JPS62149908A - Acrylic fibrilated fiber of high performance - Google Patents
Acrylic fibrilated fiber of high performanceInfo
- Publication number
- JPS62149908A JPS62149908A JP28640685A JP28640685A JPS62149908A JP S62149908 A JPS62149908 A JP S62149908A JP 28640685 A JP28640685 A JP 28640685A JP 28640685 A JP28640685 A JP 28640685A JP S62149908 A JPS62149908 A JP S62149908A
- Authority
- JP
- Japan
- Prior art keywords
- fibers
- acrylic
- fiber
- polymer
- fibrilated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B16/00—Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B16/04—Macromolecular compounds
- C04B16/06—Macromolecular compounds fibrous
- C04B16/0608—Fibrilles, e.g. fibrillated films
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Artificial Filaments (AREA)
- Paper (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、耐熱性、耐薬品性および機械的強度に優れた
高性能アクリル系フィブリル化繊維に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to high-performance acrylic fibrillated fibers having excellent heat resistance, chemical resistance, and mechanical strength.
(従来の技術)
従来、セメントやプラスチックなどの補強、ガスケット
、摩擦材料、電気絶縁材料などには、アスベストが広く
使用されている。(Prior Art) Asbestos has been widely used in reinforcement of cement and plastics, gaskets, friction materials, electrical insulation materials, etc.
しかしながら、このアスベストは価格の変動が大きく、
製品コス1〜がアスベスI〜の価格により変動するだけ
でなくて、このアスベストの粉塵が作業者の健康を阻害
することが明白になったために、アスベストに代わる繊
維に対する要望が強まり、これまでにガラス繊維、炭素
繊維、スチール繊維、オレフィン系繊維、“′ビニロン
″、アクリル系繊維およびアラミド繊維など多くの繊維
がアスベスト代替繊維として提案されてきた。これらの
繊維の中で、価格が安く、高強力で、耐アルカリ性に優
れているアクリル系繊維が注目され、セメン1〜補強用
、特にスレー1〜の分野でアスベス1〜に代えて使用さ
れようとしている。However, the price of asbestos fluctuates widely,
Not only does the product cost 1~ fluctuate depending on the price of asbestos I~, but it has also become clear that this asbestos dust is harmful to the health of workers, so the demand for fibers that can replace asbestos has increased, and so far... Many fibers have been proposed as asbestos substitutes, including glass fibers, carbon fibers, steel fibers, olefin fibers, ``vinylon'', acrylic fibers, and aramid fibers. Among these fibers, acrylic fibers are attracting attention due to their low price, high strength, and excellent alkali resistance, and will be used in place of asbeth 1 for reinforcing cement, especially in slay 1. It is said that
しかし、このアクリル系繊維は、アスベス1〜と比較す
ると、繊維径が著しく大きいから、抄造法で製造される
スレートの製造工程でセメント粒子を有効に捕捉するこ
とができず、丸網シリンダーの金網を通過する排水中に
セメント粒子が流出して終う。したがって、該アクリル
系繊維は単独で使用するのではなくて、通常故紙パルプ
や木材パルプなどのフィブリル状繊維と併用して使用さ
れるが、これらのパルプと併用すると、スレート中の有
機物の量が増大し、難燃性が低下したり、また、パルプ
の吸湿性に起因してスレートの寸法安定性が低下すると
いう問題があった。However, this acrylic fiber has a significantly larger fiber diameter than Asbeth 1~, so it cannot effectively capture cement particles in the manufacturing process of slate manufactured by the papermaking method, and the wire mesh of the circular mesh cylinder The cement particles end up flowing out into the wastewater passing through the wastewater. Therefore, the acrylic fiber is not used alone, but is usually used in combination with fibrillar fibers such as waste paper pulp and wood pulp. When used in combination with these pulps, the amount of organic matter in the slate is reduced. There have been problems in that the flame retardance is decreased due to the increase in the amount of carbon dioxide, and the dimensional stability of the slate is decreased due to the hygroscopicity of the pulp.
このアスベスト代替用のアクリル系繊維の欠点を改良す
るために、たとえば特公昭53−46923号公報には
、60モル%以上のアクリロニトリル(以下、ANと略
す)と40モル%以下のビニルカルボン酸との共重合体
からなるアクリル系繊維をアルカリ性水溶液で処理した
後、叩解した繊維が提案されているが、フィブリル化度
の高い、)戸水度の小さいアクリル系繊維を得るために
は、共重合成分の量を多くしたAN系ポリマを多量に混
合して紡糸する必要があり、耐アルカリ性などの耐薬品
性および耐熱性が悪化し、加えて機械的強度も低下する
ため、セメント補強などのアスベスト代替繊維としては
性能上不充分であった。In order to improve this drawback of acrylic fibers used as an asbestos substitute, for example, Japanese Patent Publication No. 53-46923 discloses that 60 mol% or more of acrylonitrile (hereinafter abbreviated as AN) and 40 mol% or less of vinyl carboxylic acid. It has been proposed that acrylic fibers made of a copolymer of It is necessary to mix and spin a large amount of AN-based polymer with a large amount of , which deteriorates chemical resistance such as alkali resistance and heat resistance, and also reduces mechanical strength. Therefore, asbestos substitutes such as cement reinforcement Its performance as a fiber was insufficient.
また、特開昭56−100163号公報には、ANのモ
ル濃度が33%以上で、好ましくは93%以下のAN系
ポリマからなるフィルムまたはテープをフィブリル化し
たものを強化用繊維として使用した水硬性物質が提案さ
れているが、このアクリル系フィブリル化繊維は、フィ
ブリル化の程度に限界があり、スレー1〜の抄造工程で
故紙パルプなどの併用を必要とし、かつ耐アルカリ性が
不充分であるために得られるスリレートの耐久性の点で
も実用上不充分であった。Furthermore, JP-A-56-100163 discloses that a film or tape made of an AN-based polymer having a molar concentration of AN of 33% or more and preferably 93% or less is fibrillated and is used as a reinforcing fiber. A hard material has been proposed, but this acrylic fibrillated fiber has a limited degree of fibrillation, requires the use of waste paper pulp, etc. in the papermaking process of Slay 1, and has insufficient alkali resistance. The durability of the srylate obtained was also insufficient for practical use.
(発明の解決しようとする問題点)
本発明の目的は、フィブリル化度の高い、すなわち;戸
水度が小さく、かつ耐アルカリ性などに代表される耐薬
品性、耐熱性および機械的強度に優れたアクリル系フィ
ブリル化繊維、特にアスベスト代替繊維として有用なア
クリル系フィブリル化繊維を提供するにあり、他の目的
は抄造法によるスレートの製造工程における抄造性に優
れ、スレー1−に対して優れた補強効果を示ずアクリル
系フィブリル化繊維を提供するにある。(Problems to be Solved by the Invention) The object of the present invention is to provide a material having a high degree of fibrillation, that is, a low water resistance, and excellent chemical resistance such as alkali resistance, heat resistance, and mechanical strength. The purpose is to provide an acrylic fibrillated fiber, especially an acrylic fibrillated fiber that is useful as an asbestos substitute fiber.Another object of the invention is to provide an acrylic fibrillated fiber that has excellent formability in the slate manufacturing process by a paper forming method, and provides excellent reinforcement against slate. The purpose of the present invention is to provide an acrylic fibrillated fiber without any effect.
(問題点を解決するだめの手段〉
このような本発明の目的は、前記特許請求の範囲に記載
したように、
少なくとも95重置屋のアクリロニトリルを含有し、極
限粘度が2.5以上であるアクリロニトリル系重合体か
らなり、10q/d以上の引張強度、600cc以下の
f水度および0.1〜10mmのIIi維長を有するア
クリル系フィブリル化繊維によって達成することができ
る。(Means for Solving the Problems) The object of the present invention is, as described in the claims, to contain at least 95% acrylonitrile and have an intrinsic viscosity of 2.5 or more. This can be achieved by using acrylic fibrillated fibers made of an acrylonitrile polymer and having a tensile strength of 10 q/d or more, a water content of 600 cc or less, and a IIi fiber length of 0.1 to 10 mm.
本発明の特徴の一つは、アクリル系フィブリル化繊維を
構成するAN系重合体が少なくとも95重量%のANを
含有する極限粘度が2.5以上の高重合度ポリマからな
る点にあり、このようなAN系重合体から当該繊維が構
成されることによって、はじめてその機械的強度、特に
引張強度10g/d以上という高強度で、耐薬品性に優
れたフィブリル化繊維とすることができる。そして、も
一つの重要な特徴は、該アクリル系フィブリル化繊維の
)戸水度が6000C以下である点であり、このような
戸水度を有することによって、はじめて本発明の目的と
する上記抄造法におけるスレートの抄造性に優れた効果
を奏するのである。One of the features of the present invention is that the AN polymer constituting the acrylic fibrillated fiber is composed of a high polymerization degree polymer having an intrinsic viscosity of 2.5 or more and containing at least 95% by weight of AN. By constructing the fibers from such AN-based polymers, it is possible to obtain fibrillated fibers with high mechanical strength, especially tensile strength of 10 g/d or more, and excellent chemical resistance. Another important feature is that the acrylic fibrillated fiber has a water temperature of 6000C or less, and by having such a water temperature, it can be used for the first time in the above-mentioned paper-making method, which is the object of the present invention. This has an excellent effect on the paper-making properties of slate.
このような重合体組成および重合度を有するAN系ポリ
マを用いて、引張強度が大きく、戸水度600cc以下
という値で示される高度のフィブリル化れた繊維を得る
ためには、以下に詳述する特定の製造手段を採用するこ
とが必要である。In order to obtain highly fibrillated fibers with high tensile strength and a water resistance of 600 cc or less by using an AN-based polymer having such a polymer composition and degree of polymerization, the following steps are required. It is necessary to employ specific manufacturing means.
すなわち、まず紡糸方法として、前記組成および重合度
を有するAN系重合体の紡糸原液を紡糸口金孔から一旦
空気、窒素、アルゴン、ヘリウムなどの不活性雰囲気中
に吐出し、この吐出ポリマを不活性雰囲気の微小空間を
経由せしめた後に該紡糸原液の凝固剤中に導いて凝固さ
せる、いわゆる乾・湿式紡糸法によって繊維糸条を形成
することである。That is, first, as a spinning method, a spinning stock solution of an AN-based polymer having the above composition and degree of polymerization is once discharged from a spinneret hole into an inert atmosphere such as air, nitrogen, argon, helium, etc., and this discharged polymer is inactivated. The fiber thread is formed by a so-called dry/wet spinning method in which the spinning solution is passed through a microscopic space in the atmosphere and then introduced into a coagulant of the spinning dope and coagulated.
すなわち、極限粘度が2.5以上の高い重合度を有し、
かつANの含有量が95重置屋以上のAN系重合体から
該ポリマの高分子鎖が繊維軸方向に高度に配向し、10
ca/d以上の高強度繊維とするには、通常の湿式紡糸
や乾式紡糸によっては製造できず、上記の乾・湿式紡糸
を適用してはじめて製造することができる。That is, it has a high degree of polymerization with an intrinsic viscosity of 2.5 or more,
And from an AN-based polymer with an AN content of 95 or more, the polymer chains of the polymer are highly oriented in the fiber axis direction, and 10
High-strength fibers with a strength of ca/d or more cannot be produced by ordinary wet spinning or dry spinning, and can only be produced by applying the above-mentioned dry/wet spinning.
そして得られた繊維は、その繊維長さを0.1〜10m
mの範囲に切断し叩解処理を施すことが望ましいが、こ
の場合に、叩解による繊維のフィブリル化の程度は、シ
戸水度が600cc以下、好ましくは200〜500c
cの範囲内になるように叩解することが必要である。す
なわち、r水度600CC以下という要件は、スレー1
−を抄造法で製造する際に、丸網シリンダーにおけるセ
メントスラリ〜の一過速度を低下させ、それによって−
過面積を増大させて、シリンダー上に抄き上げられる固
形分を多くしたり、シリンダーから排出されるセメント
粒子の流出を防止するなどの抄造性の上で極めて重要で
ある。The obtained fibers have a fiber length of 0.1 to 10 m.
It is desirable to cut the fibers into pieces in the range of m and subject them to a beating treatment.
It is necessary to beat the material to within the range of c. In other words, the requirement that r water level is 600CC or less is
- When producing - by the papermaking method, the transient velocity of the cement slurry in the round cylinder is reduced, thereby -
This is extremely important in terms of paper forming properties, such as increasing the overarea, increasing the solid content that can be scooped onto the cylinder, and preventing cement particles from flowing out from the cylinder.
本発明のAN系重合体としては、AN95重綴%ε5重
量%以下の該ANに対して共重合性を有するモノマ、た
とえばアクリル酸、メタクリル酸、イタコン酸、などの
ジカルボン酸およびそれらの低級アルキルエステル類、
ハイドキシメチルアクリレート、ハイドキシエチルアク
リレ−1〜、ハイドキシメチルメタクリレートなどのカ
ルボン酸の水酸基を含有するハイドキシアルキルアクリ
レ−1〜、アクリルアミド、メタクリルアミド、α−ク
ロルアクリロニトリル、ヒドロキシエヂルアクリル酸、
アリルスルホン酸、メタクリルスルホン酸などとの共重
合体がある。The AN-based polymer of the present invention includes monomers having copolymerizability with AN of 5% by weight or less, such as dicarboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, and lower alkyl thereof. esters,
Hydroxymethyl acrylate, hydroxyethyl acrylate-1~, hydroxyalkyl acrylate-1~ containing a carboxylic acid hydroxyl group such as hydroxymethyl methacrylate, acrylamide, methacrylamide, α-chloroacrylonitrile, hydroxyethyl acrylic acid,
There are copolymers with allylsulfonic acid, methacrylsulfonic acid, etc.
乾・湿式紡糸の条件としては、上記AN系ポリマをジメ
チルスルホキシド(DMSO) 、ジメチルアセタミド
(DMAC)、ジメチルアセタミド(DMF> 、など
の有機溶剤、塩化力ルシュウム、塩化亜鉛、ロダンソー
ダなどの無機塩濃厚水溶液、硝酸などの無機系溶剤に溶
解して、溶液粘度が2000ボイス以上、好ましくは3
,000〜10.000ボイズ、ポリマ)開度が5〜2
0%の紡糸原液を作成する。この紡糸原液を紡糸口金面
と凝固浴液面との間の距離を1〜20mm、好ましくは
3〜10mmの範囲内に設定し、該紡糸口金孔から紡糸
口金面と凝固浴液面とで形成される微小空間に吐出した
後、凝固浴に導き凝固させ、次いで得られた凝固繊維糸
条を常法により、水洗、脱溶媒、1次延伸、乾燥・緻密
化、2次延伸、熱処理などのあと処理工程を経由せしめ
て延伸繊維糸条とする。この乾・湿式紡糸によって得ら
れるm@糸条は、延伸性が極めて優れているが、好まし
くは2次延伸方法として、150〜270℃の乾熱下に
1.1倍、好ましくは1.5倍以上延伸し、全有効延伸
倍率が少なくとも10倍、好ましくは12倍以上になる
ように延伸し、その繊度を0.1〜10デニール(d)
、好ましくは0.5〜5dの範囲内するのがよい。The conditions for dry/wet spinning are as follows: the above AN-based polymer is mixed with organic solvents such as dimethyl sulfoxide (DMSO), dimethyl acetamide (DMAC), and dimethyl acetamide (DMF), lysium chloride, zinc chloride, rhodan soda, etc. A concentrated aqueous solution of an inorganic salt, dissolved in an inorganic solvent such as nitric acid, has a solution viscosity of 2,000 voices or more, preferably 3
,000 to 10,000 voids, polymer) opening degree is 5 to 2
Create a 0% spinning stock solution. The distance between the spinneret surface and the coagulation bath liquid level is set within the range of 1 to 20 mm, preferably 3 to 10 mm, and the spinning solution is formed from the spinneret hole to the spinneret surface and the coagulation bath liquid surface. After discharging into a microscopic space, the resulting coagulated fiber thread is subjected to conventional methods such as water washing, solvent removal, primary stretching, drying/densification, secondary stretching, heat treatment, etc. The fibers are subjected to a post-processing step to form drawn fiber threads. The m@yarn obtained by this dry/wet spinning has extremely excellent drawability, but preferably the secondary drawing method is 1.1 times, preferably 1.5 times, under dry heat at 150 to 270°C. The total effective stretching ratio is at least 10 times, preferably 12 times or more, and the fineness is 0.1 to 10 denier (d).
, preferably within the range of 0.5 to 5 d.
かくして得られる繊維は、通常引張強度が10q/d以
上、引張弾性率が180Q/d以上、結節強度が2.2
Ω/d以上の機械的物性を有し、X線結晶配向度で93
%以上の高度の配向を示す。The fibers thus obtained usually have a tensile strength of 10 q/d or more, a tensile modulus of 180 q/d or more, and a knot strength of 2.2.
It has mechanical properties of Ω/d or more, and has an X-ray crystal orientation of 93
% or more.
得られた繊維は、上述したように、長さ0.1〜10m
mにカットされた後、ビータ−、リファイナー、ごクト
リミル、パルベライザー、ボールミル、PEIミル、ジ
ェット空気流などの叩解手段を適用して、前述したよう
に)戸水度が600CC以下、好ましくは200〜50
0ccの範囲になるようにフィブリル化される。The obtained fibers have a length of 0.1 to 10 m, as described above.
After being cut into pieces, a beating means such as a beater, a refiner, a mill, a pulverizer, a ball mill, a PEI mill, and a jet air stream is applied to obtain a powder with a hardness of 600 CC or less, preferably 200 to 50 mm (as described above).
It is fibrillated to a range of 0 cc.
かくして得られる本発明のアクリル系フィブリル化S維
は、高重合度のAN含有量の多いポリマから形成されて
おり、かつ高度にフィブリル化しているために、優れた
耐薬品性、耐熱性および機械的強度に有し、アスベス1
〜代替lIi維として極めて有用である。特に抄造法で
製造されるスレートにおいては、吸水性の大きい天然パ
ルプを使用しなくても、優れた抄造性を示すと共に、補
強効果の大きいスレートを与える。その他、耐摩耗性に
も優れているから、摩擦材、ガスケット、電気絶縁材料
およびプラスチックスの補強材料としても優れた性能を
示し、有用である。The acrylic fibrillated S fiber of the present invention thus obtained is formed from a polymer with a high polymerization degree and a high AN content, and is highly fibrillated, so it has excellent chemical resistance, heat resistance, and mechanical properties. Asbestos 1
- Extremely useful as an alternative IIi fiber. In particular, slate manufactured by the papermaking method exhibits excellent papermaking properties and has a large reinforcing effect even without using natural pulp with high water absorption. In addition, since it has excellent wear resistance, it exhibits excellent performance and is useful as a friction material, gasket, electrical insulation material, and reinforcing material for plastics.
以下、実施例により本発明の効果をさらに具体的に説明
する。Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.
なお、本発明において、極限粘度、P水度、セメントシ
濾過速度および抄造性は次の測定法により測定された値
である。In the present invention, the intrinsic viscosity, P water content, cement filtration rate, and paper formability are values measured by the following measuring method.
極限粘度ニア5mgの乾燥AN系ポリマをフラスコに入
れ、0.INのチオシアン酸ソーダを含有するDMF2
5mlを加えて、完全に溶解する。Put 5 mg of dry AN-based polymer with an intrinsic viscosity of near 0.0 in a flask. DMF2 containing IN sodium thiocyanate
Add 5 ml and dissolve completely.
得られたポリマ溶液をオストワルド粘度計を用いて20
℃で比粘度を測定し、次式にしたがって極限粘度を算出
する。The resulting polymer solution was measured using an Ostwald viscometer at 20
The specific viscosity is measured at °C, and the intrinsic viscosity is calculated according to the following formula.
極限粘度−
1+1.32X(比粘度)−110,198r水度:カ
ナデアン標準P水度であり、JIS−P−812”Iに
規定されている測定法に準じて測定した。Intrinsic viscosity - 1 + 1.32X (specific viscosity) - 110,198 r Water content: Canadian standard P water content, measured according to the measuring method specified in JIS-P-812''I.
セメントスラリー濾過速度およびセメント透過率ニアク
リル系フィブリル化繊維0.6Q、Ca(OH)20.
6g、Al1 (SO4)30.6q1ポルトランドセ
メント28.2CIを水11に入れ、攪拌混合した後、
アニオン性ポリアクリルアミド系高分子凝集剤を’+o
oppm添加し、ゆっくり攪拌してセメントスラリーを
得た。次いで、上記セメントスラリーを50メツシユ、
面積的820m2の金網で濾過し、その時の;濾過速度
(CC/m1n)と金網を通過するセメントのN(重量
%)を測定し透過率を求めた。Cement slurry filtration rate and cement permeability Niacrylic fibrillated fiber 0.6Q, Ca(OH) 20.
6g, Al1 (SO4) 30.6q1 Portland cement 28.2CI were added to water 11, and after stirring and mixing,
Anionic polyacrylamide polymer flocculant '+o
oppm was added and slowly stirred to obtain a cement slurry. Next, 50 meshes of the above cement slurry,
The mixture was filtered through a wire mesh having an area of 820 m2, and the filtration rate (CC/m1n) and the N (weight %) of the cement passing through the wire mesh were measured to determine the transmittance.
実施例1〜〜4、比較例1〜3
AN100%をDMSO中で溶液重合し、第1表に示す
極限粘度の異なるAN系ポリマを作成した。得られたポ
リマ溶液をその溶液粘度ガ3000ボイズ(45°C)
になるようにポリマ)加変を調整し、紡糸原液を作成し
た。Examples 1 to 4, Comparative Examples 1 to 3 100% AN was solution polymerized in DMSO to create AN-based polymers having different intrinsic viscosities as shown in Table 1. The resulting polymer solution was heated to a viscosity of 3000 voids (45°C).
The polymer) was adjusted so that the spinning dope was prepared.
これらの紡糸原液を用いてそれぞれ湿式および乾・湿式
紡糸を行った。凝固浴としては、いずれの方法において
も20’C155%DMSO水溶液を使用した。また、
乾・湿式紡糸の場合の紡糸口金と凝固浴液面との間の距
離は5mmに設定し、凝固液面から集束ガイドまでの距
離は400mmとした。Wet spinning and dry/wet spinning were performed using these spinning stock solutions, respectively. As the coagulation bath, a 20'C155% DMSO aqueous solution was used in all methods. Also,
In the case of dry/wet spinning, the distance between the spinneret and the coagulation bath liquid level was set to 5 mm, and the distance from the coagulation liquid level to the focusing guide was 400 mm.
得られた未延伸繊維糸条は熱水中で5倍に延伸した後、
水洗し、油剤を付与し、180〜〜20第1表
0℃の乾熱チューブ中で最高延伸倍率の90%で二次延
伸し、第1表に示すアクリル系繊維を得た。The obtained undrawn fiber yarn was drawn 5 times in hot water, and then
The fibers were washed with water, applied with an oil agent, and subjected to secondary stretching at a maximum stretching ratio of 90% in a dry heat tube at 180 to 20°C at 0°C to obtain the acrylic fibers shown in Table 1.
第1表に示したアクリル系繊維を繊維長5mmにカット
し、このカット繊維20gを約101の水に分散させ、
次いでクリアランス0.1mmに設定したシングルディ
スクリファイナ−を通してフィブリル化した。The acrylic fibers shown in Table 1 were cut into fiber lengths of 5 mm, and 20 g of the cut fibers were dispersed in approximately 101 parts of water.
Then, it was passed through a single disc refiner with a clearance of 0.1 mm to form fibrils.
得られたアクリル系フィブリル化繊維の繊維長は、フィ
ブリル化まえのアクリル系繊維の繊維長にもよるが、約
0.1〜5mmの範囲に分布していた。また、戸水度は
第1表に示すような結果を得た。次に、アクリル系フィ
ブリル化繊維を含むセメン1〜スラリーの濾過速度およ
びセメント透過率を測定し、当該アクリル系フィブリル
化mw、、の抄造性を評価した。これらのアクリル系フ
ィブリル化繊維を用いたセメントスラリーのシ濾過速度
とセメント透過率の測定結果を第2表に示した。The fiber length of the obtained acrylic fibrillated fibers was distributed in the range of about 0.1 to 5 mm, depending on the fiber length of the acrylic fibers before fibrillation. In addition, the results of the water temperature as shown in Table 1 were obtained. Next, the filtration rate and cement permeability of Cement 1 to slurry containing acrylic fibrillated fibers were measured, and the papermaking properties of the acrylic fibrillated fibers were evaluated. Table 2 shows the measurement results of the filtration rate and cement permeability of cement slurry using these acrylic fibrillated fibers.
本発明の高重合度ポリマから乾・湿式紡糸によって作成
した高強力のアクリル系繊維から得られたフィブリル化
繊維は、)戸水度が小さく、フイブリル化が良好であり
、セメントスラリーのs濾過速度およびセメント透過率
の小さい抄造性に優れたものであった。Fibrillated fibers obtained from high-strength acrylic fibers made from the high polymerization degree polymer of the present invention by dry/wet spinning have a) low water resistance, good fibrillation, and low filtration rate of cement slurry. It had excellent paper-making properties with low cement permeability.
実施例5および比較例4
実施例2で得られたP水度560ccのアクリル系フィ
ブリル化繊維およびP水度550ccのクラフトパルプ
をそれぞれ10g、実施例2で得られ′た強度11.5
g/dのアクリル系繊維10Q、Ca (OH)210
QおよびAl2(304)310qを水101に添加し
、攪拌した後、ポルトランドセメント460CIを加え
、再度攪拌した。Example 5 and Comparative Example 4 The acrylic fibrillated fiber with a P water content of 560 cc obtained in Example 2 and the kraft pulp with a P water content of 550 cc were each used in an amount of 10 g, and the strength obtained in Example 2 was 11.5.
g/d acrylic fiber 10Q, Ca (OH) 210
Q and Al2(304) 310q were added to 101 water and stirred, then Portland cement 460CI was added and stirred again.
つづいて、低速攪拌下でアニオン性ポリアクリルアミド
系高分子凝集剤200pDmを添加した。Subsequently, 200 pDm of an anionic polyacrylamide polymer flocculant was added under low speed stirring.
次いで得られたセメントスラリーを50メツシユの金網
を敷いた200mX250mの金型内に移して一過した
後、100K(J/cm2の圧力で1分間プレスして厚
さ約6mmのセメント板を成形した。次に、20℃、1
00%R1(で1日間、続いて20℃水中で6日間養生
を行った後、セメント板から試験片を切り出し、湿潤状
態で曲げ強度第2表
を測定した。なお、セメントスラリーの濾過速度および
セメント透過率は実施例1と同様にして測定し、それら
の結果を第2表に示した。Next, the obtained cement slurry was transferred into a 200 m x 250 m mold lined with a 50 mesh wire mesh, and after passing, it was pressed for 1 minute at a pressure of 100 K (J/cm2) to form a cement board with a thickness of about 6 mm. .Next, 20℃, 1
After curing for 1 day in 00% R1 (20% R1) and then 6 days in water at 20°C, test pieces were cut from the cement board and the bending strength in Table 2 was measured in a wet state. The cement permeability was measured in the same manner as in Example 1, and the results are shown in Table 2.
表から、本発明のアクリル系フィブリル化繊維を使用す
ると、曲げ強さの大きいスレートが得られ、また、天然
パルプを用いたものに比較して乾湿の寸法安定性に優れ
ていることが判る。From the table, it can be seen that when the acrylic fibrillated fibers of the present invention are used, slates with high bending strength can be obtained, and the slates have excellent dry and wet dimensional stability compared to those using natural pulp.
Claims (1)
し、極限粘度が2.5以上であるアクリロニトリル系重
合体からなり、10g/d以上の引張強度、600cc
以下のろ水度および0.1〜10mmの繊維長を有する
高性能アクリル系フィブリル化繊維。(1) Made of an acrylonitrile polymer containing at least 95% by weight of acrylonitrile and having an intrinsic viscosity of 2.5 or more, with a tensile strength of 10g/d or more, 600cc
High performance acrylic fibrillated fibers with a freeness of: and a fiber length of 0.1-10 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28640685A JPS62149908A (en) | 1985-12-19 | 1985-12-19 | Acrylic fibrilated fiber of high performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28640685A JPS62149908A (en) | 1985-12-19 | 1985-12-19 | Acrylic fibrilated fiber of high performance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62149908A true JPS62149908A (en) | 1987-07-03 |
Family
ID=17703986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28640685A Pending JPS62149908A (en) | 1985-12-19 | 1985-12-19 | Acrylic fibrilated fiber of high performance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62149908A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03106281A (en) * | 1989-09-20 | 1991-05-02 | Sanyo Electric Co Ltd | Teletext receiver |
US5219501A (en) * | 1990-07-11 | 1993-06-15 | Korea Institute Of Science And Technology | Process for the production of acrylic short fibers without spinning |
US5401576A (en) * | 1991-03-27 | 1995-03-28 | Korea Institute Of Science And Technology | Heat- and chemical-resistant acrylic short fibers without spinning |
EP0696693A1 (en) | 1994-08-09 | 1996-02-14 | Cytec Technology Corp. | Dry processed friction material, method of making same, and dry blend |
US5520866A (en) * | 1994-08-09 | 1996-05-28 | Cytec Technology Corp. | Process for the preparation of friction materials containing blends of organic fibrous and particulate components |
US5889082A (en) * | 1994-08-09 | 1999-03-30 | Sterling Chemicals International, Inc. | Method for manufacturing friction materials containing blends of organic fibrous and particulate components |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4987823A (en) * | 1972-12-29 | 1974-08-22 | ||
JPS5175119A (en) * | 1974-12-23 | 1976-06-29 | Neumuenster Masch App | HORIAKURIRUNITORIRUKEISENINOSEIZOHO |
JPS54160820A (en) * | 1978-06-05 | 1979-12-19 | Mitsubishi Rayon Co Ltd | Production of acrylonitrile fiber |
JPS5751810A (en) * | 1980-07-23 | 1982-03-26 | Hoechst Ag | High module polyacrylonitrile yarn , fiber and method |
JPS59116492A (en) * | 1982-12-22 | 1984-07-05 | 大蔵省印刷局長 | Treatment of papermaking non-wood pulps |
JPS59199809A (en) * | 1983-04-20 | 1984-11-13 | Japan Exlan Co Ltd | Polyacrylonitrile yarn having high strength and its preparation |
JPS609989A (en) * | 1983-06-15 | 1985-01-19 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | Co-refining of aramid fibrid and floc |
-
1985
- 1985-12-19 JP JP28640685A patent/JPS62149908A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4987823A (en) * | 1972-12-29 | 1974-08-22 | ||
JPS5175119A (en) * | 1974-12-23 | 1976-06-29 | Neumuenster Masch App | HORIAKURIRUNITORIRUKEISENINOSEIZOHO |
JPS54160820A (en) * | 1978-06-05 | 1979-12-19 | Mitsubishi Rayon Co Ltd | Production of acrylonitrile fiber |
JPS5751810A (en) * | 1980-07-23 | 1982-03-26 | Hoechst Ag | High module polyacrylonitrile yarn , fiber and method |
JPS59116492A (en) * | 1982-12-22 | 1984-07-05 | 大蔵省印刷局長 | Treatment of papermaking non-wood pulps |
JPS59199809A (en) * | 1983-04-20 | 1984-11-13 | Japan Exlan Co Ltd | Polyacrylonitrile yarn having high strength and its preparation |
JPS609989A (en) * | 1983-06-15 | 1985-01-19 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | Co-refining of aramid fibrid and floc |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03106281A (en) * | 1989-09-20 | 1991-05-02 | Sanyo Electric Co Ltd | Teletext receiver |
US5219501A (en) * | 1990-07-11 | 1993-06-15 | Korea Institute Of Science And Technology | Process for the production of acrylic short fibers without spinning |
US5401576A (en) * | 1991-03-27 | 1995-03-28 | Korea Institute Of Science And Technology | Heat- and chemical-resistant acrylic short fibers without spinning |
EP0696693A1 (en) | 1994-08-09 | 1996-02-14 | Cytec Technology Corp. | Dry processed friction material, method of making same, and dry blend |
US5520866A (en) * | 1994-08-09 | 1996-05-28 | Cytec Technology Corp. | Process for the preparation of friction materials containing blends of organic fibrous and particulate components |
US5889082A (en) * | 1994-08-09 | 1999-03-30 | Sterling Chemicals International, Inc. | Method for manufacturing friction materials containing blends of organic fibrous and particulate components |
US5919837A (en) * | 1994-08-09 | 1999-07-06 | Sterling Chemicals International, Inc. | Friction materials containing blends of organic fibrous and particulate components |
US6110991A (en) * | 1994-08-09 | 2000-08-29 | Sterling Chemicals, International, Inc. | Friction materials containing blends of organic fibrous and particulate components |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3047456A (en) | Manufacture of paper products from fibers wet spun from polymer blends | |
US3047455A (en) | Paper manufacture from synthetic non-cellulosic fibers | |
TWI583651B (en) | Cement reinforcing fiber and cement hardened body using the same | |
IE52984B1 (en) | Fibre-containing products manufactured with hydraulic binders | |
EP0165372B1 (en) | A process for production of hydraulic substances reinforced with high tenacity acrylonitrile fibers | |
JP2003013326A (en) | Polyketone fiber, method of producing the same and polyketone twisted yarn | |
JPS6156180B2 (en) | ||
JPS62149908A (en) | Acrylic fibrilated fiber of high performance | |
JPH11293516A (en) | Superfine acrylic fiber having water absorption properties, its sheet-like product, and split acrylic fiber having water absorption properties | |
US3963821A (en) | Method for producing synthetic fiber for paper | |
US3391057A (en) | Suspensions of synthetic polymer fibrous products containing acrylamide polymer and method of making a paper web therefrom | |
JPH01260017A (en) | High-strength water-disintegrable type polyvinyl alcohol based conjugate fiber | |
JPS62182141A (en) | Hydraulic composition | |
JPH0364463B2 (en) | ||
JPS63120116A (en) | Sulfur-containing acrylic fibril-shaped flameproof fiber | |
JPS61167011A (en) | Ultrafine fiber of polyvinyl alcohol and production thereof | |
JPH0469098B2 (en) | ||
JPH04245913A (en) | Production of fiber for reinforcing cement | |
JPH06157091A (en) | Hydraulic inorganic molded product | |
JPH04245914A (en) | Production of fiber for reinforcing cement | |
JPS60161362A (en) | Fiber reinforced hydraulic inorganic paper product and manufacture | |
JPH03185193A (en) | Felt for paper making | |
JPH09241063A (en) | Hydraulic inorganic forming material and its production | |
JPS61160415A (en) | Acrylic yarn having improved mechanical strength and production thereof | |
JPS6233824A (en) | Acrylic flameproofed fiber having improved abrasion resistance |