JPS62152374A - High frequency power source device - Google Patents

High frequency power source device

Info

Publication number
JPS62152374A
JPS62152374A JP60298453A JP29845385A JPS62152374A JP S62152374 A JPS62152374 A JP S62152374A JP 60298453 A JP60298453 A JP 60298453A JP 29845385 A JP29845385 A JP 29845385A JP S62152374 A JPS62152374 A JP S62152374A
Authority
JP
Japan
Prior art keywords
power source
voltage
circuit
waveform
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60298453A
Other languages
Japanese (ja)
Other versions
JPH0785657B2 (en
Inventor
Masahiro Takemoto
竹本 正宏
Seishi Kanbara
誠士 神原
Yutaka Takashige
豊 高茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP60298453A priority Critical patent/JPH0785657B2/en
Publication of JPS62152374A publication Critical patent/JPS62152374A/en
Publication of JPH0785657B2 publication Critical patent/JPH0785657B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ac-Ac Conversion (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To obtain a stable high frequency power source, by controlling the ON-time of a switching element organizing an inverter circuit, shorter on the high wave of a power waveform and longer on the low wave. CONSTITUTION:Resistances 23-25 are set so that control pulse length may be made largest in a state that no input current flows, and the input of voltage obtained from the state is inputted to the non-inversion input terminal of a comparator 26. When an inverter is worked and input current flows, then it is detected by a current transformer 20, and the output voltage of a rectifier block 22 generates. The high potential side of the output resistance 23 is connected to the power source side, and so the potential of the dividing point of the resistances 23, 24 is lowered. As a result, the potential of the dividing point of the resistances 24, 25 drops, and the time width of ON-signal generated by the comparator 26 gets smaller.

Description

【発明の詳細な説明】 く技術分野〉 本発明は商用電源を整流電源に変換し、更にその整流電
源から高周波電源を作ってその高周波電源にて電子レン
ジのマグネトロンとか電磁調理器の加熱コイル等を駆動
させる高周波電源装置に関する。
[Detailed Description of the Invention] Technical Field> The present invention converts a commercial power source into a rectified power source, further generates a high frequency power source from the rectified power source, and uses the high frequency power source to power the magnetron of a microwave oven, the heating coil of an electromagnetic cooker, etc. The present invention relates to a high frequency power supply device for driving a.

〈従来技術〉 電子レンジのマグネトロンを駆動させる高周波電源装置
を例にとり第6図の模式的電気回路図に基づいて概要を
説明する。
<Prior Art> Taking as an example a high frequency power supply device that drives a magnetron of a microwave oven, an outline will be explained based on the schematic electric circuit diagram shown in FIG.

商用電源1を整流ブリッジ2で整流し、チョークコイル
3、平滑コンデンサ4で平滑して直流電源を形成してい
る。この直流電源にマグネトロン駆動用昇圧トランス5
を接続し、このトランス5に直列または並列(図では直
列)に共振コンデンサ6を接続して共振回路を形成し、
この共振回路にダイオード7、スイッチング素子(トラ
ンジスタ)8を接続することによりインバータ回路を構
成している。
A commercial power source 1 is rectified by a rectifier bridge 2 and smoothed by a choke coil 3 and a smoothing capacitor 4 to form a DC power source. Step-up transformer 5 for magnetron drive is connected to this DC power supply.
and connect a resonant capacitor 6 in series or parallel (in series in the figure) to this transformer 5 to form a resonant circuit,
An inverter circuit is constructed by connecting a diode 7 and a switching element (transistor) 8 to this resonant circuit.

そして上記インバータ回路を構成するマグネトロン駆動
用昇圧トランス5の二次側回路にはマグネトロン9及び
マグネトロン9を駆動させるための高圧ダイオード10
、高圧コンデンサ11が接続されており、制御回路12
によって最適に制御される。即ち、制御回路12は入力
電圧、マグネトロン駆動用昇圧トランス5の電流、マグ
ネトロン電流等を検出し、その結果に基いて出力制徂等
の制御信号を駆動回路13に出力して、インノ(−夕回
路のスイッチング素子8をオン・オフし最適に制御して
いる。
The secondary side circuit of the step-up transformer 5 for driving the magnetron that constitutes the inverter circuit includes a magnetron 9 and a high voltage diode 10 for driving the magnetron 9.
, a high voltage capacitor 11 is connected, and a control circuit 12
optimally controlled by That is, the control circuit 12 detects the input voltage, the current of the step-up transformer 5 for driving the magnetron, the magnetron current, etc., and outputs control signals such as output limiting to the drive circuit 13 based on the results. The switching element 8 of the circuit is turned on and off for optimum control.

このインバータ回路の動作により、昇圧トランス5の二
次側に電力が供給されてマグネトロン9が発振し、高周
波加熱出力が得られるのであるが、マグネトロン9の高
周波加熱出力は、インバータ回路のスイッチング素子8
のON信号の時間により制御(OFF信号の時間は略一
定に制御)され、ON信号時間が長いほど高周波加熱出
力も太きい。
Through the operation of this inverter circuit, power is supplied to the secondary side of the step-up transformer 5, causing the magnetron 9 to oscillate, and high-frequency heating output is obtained.
It is controlled by the ON signal time (the OFF signal time is controlled to be substantially constant), and the longer the ON signal time, the greater the high frequency heating output.

第7図(a)、(b)はインバータ回路動作時のスイッ
チング素子(トランジスタ)8のVCE(コレクターエ
ミッタ電圧)、  IC(コレクタ電流)特性を示す波
形図である。
FIGS. 7(a) and 7(b) are waveform diagrams showing the VCE (collector emitter voltage) and IC (collector current) characteristics of the switching element (transistor) 8 during operation of the inverter circuit.

従来のインバータ回路における制御は、入力電流、加熱
コイル電流などを検知して整流・平滑し、その出力によ
りインバータ回路を制御する制御信号をつくっていた。
Conventional inverter circuit control involves detecting the input current, heating coil current, etc., rectifying and smoothing it, and using the output to create a control signal to control the inverter circuit.

このような制御を、商用電源1周期でインバータの状態
を見た場合、整流・平滑して作られた信号は、電源1周
期に比べてゆっくシと変化し、電源1電圧のゼロクロス
付近と電圧のピーク付近のON信号の長さもほとんど同
じである。このため、インバータ回路では力率改善のた
め平滑コンデンサ4容量を小さくしであるので、電源電
圧にほぼ比例した動作電圧VCE()ランジスタ8のコ
レクターエミッタ間電圧)が生じ、電源電圧に比例した
包絡線となる。マグネトロン電流も同様となり、ピーク
電流が高くモーディングしやすく、インバータ回路が不
安定になる。また、電源電圧の変動に対し、動作電圧の
変動も大きく、制御の応答性も遅い。インバータ動作中
に発生する動作電圧VCEは高電圧であり、電源電圧の
急激な変動に対しても応答性が悪いので動作電圧がさら
に高くなり、スイッチング素子8が破壊に至ることもあ
るので、スイッチング素子8も高耐圧のものを使用しな
ければならない。
When we look at the inverter status during one cycle of the commercial power supply using this kind of control, the signal created by rectification and smoothing changes more slowly than the one cycle of the power supply, and it approaches the zero cross of one voltage of the power supply. The length of the ON signal near the voltage peak is also almost the same. Therefore, in the inverter circuit, the capacitance of the smoothing capacitor 4 is reduced to improve the power factor, so an operating voltage VCE (voltage between the collector and emitter of the transistor 8) is generated that is approximately proportional to the power supply voltage, and an envelope proportional to the power supply voltage is generated. It becomes a line. The same applies to the magnetron current, and the peak current is high and moding is likely to occur, making the inverter circuit unstable. Further, the operating voltage fluctuates greatly with respect to the power supply voltage fluctuation, and the control response is slow. The operating voltage VCE generated during inverter operation is a high voltage, and it has poor response to sudden fluctuations in the power supply voltage, so the operating voltage becomes even higher and the switching element 8 may be destroyed. The element 8 must also have a high withstand voltage.

また、マグネトロン9は、発振時のインピーダンスが低
いので安定した出力を得るためには、入力電源の変動に
対して十分安定したインバータ出力をマグネトロン駆動
回路に供給しなければならない0 〈目 的〉 本発明は上記に鑑みて為されたもので、インノく一夕回
路の安定化を計ることにより低耐圧のスイッチング素子
が使用できるようにすると共に安定した高周波出力電源
を得ることを目的とする。
In addition, since the magnetron 9 has low impedance during oscillation, in order to obtain stable output, it is necessary to supply the magnetron drive circuit with an inverter output that is sufficiently stable against fluctuations in the input power supply. The invention has been made in view of the above, and aims to enable the use of low voltage switching elements and obtain a stable high frequency output power source by stabilizing the circuit overnight.

〈実施例〉 以下、本発明の一実施例を図面に基づき説明する。第1
図は本発明のインバータ回路制御の一例を示す模式的電
気回路図であり、 インバータ回路の入力電流の状態は、電流変成器(カレ
ントトランス)20により検知され、コンデンサ21で
ノイズが除去されて整流ブロック22で全波整流され、
抵抗23に出力される。抵抗23は、抵抗24.25と
直列接続されて定電圧(+V)t−分圧しており、抵抗
24.25の分圧点は、比較器26の非反転入力端子に
接続されている。
<Example> Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is a schematic electric circuit diagram showing an example of inverter circuit control according to the present invention. The state of the input current of the inverter circuit is detected by a current transformer (current transformer) 20, noise is removed by a capacitor 21, and rectified. Full-wave rectification is performed in block 22,
It is output to the resistor 23. The resistor 23 is connected in series with the resistor 24.25 to divide a constant voltage (+V) by t, and the voltage division point of the resistor 24.25 is connected to the non-inverting input terminal of the comparator 26.

他方、インバータ回路の動作状態(スイッチング素子8
間電圧VCE)を検知しているインバータ動作状態検知
回路27の信号は、タイミング回路28でインバータ回
路の発振を継続するのに必要なタイミング信号が取り出
される。そのタイミング信号に同期してのこぎり波発生
回路29で第2図(a)に示すような”のこぎり波“が
発生し、比較器26の反転入力端子に入力される。比較
器26では、両入力端子からの信号により第2図(b)
に示すような0N−OFF信号を発生する0この0N−
OFF信号が、インバータ回路の制御信号となり、イン
バータ回路のスイッチング素子(トランジスタ)8を動
作できるようにドライブ回路13で増幅され、トランジ
スタ8のベースに加えられる0 比較器26で発生する0N−OFF信号のONの長さは
、インバータ回路の出力や動作電圧に寄与し、ON信号
時間が長いほど出力、動作電圧とも大きくなる。このO
N信号の時間幅を決めるのが、非反転入力端子(+端子
)に入力される電圧である。
On the other hand, the operating state of the inverter circuit (switching element 8
A timing circuit 28 extracts a timing signal necessary for continuing oscillation of the inverter circuit from the signal of the inverter operating state detection circuit 27 which detects the voltage VCE). In synchronization with the timing signal, the sawtooth wave generating circuit 29 generates a "sawtooth wave" as shown in FIG. 2(a), which is input to the inverting input terminal of the comparator 26. In the comparator 26, the signal from both input terminals causes the signal shown in FIG.
This 0N- generates an 0N-OFF signal as shown in
The OFF signal becomes the control signal for the inverter circuit, is amplified by the drive circuit 13 so as to operate the switching element (transistor) 8 of the inverter circuit, and is applied to the base of the transistor 8. The 0N-OFF signal generated by the comparator 26 The ON length of the inverter circuit contributes to the output and operating voltage of the inverter circuit, and the longer the ON signal time, the larger the output and operating voltage become. This O
The time width of the N signal is determined by the voltage input to the non-inverting input terminal (+ terminal).

この実施例では、入力電流が流れていない状態で最大制
御パルス幅となるように抵抗23,24゜25が設定さ
れて、非反転入力端子に入力される電圧は第3図に示す
如く電源同期により変化する。
In this embodiment, the resistors 23, 24 and 25 are set so that the maximum control pulse width is achieved when no input current flows, and the voltage input to the non-inverting input terminal is synchronized with the power supply as shown in Figure 3. Varies depending on

インバータが動作して入力電流が流れると電流変成器2
0が検知し整流ブロック22の出力電圧が発生するが、
回路時定数を小さくしであるので電源周期に対してほと
んど遅れない。出力抵抗23の高電位側が電源側に接続
されているため抵抗2.3.24の分圧点の電位が下が
る。これにより抵抗24.25の分圧点の電位も低下す
るので比較器26で発生するON信号の一間幅が狭くな
る。
When the inverter operates and input current flows, the current transformer 2
0 is detected and the output voltage of the rectifier block 22 is generated,
Since the circuit time constant is small, there is almost no delay with respect to the power supply cycle. Since the high potential side of the output resistor 23 is connected to the power supply side, the potential at the voltage dividing point of the resistors 2, 3, and 24 decreases. As a result, the potential at the voltage dividing point of the resistors 24 and 25 also decreases, so that the width of the ON signal generated by the comparator 26 becomes narrower.

これを時間的に追って見ると、第4図に示す如く電圧の
低いゼロクロス付近ではON信号幅は広く、電圧が上が
るにしたがって狭くなり、ピーク電圧付近では最小幅と
なる。その後、電圧が下がるにしたがって広がり、ゼロ
クロス付近で最大幅となる。パルス幅は、最大−小−最
大と変化するが、入力電流とパルス幅の関係はフィード
バックがかかった状態となるので、入力電流はパルス幅
との関係で決まる電流値に落ち着く。
If this is followed over time, as shown in FIG. 4, the ON signal width is wide near the zero cross where the voltage is low, becomes narrower as the voltage increases, and becomes the minimum width near the peak voltage. After that, it widens as the voltage decreases, reaching its maximum width near the zero cross. The pulse width changes from maximum to minimum to maximum, but since the relationship between the input current and the pulse width is in a feedback state, the input current settles at a current value determined by the relationship with the pulse width.

このような入力電流波形による制御方法と従来の制御方
法とを比較した場合のトランジスタ8のVCE包絡線波
形とマグネトロン電流包絡線波形を第5図に示す。入力
電圧のゼロクロス付近とピーク電圧付近でのパルス幅が
変わらない従来の制御方法のもの(破線イ)に比べ、実
線口の如くピーク電圧が下がり電圧の低い部分が逆に上
がり、入力電流が増せば増すほど台形に近付いてくる。
FIG. 5 shows the VCE envelope waveform and magnetron current envelope waveform of the transistor 8 when the control method using such an input current waveform is compared with the conventional control method. Compared to the conventional control method (dotted line A) in which the pulse width does not change near the zero crossing of the input voltage and near the peak voltage, the peak voltage decreases as shown by the solid line, and the low voltage area increases, and the input current increases. The more the shape increases, the closer it becomes to a trapezoid.

このピーク電圧が下がることは、従来使用していたスイ
ッチング素子8の耐圧を下げることができるようになる
。また、マグネトロン電流で比較しても、図に示されて
いるようにA=a+bとなるように制御されれば、同等
の出力であってもピーク電流が減り、マグネトロン9の
安定な発振が得られる。
The reduction in this peak voltage makes it possible to lower the withstand voltage of the conventionally used switching element 8. Also, when comparing the magnetron current, if it is controlled so that A = a + b as shown in the figure, the peak current will decrease even if the output is the same, and stable oscillation of the magnetron 9 will be achieved. It will be done.

上記実施例は電子レンジに本発明を適用したものである
が、トランス5を加熱コイルに置換した構成の電磁調理
器に適用した場合にも同様の作用効果があり、加熱コイ
ルの電源半周期における入力電流、動作電圧比較は第5
図のコレクターエミッタ電圧包絡線比較と同様である。
Although the above embodiment is an application of the present invention to a microwave oven, similar effects can be obtained when the present invention is applied to an electromagnetic cooker having a configuration in which the transformer 5 is replaced with a heating coil. Input current and operating voltage comparison is the fifth
This is similar to the collector-emitter voltage envelope comparison shown in the figure.

尚、実施例では入力電流を検出して制御を行っているが
、コイル電流、トランジスタ8動作電圧VCEの包絡線
を検出して制御を行ってもよい。
In the embodiment, control is performed by detecting the input current, but control may also be performed by detecting the envelope of the coil current and the operating voltage VCE of the transistor 8.

また、入力電流だけでなく入力電圧波形についても同様
な制御が可能であり、制御回路にマイクロコンピュータ
などを装備しているものでは、入力電圧に対する定数を
持たせておき、逐次入力電圧を検知しながら制御パルス
幅を可変して制御させることもできる。
In addition, similar control is possible not only for the input current but also for the input voltage waveform, and if the control circuit is equipped with a microcomputer, it is possible to have a constant for the input voltage and sequentially detect the input voltage. However, control can also be performed by varying the control pulse width.

更に又、本発明の適用は上記した電子レンジ。Furthermore, the present invention is applicable to the above-mentioned microwave oven.

電磁調理器に限定されるものでないこと勿論である0 く効 果〉 本発明は商用電源を整流電源に整流する整流回路と、整
流電源を高周波電源に変換するインバータ回路と、商用
電源波形もしくは整流電源波形を検出する電源波形検出
回路と、上記インバータ回路を構成するスイッチング素
子のON時間を電源波形が高波の時には短く低波の時に
は長くなるように制御する制御回路とを具備したことに
よって、インバータ回路の出力である高周波電源のピー
ク電圧を下げボトム電圧を上げたところの安定した高周
波電源を得ることができると共に、インバータ回路を構
成するスイッチング素子に低耐圧のものを採用すること
ができてコストダウンを計ることができるという顕著な
ものである。
It goes without saying that it is not limited to electromagnetic cookers.The present invention includes a rectifier circuit that rectifies a commercial power source into a rectified power source, an inverter circuit that converts the rectified power source into a high frequency power source, and a commercial power source waveform or rectified power source. The inverter is equipped with a power waveform detection circuit that detects the power waveform and a control circuit that controls the ON time of the switching elements constituting the inverter circuit so that it is short when the power waveform is high and becomes long when the power waveform is low. It is possible to obtain a stable high-frequency power supply by lowering the peak voltage of the high-frequency power supply that is the output of the circuit and increasing the bottom voltage, and it is also possible to use low-voltage switching elements that make up the inverter circuit, which reduces costs. It is remarkable that it can measure down.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のインバータ回路制御の一例を示す模式
的電気回路図、 第2図(a’) 、 (b)は比較器の入力、出力波形
図、第3図は比較器■端子入力の電源周期による変化を
示す図、 第4図はトランジスタのVCE包絡線と制御信号との関
係を示す図、 第5図はトランジスタのvCE包絡線波形とマグネトロ
ン電流包絡線波形を示す波形図、第6図は電子レンジの
模式的電気回路図で、第7図(a) 、 (b)はイン
バータ回路動作時のトランジスタのVCE、Ic特性を
示す波形図である。 符号 1:商用電源、2:整流ブリッジ、8ニスイツチング素
子、12:制御回路、2o:カレントトランス、26:
比較器。 代理人 弁理士 福 士 愛 彦(他2名)第1図 第2図 1s3図
Fig. 1 is a schematic electric circuit diagram showing an example of inverter circuit control of the present invention, Fig. 2 (a') and (b) are input and output waveform diagrams of the comparator, and Fig. 3 is the comparator ■ terminal input Figure 4 is a diagram showing the relationship between the VCE envelope of the transistor and the control signal. Figure 5 is a waveform diagram showing the vCE envelope waveform and magnetron current envelope waveform of the transistor. FIG. 6 is a schematic electrical circuit diagram of a microwave oven, and FIGS. 7(a) and 7(b) are waveform diagrams showing VCE and Ic characteristics of a transistor during operation of an inverter circuit. Code 1: Commercial power supply, 2: Rectifier bridge, 8 Niswitching elements, 12: Control circuit, 2o: Current transformer, 26:
Comparator. Agent Patent attorney Aihiko Fuku (2 others) Figure 1 Figure 2 Figure 1s3

Claims (1)

【特許請求の範囲】[Claims] 1、商用電源を整流電源にする整流回路と、整流電源を
高周波電源に変換するインバータ回路と、商用電源波形
もしくは整流電源波形を検出する電源波形検出回路と、
上記インバータ回路を構成するスイッチング素子のON
時間を電源波形が高波の時には短く低波の時には長くな
るように制御する制御回路とを具備したことを特徴とす
る高周波電源装置。
1. A rectifier circuit that converts a commercial power source into a rectified power source, an inverter circuit that converts the rectified power source into a high-frequency power source, and a power waveform detection circuit that detects a commercial power source waveform or a rectified power source waveform.
Turning on the switching elements constituting the above inverter circuit
A high-frequency power supply device comprising a control circuit that controls the time so that it is short when the power waveform is a high wave and long when the power waveform is a low wave.
JP60298453A 1985-12-25 1985-12-25 High frequency power supply Expired - Fee Related JPH0785657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60298453A JPH0785657B2 (en) 1985-12-25 1985-12-25 High frequency power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60298453A JPH0785657B2 (en) 1985-12-25 1985-12-25 High frequency power supply

Publications (2)

Publication Number Publication Date
JPS62152374A true JPS62152374A (en) 1987-07-07
JPH0785657B2 JPH0785657B2 (en) 1995-09-13

Family

ID=17859903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60298453A Expired - Fee Related JPH0785657B2 (en) 1985-12-25 1985-12-25 High frequency power supply

Country Status (1)

Country Link
JP (1) JPH0785657B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187264A (en) * 1984-03-06 1985-09-24 Sanken Electric Co Ltd Frequency converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187264A (en) * 1984-03-06 1985-09-24 Sanken Electric Co Ltd Frequency converter

Also Published As

Publication number Publication date
JPH0785657B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
WO1981000801A1 (en) Inductive heating equipment
JPS5836473B2 (en) induction heating device
JPS62152374A (en) High frequency power source device
JP2532355B2 (en) Inverter device
JP2003257613A (en) Inverter device for microwave oven
JPS62163286A (en) Induction heating cooker
JP2666408B2 (en) Induction heating device
JPH04359889A (en) Power supply for electronic oven
JP2916720B2 (en) Induction heating cooker
JPS6112638B2 (en)
JP2532604B2 (en) Induction heating device
JP3733525B2 (en) Induction heating cooker
JPS6394589A (en) Control circuit of induction heating cooker
JP2523714B2 (en) High frequency heating equipment
JPH07106085A (en) Discharge lamp lighting device
JPH0667208B2 (en) Power supply circuit
JPS60160591A (en) Induction heater
JPH0124353B2 (en)
JPH05109468A (en) Induction-heated cooking appliance
JPH04359890A (en) Power supply for electronic oven
JPS6238836B2 (en)
JPH04359892A (en) Power supply for electronic oven
JPS6210892A (en) Electromagnetic induction heater
JPH05275165A (en) Induction heater cooker
JPS6074380A (en) Induction heating cooking device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees