced gas foot of seam ability
WO2006060611A2 (en) Articulated gas bearing support pads
CN201420798Y (en) Three-degree-of-freedom double-layer oil-film spherical hinge
US2869901A (en) Ball and socket coupling having air bearing means
JP6210727B2 (en) Rotation transmission device
CN114408231A (en) Air-floating type full-angle multi-level zero-gravity unloading system
CN101429967B (en) Three-freedom double-layer oil film type spherical hinge
US3583815A (en) Angular displacement indicating gas bearing support system
CN106697241A (en) Oil distributor for adjustable-pitch steering oar
CN208073975U (en) Roll flexural pivot joint
CN216734829U (en) Air-floating type full-angle multi-level zero-gravity unloading system
US3611785A (en) Spherical air bearing test carriage having unlimited angular motion
CN214405563U (en) Lubricating oil system and engine test device
CN206734595U (en) A kind of oil distributor of adjustable pitch rudder oar
US4297905A (en) Gyroscopic vertical reference system
CN104863961B (en) Flow nipple direct-furnish gas list kickboard gas foot
CN106646818B (en) The bearing of semi-active type mirror surface and positioning system
CN106394946B (en) Multi-turn independent gas supply crosses the enhanced gas foot of seam ability
BR112017027906B1 (en) TOUCH FOR THE TRANSFER OF HIGH PRESSURE FLUIDS, STACK OF TOUCHES AND VESSEL FOR OPERATIONS ON THE SEA INCLUDING A TOWER MOORING SYSTEM
CN104405769A (en) Dual-hemispherical porous aerostatic shafting with grading ring grooves
US3238793A (en) Two-axis hydraulically controlled inertial guidance platform