JPH0364463B2 - - Google Patents

Info

Publication number
JPH0364463B2
JPH0364463B2 JP59125819A JP12581984A JPH0364463B2 JP H0364463 B2 JPH0364463 B2 JP H0364463B2 JP 59125819 A JP59125819 A JP 59125819A JP 12581984 A JP12581984 A JP 12581984A JP H0364463 B2 JPH0364463 B2 JP H0364463B2
Authority
JP
Japan
Prior art keywords
cement
fibers
acrylic
molded product
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59125819A
Other languages
Japanese (ja)
Other versions
JPS616161A (en
Inventor
Fujio Ueda
Hiroyoshi Tanaka
Mitsuo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP12581984A priority Critical patent/JPS616161A/en
Publication of JPS616161A publication Critical patent/JPS616161A/en
Publication of JPH0364463B2 publication Critical patent/JPH0364463B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「発明の目的」 産業上の利用分野 本発明は、繊維補強セメント成形物、たとえば
セメントパイプ、セメント板状体、セメント波
板、壁体など、特にセメント波板用として有用な
繊維を補強材料とする各種のセメント成形物に係
り、さらに詳しくは、高重合度アクリロニトリル
系重合体からなる高強度、高弾性率繊維を補強繊
維とする優れた機械的物性を有し、アスベストを
補強繊維とする従来のセメント成形物に代替し得
る安価なセメント成形物に関する。 従来技術 従来、大量に生産、販売されてきたアスベスト
を補強繊維とするセメント成形物は、アスベスト
が発ガン性物質であると認定されて以来、その製
造は大幅に制限され、一部の先進国では、法的に
アスベストの使用が禁止されようとしており、こ
れまでセメント成形物の補強繊維の主流であつた
アスベストに代替する安価な補強繊維の提供が緊
急かつ重要な問題となつてきた。 セメント成形物の補強繊維として、これまで各
種の合成繊維や天然繊維を使用せんとする試みが
為されてきたが、セメント成形物の補強繊維に
は、高い引張強度、高い初期弾性率などの機械的
特性、セメントに対する接着性、混和性、分散
性、セメント・スラリー中および養生中における
耐アルカリ性、耐水性など多くの特性が要求され
るほか、アスベストが安価であるからコストも安
いことが必要であり、これらの繊維は、いずれも
実用性能を満足しないことが多かつた。 特公昭53−18213号公報および米国特許第
4414031号明細書などには、アクリル系繊維をセ
メント成形物の補強繊維として利用せんとする試
みが提案されているが、これらはいずれもアスベ
ストを補強繊維とするセメント成形物に対して代
替可能な一定水準を越える物性を有するセメント
成形物を提供するものではなかつた。 発明が解決しようとする問題点 すなわち、アクリル系繊維を補強繊維とするセ
メント成形物の問題点としては、 (1) 引張強度や初期弾性率などの機械的特性の低
いアクリル系繊維を補強繊維として使用した場
合、セメント成形物の力学的特性、特に曲げ強
度を実用的に問題のないレベルに向上させるた
めには、セメントに対するアクリル系繊維の配
向割合を多くする必要があつた。しかるに、セ
メントに対するアクリル系繊維の配合割合が或
る一定水準、特に約3重量%を越えると、セメ
ント中への繊維の分散性が悪化し、セメント中
で繊維の絡み合いが発生し易くなり、セメント
成形物の製造工程、たとえば湿式抄造の操業性
が著しく低下したり、得られるセメント成形物
にヒビ割れや毛羽だちが発生し易くなること、 (2) 従来の衣料用や産業資材用のアクリル系繊維
は、耐アルカリ性、耐水性および耐熱性などに
乏しく、セメントに混和した後、セメントの養
生中に繊維の機械的性質が著しく低下し、場合
によつては繊維の劣化や溶解が起り、補強効果
が失われること、 (3) さらに、従来のアクリル系繊維の製造技術で
は、引張強度と初期弾性率のいずれか一方を改
良させることは可能であつたが、これら双方の
物性を同時に改良、向上させることは技術的に
極めて困難である。しかるに、セメント成形物
の補強繊維としては、引張強度と初期弾性率の
双方が同時に満足されないと、セメント成形
物、たとえば波板などのスレートなどの必須特
性である曲げ強度を満足することができず、実
用に供し得ないことなどの問題点があつた。 本発明者らは、上記セメント成形物の問題点に
着目して鋭意検討を進めた結果、アクリル系繊維
がセメント成形物の補強繊維としてアスベストに
代替し得るためには、その繊維物性、すなわち引
張強度、初期弾性率、曲げ強度などが顕著に改良
されるのみならず、該繊維を構成する重合体が高
い重合度を有する必要があることを見出し、本発
明を為すに到つたものである。 すなわち、本発明の目的は、前記問題点を解消
したアクリル系繊維を補強繊維とするセメント成
形物を提供するにあり、他の目的は、アスベスト
を補強繊維とするセメント成形物に対比してより
優れた機械的物性を有し、しかもコストが安価で
アスベスト補強セメント成形物に代替し得るセメ
ント成形物を提供するにある。 「発明の構成」 問題点を解決するための手段 上記した本発明の目的は、前記特許請求の範囲
に記載した発明によつて達成することができる。 以下に本発明の構成を具体的に詳述する。 まず、本発明のセメント成形物の特徴は、セメ
ント成形物の中に含有されるアクリル系繊維の配
合割合が約1重量%以上、3重量%未満、好まし
くは1〜2.5重量%、さらに好ましくは1〜2重
量%の範囲量であることに特徴がある。 ここで、上記配合割合は、セメントおよびセメ
ントに混合されるアクリル系繊維並びにその他の
添加剤、たとえばパルプ、凝集剤などの固形物の
総重量中に占めるアクリル系繊維の重量%であ
る。本発明の一つの特徴である上記アクリル系繊
維の配合割合は、従来のセメント成形物における
繊維の配合割合に比べて極めて少量であるが、こ
の配合割合が1重量%より少ないと、セメント成
形物に対する補強効果が十分に発揮されなくなる
し、他方3重量%以上になると繊維のセメント中
への均一分散が難しくなり、たとえば湿式抄造に
おける操業性の低下を招き、品質、性能の安定し
たセメント成形物を工業的に製造することが困難
になるほか、得られるセメント成形物にヒビ割れ
が発生し易くなるため好ましくない。 次に、上記配合割合を満足して本発明の目的達
成するためには、セメント成形物中に配合される
繊維が高重合度重合体からなり、その物性が従来
公知のアクリル系繊維に比べて著しく優れている
必要がある。すなわち、本発明に使用するアクリ
ル系繊維は、該繊維を構成する重合体の重合度が
極限粘度で表示して2.0以上、好ましくは3.0以
上、さらに好ましくは4.0を越えるのがよく、少
くとも10g/d、好ましくは11g/d以上の引張
強度、180g/d以上、好ましくは200g/d以上
の初期弾性率を有する高重合度重合体からなる高
強度・高弾性率の繊維であることが必要であつ
て、このような重合度および物性を満足してはじ
めてセメント成形物中に占める繊維の配合割合が
上記の範囲量であるにもかかわらず、強度、曲げ
強度、密度(d)に対する曲げ強度(M)の比率
(M/d2)、耐衝撃性などの物性が著しく優れ、特
に密度(d)に対する曲げ強度(M)の比率
(M/d2)および衝撃強度がそれぞれ50Kg・cm4
2以上、1.5Kg・cm/cm2以上という、従来品には
望み得ない優れた物性のセメント成形物とするこ
とが可能になるのである。 ここで、上記繊維の引張強度、初期弾性率は、
測定に供する繊維の試長を200mmとして測定した
値である。 すなわち、アクリル系繊維の強度および初期弾
性率がそれぞれ10g/dおよび180g/dを越え
る値を有しないと、セメント成形物に対する補強
効果が小さく、本発明で規定する上記範囲量の配
合割合では、実用上要求される物性、性能を満足
するセメント成形物が得られないのである。 また、該アクリル系繊維を構成する重合体が少
くとも約2.0の極限粘度を有する高重合度アクリ
ロニトリル系重合体であることが、単に強度や弾
性率の発現に有利であると同時に、かかる高い重
合度を有するために、セメント成形物の製造中に
おける該アクリル系繊維の劣化あるいは溶解を抑
制、防止し、前記アクリル系繊維の有する機械的
性質をセメント成形物の補強効果として反映させ
ることが可能になつたのである。 そして、本発明の高重合度重合体からなる繊維
は、従来の衣料用繊維のように低い重合度を有す
る重合体からなる繊維に比較して、該繊維を切断
してカツト・フアイバーにする際に、単繊維相互
間で融着もしくは疑似融着を起すことが少く、繊
維の開繊性に優れており、このことがセメントス
ラリー中での分散性質を向上させ、セメント成形
物の補強効果として大きく寄与するものと推定さ
れる。 このようなセメント補強繊維としての要求特
性、たとえば耐アルカリ性、耐水性、耐熱性など
を満足し、強度、特に引張強度と初期弾性率がそ
れぞれ10g/d以上および180g/d以上という
高い物性並びに高い重合度を有するアクリル系繊
維は、従来工業的に公知の方法、たとえば湿式紡
糸法や乾式紡糸法では製造することが難しい。 このような高重合度の重合体から高強度・高弾
性率の繊維を製造する方法としては、本発明者ら
が先に提案した特願昭58−128006号明細書(特開
昭60−21905号公報)に開示した乾・湿式紡糸法、
すなわち基本的には、アクリロニトリル系重合体
の溶液を直接液体凝固浴中に吐出するのではなく
て、一旦不活性雰囲気中に吐出し、次いで液体凝
固浴中に導入して凝固を完結せしめる方法を採用
するのが好ましく、この方法でないと、重合体の
重合度が2.0を越える場合には、強度および初期
弾性率の双方を満足するアクリル系繊維を得るこ
とが難しい。 本発明のアクリル系繊維を構成するアクリロニ
トリル(以下、ANと略す)系重合体としては、
少くとも96重量%、好ましくは97重量%以上の
ANと4重量%以下、好ましくは3重量%以下の
不飽和ビニル化合物とからなり、極限粘度(ジメ
チルホルムアミドを溶媒として使用し、25℃で測
定した値)が2.0以上の高重合度AN系重合体であ
る。このAN系重合体における不飽和ビニル化合
物の共重合量が4重量%を越えると、得られる繊
維の耐熱性が低下し、セメント成形物の製造工
程、たとえば養生工程で繊維の機械的物性が低下
し、その補強効果が失われるので好ましくない。 また、繊維は、その単糸繊度が0.5〜5d、好ま
しくは0.5〜3d、繊維長が1〜10mm、好ましくは
3〜10mmのものが使用され、このようなアクリル
系繊維は、セメントに対する混和性に優れ、セメ
ント中に均質に分散するので、公知のセメント成
形物の製造方法、たとえば湿式抄造法にしたがつ
て任意のセメント成形品物にすることができる。
しかも、湿式抄造における操業性、安定性がよ
く、品質、性能に優れたセメント成形物を得るこ
とができる。 発明の効果 本発明になるセメント成形物は、次のような効
果を奏する。 セメント成形物は製造過程でセメント中の繊
維の絡み合いに基づく操業性の低下や、得られ
るセメント成形物にヒビ割れや毛羽立ちが発生
し難い。 アクリル系繊維をセメントに混和後、セメン
ト成形物の養生中に繊維の機械的性質の低下、
繊維の劣化および溶解などが生じ難い。 曲げ強度(M)、特に密度(d)に対する曲
げ強度(M)(即ち、M/d2)が約50Kg・cm4
2以上、衝撃強度が約1.5Kg・cm/cm2以上と、
セメント成形物の主要な機械的特性が格段に向
上する。この点、従来のアクリル系繊維を補強
繊維とするセメント成形物が、その物性が不十
分であつたために波板用に使用できなかつたこ
とを考慮すると驚くべきことである。 もちろん、本発明のセメント成形物は、波板用
に限定されるものではなく、アスベストを補強繊
維とするセメント成形物と同様に各種の用途に使
用することができる。 本発明において、セメント成形物の物性は、以
下に述べる試験方法によつて測定した値である。 試験用セメント成形板の作成 補強繊維のアクリル系繊維×重量部、セルロー
スパルプ2重量部シリカ粉末(平均粒径0.6ミク
ロン)10重量部、ポルトランドセメント(88−
×)重量部を固形物濃度が5重量%になるように
水と混和し、固形物に対して500ppmのポリアク
リルアミドを凝集剤として添加し、得られたスラ
リーを50メツシユの丸型金網を用いてセメント積
層板を抄造する。この板を250Kg/cm2の圧力で加
圧成型して厚さが約6mmのセメント板にする。次
いで、20℃、100%RHで一日間、20℃の水中で
28日間の湿潤養生を行い、乾燥、養生して試験用
セメント成形板を作成する。 試験方法 このセメント板から試験片を切り出しJIS−K
−6911にし準じて曲げ強度、衝撃強度を測定し
た。 以下、実施例よつて本発明をさらに詳細に説明
する。 実施例1、2および3、比較例1および2 AN99重量%、2−アクリルアミド−2−メチ
ルプロパンスルホン酸ナトリユウム((AMPS)
1重量%からなる極限粘度が3.0(ジメチルホルム
アミドを溶媒として使用し、25℃で測定)の重合
体を重合体濃度が14%になるようにジメチルスル
ホキシド((DMSO)中に溶解し、45℃における
溶液粘度が1300ポイズの紡糸原液を作成した。 この紡糸原液を孔径0.15mmφ、孔数1000ホール
の紡糸口金を通して、一旦空気中に吐出させた
後、温度20℃のDMSO30%水溶液中に導き、凝
固させ、引取り速度10m/分で引取つた。 この際の紡糸口金面とDMSO30%水溶液の液
面との距離は、5mmであつた。 得られた凝固糸条は、水洗後、沸水中で5倍に
延伸し、表面温度150℃で3%の弛緩をとりなが
ら乾燥した。 乾糸燥糸条を150〜190℃の連続ローラ型熱延伸
機を用いて2.8倍に乾熱二次延伸し、230℃に保持
した二連ローラにより緊張熱処理し、ワインダー
に巻取つた。得られた糸条の全延伸倍率は13.5倍
であり、単糸繊度は1.5d、単糸強度は12.5g/
d、初期弾性率は225g/d、伸度は7.5%であつ
た。(測定は試長200mm、変形速度50%/minで行
つた)。 得られた糸条を繊維長5mmにカツトし、セメン
トの補強用繊維を作成した。この補強用繊維の配
合割合を変更して5種類のセメント成形板を作成
し、それらの物性を測定し、その結果を第1表に
示した。 なお、比較のために、クリソタイルアスベス
ト・5R 15重量部、セルロースパルプ2重量部、
ポルトランドセメント83重量部を固形物濃度が15
重量部になるように水と混和し、湿式抄造法
``Object of the Invention'' Industrial Field of Application The present invention is directed to fiber-reinforced cement molded articles, such as cement pipes, cement plates, cement corrugated plates, wall bodies, etc., using fibers as a reinforcing material, which are particularly useful for cement corrugated plates. More specifically, it has excellent mechanical properties using high-strength, high-modulus fibers made of highly polymerized acrylonitrile-based polymers as reinforcing fibers, and conventional cement moldings using asbestos as reinforcing fibers. The present invention relates to an inexpensive cement molding that can be substituted for the cement molding of. Conventional technology Cement molded products using asbestos as a reinforcing fiber have traditionally been produced and sold in large quantities, but ever since asbestos was recognized as a carcinogen, its production has been significantly restricted, and in some developed countries. Nowadays, the use of asbestos is about to be legally prohibited, and the provision of inexpensive reinforcing fibers to replace asbestos, which has until now been the mainstream reinforcing fiber in cement moldings, has become an urgent and important issue. Attempts have been made to use various synthetic fibers and natural fibers as reinforcing fibers for cement moldings. In addition to requiring many properties such as physical properties, adhesion to cement, miscibility, dispersibility, alkali resistance in cement slurry and during curing, and water resistance, asbestos is inexpensive, it also needs to be low cost. However, these fibers often did not satisfy practical performance. Special Publication No. 53-18213 and U.S. Patent No.
No. 4414031 and other publications propose attempts to use acrylic fibers as reinforcing fibers for cement moldings, but all of these methods can be substituted for cement moldings that use asbestos as reinforcing fibers. It was not possible to provide a cement molded product having physical properties exceeding a certain level. Problems to be Solved by the Invention In other words, the problems with cement molded products using acrylic fibers as reinforcing fibers are as follows: (1) Acrylic fibers with low mechanical properties such as tensile strength and initial modulus of elasticity cannot be used as reinforcing fibers. When used, it is necessary to increase the orientation ratio of acrylic fibers to cement in order to improve the mechanical properties, especially the bending strength, of cement molded products to a level that poses no practical problems. However, if the blending ratio of acrylic fibers to cement exceeds a certain level, especially about 3% by weight, the dispersibility of the fibers into the cement deteriorates, making it easier for the fibers to become entangled in the cement. (2) Conventional acrylic materials used for clothing and industrial materials may significantly reduce the operability of the molded product manufacturing process, such as wet papermaking, and the resulting cement molded products may easily become cracked or fluffed. The fibers have poor alkali resistance, water resistance, and heat resistance, and after being mixed with cement, the mechanical properties of the fibers decrease significantly during the curing of the cement, and in some cases, the fibers deteriorate or dissolve. (3) Furthermore, with conventional acrylic fiber manufacturing technology, it was possible to improve either tensile strength or initial elastic modulus, but it is impossible to improve both of these properties at the same time. , it is technically extremely difficult to improve. However, as reinforcing fibers for cement moldings, unless both tensile strength and initial elastic modulus are satisfied at the same time, it will not be possible to satisfy the bending strength, which is an essential property of cement moldings, such as slate such as corrugated sheets. However, there were problems such as impossibility of practical use. The inventors of the present invention have conducted intensive studies focusing on the above-mentioned problems of cement moldings, and have found that in order for acrylic fibers to be able to replace asbestos as reinforcing fibers for cement moldings, it is necessary to It was discovered that not only the strength, initial modulus of elasticity, bending strength, etc. are significantly improved, but also that the polymer constituting the fiber needs to have a high degree of polymerization, and the present invention was developed based on this finding. That is, an object of the present invention is to provide a cement molded product using acrylic fibers as reinforcing fibers, which solves the above-mentioned problems, and another object is to provide a cement molded product that uses asbestos as reinforcing fibers. It is an object of the present invention to provide a cement molded product which has excellent mechanical properties, is inexpensive, and can be substituted for an asbestos-reinforced cement molded product. "Structure of the Invention" Means for Solving the Problems The above objects of the present invention can be achieved by the invention described in the claims. The configuration of the present invention will be specifically explained in detail below. First, the cement molded product of the present invention is characterized in that the proportion of acrylic fibers contained in the cement molded product is approximately 1% by weight or more and less than 3% by weight, preferably 1 to 2.5% by weight, and more preferably Characteristically, the amount ranges from 1 to 2% by weight. Here, the above-mentioned blending ratio is the weight percent of the acrylic fiber in the total weight of cement and solid materials such as acrylic fiber and other additives, such as pulp and flocculant, mixed into the cement. The blending ratio of the acrylic fibers, which is one of the features of the present invention, is extremely small compared to the blending ratio of fibers in conventional cement moldings, but if this blending ratio is less than 1% by weight, the cement moldings On the other hand, if the amount exceeds 3% by weight, it becomes difficult to uniformly disperse the fibers in the cement, leading to a decrease in operability in wet papermaking, for example, and making it difficult to produce cement molded products with stable quality and performance. This is not preferable because it becomes difficult to industrially manufacture the product and the resulting cement molded product is likely to crack. Next, in order to satisfy the above-mentioned blending ratio and achieve the purpose of the present invention, the fibers blended into the cement molded product must be made of a highly polymerized polymer, and its physical properties are better than those of conventionally known acrylic fibers. Must be significantly better. That is, the acrylic fiber used in the present invention preferably has a degree of polymerization of the polymer constituting the fiber, expressed as an intrinsic viscosity, of 2.0 or more, preferably 3.0 or more, more preferably more than 4.0, and has a polymerization degree of at least 10 g. /d, preferably a tensile strength of 11 g/d or more and an initial elastic modulus of 180 g/d or more, preferably 200 g/d or more. However, even if the blending ratio of fibers in the cement molded product is within the above range, the strength, flexural strength, and flexural strength relative to density (d) cannot be improved until the degree of polymerization and physical properties are satisfied. The ratio of bending strength (M) to density (d) (M/d 2 ) and impact strength are both 50Kg・cm 4 . /
This makes it possible to produce cement molded products with excellent physical properties that cannot be expected from conventional products, such as g 2 or more and 1.5 Kg cm/cm 2 or more. Here, the tensile strength and initial elastic modulus of the above fiber are:
This value was measured assuming that the sample length of the fiber used for measurement was 200 mm. In other words, unless the strength and initial elastic modulus of the acrylic fiber exceeds 10 g/d and 180 g/d, respectively, the reinforcing effect on the cement molded product will be small. It is not possible to obtain a cement molded product that satisfies the physical properties and performance required for practical use. In addition, it is advantageous that the polymer constituting the acrylic fiber is a highly polymerized acrylonitrile polymer having an intrinsic viscosity of at least about 2.0, which is advantageous in terms of developing strength and elastic modulus, and also Because of its high strength, it is possible to suppress and prevent the deterioration or dissolution of the acrylic fibers during the production of cement molded products, and to reflect the mechanical properties of the acrylic fibers as a reinforcing effect on the cement molded products. It was summer. The fibers made of the high polymerization degree polymer of the present invention are more easily cut into cut fibers than the fibers made of polymers with a low polymerization degree such as conventional clothing fibers. In addition, fusion or pseudo-fusion occurs little between single fibers, and the fibers have excellent fiber opening properties.This improves the dispersion properties in cement slurry and is effective as a reinforcement for cement molded products. It is estimated that this will make a large contribution. It satisfies the properties required for cement reinforcing fibers, such as alkali resistance, water resistance, and heat resistance, and has high physical properties such as strength, especially tensile strength and initial elastic modulus of 10 g/d or more and 180 g/d or more, respectively. Acrylic fibers having a high degree of polymerization are difficult to produce by conventional industrially known methods, such as wet spinning and dry spinning. A method for producing fibers with high strength and high elastic modulus from such a polymer with a high degree of polymerization is described in Japanese Patent Application No. 128006/1983 (Japanese Patent Application Laid-Open No. 21905/1989) previously proposed by the present inventors. The dry/wet spinning method disclosed in
In other words, basically, instead of directly discharging the acrylonitrile polymer solution into a liquid coagulation bath, there is a method in which the solution is first discharged into an inert atmosphere and then introduced into the liquid coagulation bath to complete the coagulation. It is preferable to adopt this method; otherwise, when the degree of polymerization of the polymer exceeds 2.0, it is difficult to obtain an acrylic fiber that satisfies both strength and initial elastic modulus. The acrylonitrile (hereinafter abbreviated as AN) polymer constituting the acrylic fiber of the present invention includes:
At least 96% by weight, preferably 97% by weight or more
Highly polymerized AN-based polymers consisting of AN and 4% by weight or less, preferably 3% by weight or less of an unsaturated vinyl compound, and having an intrinsic viscosity (value measured at 25°C using dimethylformamide as a solvent) of 2.0 or more. It is a combination. If the amount of copolymerized unsaturated vinyl compound in this AN polymer exceeds 4% by weight, the heat resistance of the resulting fibers will decrease, and the mechanical properties of the fibers will decrease during the manufacturing process of cement moldings, such as the curing process. However, this is not preferable because the reinforcing effect is lost. In addition, the fibers used have a single filament fineness of 0.5 to 5 d, preferably 0.5 to 3 d, and a fiber length of 1 to 10 mm, preferably 3 to 10 mm. Such acrylic fibers have a high miscibility with cement. Since it has excellent properties and is homogeneously dispersed in cement, it can be made into any cement molded product by a known method for producing cement molded products, such as a wet papermaking method.
Furthermore, it is possible to obtain a cement molded product with good operability and stability in wet papermaking, and excellent quality and performance. Effects of the Invention The cement molded product of the present invention has the following effects. Cement molded products are less susceptible to deterioration in operability due to entanglement of fibers in the cement during the manufacturing process, and less likely to cause cracks or fuzz in the resulting cement molded products. After mixing acrylic fibers into cement, the mechanical properties of the fibers deteriorate during curing of the cement molded product.
Fiber deterioration and dissolution are unlikely to occur. Bending strength (M), especially bending strength (M) relative to density (d) (i.e. M/d 2 ) is approximately 50Kg・cm 4 /
g 2 or more, impact strength is approximately 1.5Kg・cm/cm 2 or more,
The main mechanical properties of cement molded articles are significantly improved. This is surprising considering that conventional cement molded products using acrylic fibers as reinforcing fibers could not be used for corrugated plates due to insufficient physical properties. Of course, the cement molded product of the present invention is not limited to use in corrugated plates, and can be used for various purposes similar to cement molded products using asbestos as reinforcing fibers. In the present invention, the physical properties of the cement molded product are values measured by the test method described below. Preparation of cement molded plate for test Reinforcing fiber acrylic fiber x parts by weight, cellulose pulp 2 parts by weight Silica powder (average particle size 0.6 microns) 10 parts by weight, Portland cement (88-
x) Mix part by weight with water so that the solids concentration is 5% by weight, add 500ppm of polyacrylamide as a flocculant to the solids, and mix the resulting slurry with a 50 mesh round wire mesh. A cement laminate is made using the same process. This board is pressure molded at a pressure of 250 kg/cm 2 to form a cement board with a thickness of approximately 6 mm. Then, in water at 20°C for one day at 20°C and 100% RH.
After 28 days of wet curing, dry and cure to create cement molded plates for testing. Test method Cut a test piece from this cement board and use JIS-K
Bending strength and impact strength were measured according to -6911. Hereinafter, the present invention will be explained in more detail with reference to Examples. Examples 1, 2 and 3, Comparative Examples 1 and 2 AN99% by weight, sodium 2-acrylamido-2-methylpropanesulfonate ((AMPS)
A polymer with an intrinsic viscosity of 3.0 (measured at 25°C using dimethylformamide as a solvent) consisting of 1% by weight was dissolved in dimethyl sulfoxide (DMSO) to a polymer concentration of 14% and incubated at 45°C. A spinning stock solution with a solution viscosity of 1300 poise was prepared. This spinning stock solution was once discharged into the air through a spinneret with a hole diameter of 0.15 mmφ and a number of holes of 1000, and then introduced into a 30% DMSO aqueous solution at a temperature of 20°C. It was coagulated and taken off at a take-up speed of 10 m/min. The distance between the spinneret surface and the liquid level of the 30% DMSO aqueous solution was 5 mm. The obtained coagulated yarn was washed with water and then taken off in boiling water. It was stretched 5 times and dried at a surface temperature of 150°C with a relaxation of 3%.The dried yarn was subjected to secondary dry heat stretching to 2.8 times using a continuous roller type hot drawing machine at 150 to 190°C. The yarn was subjected to tension heat treatment using two rollers held at 230°C, and then wound onto a winder.The total stretching ratio of the obtained yarn was 13.5 times, the single yarn fineness was 1.5 d, and the single yarn strength was 12.5 g/
d, the initial elastic modulus was 225 g/d, and the elongation was 7.5%. (Measurements were made with a sample length of 200 mm and a deformation rate of 50%/min). The obtained yarn was cut into fibers with a length of 5 mm to prepare fibers for reinforcing cement. Five types of cement molded plates were prepared by changing the blending ratio of the reinforcing fibers, and their physical properties were measured. The results are shown in Table 1. For comparison, 15 parts by weight of chrysotile asbestos 5R, 2 parts by weight of cellulose pulp,
83 parts by weight of Portland cement with a solids concentration of 15
Mix with water to make the same parts by weight, wet paper making method

【表】【table】

【表】 抄造性 良好 良好
普通 良好 抄造不可能 −
[Table] Paper forming property Good Good
Fair Good Paper-making impossible −

Claims (1)

【特許請求の範囲】 1 少くとも2.0の極限粘度(ジメチルホルムア
ミドを溶剤として使用し、25℃で測定した値)を
有するアクリロニトリルを主成分とするアクリロ
ニトリル系重合体からなり、引張強度が少くとも
10g/d、初期弾性率が180g/d以上である、乾湿
式紡糸法で得られたアクリル系繊維を、1重量%
以上3重量%未満の範囲量含有し、かつ成形物の
密度に対する曲げ強度が50Kg/cm4/g2以上、衝
撃強度が1.5Kg・cm/cm2以上であるアクリル系繊
維を補強繊維とするセメント成形物。 2 特許請求の範囲第1項において、繊維の引張
強度が11g/d以上、初期弾性率が200g/d以
上であるアクリル系繊維を補強繊維とするセメン
ト成形物。 3 特許請求の範囲第1〜2項において、アクリ
ロニトリル系重合体の極限粘度(ジメチルホルム
アミドを溶剤として用い、25℃で測定した値)が
3.0以上であるアクリル系繊維を補強繊維とする
セメント成形物。 4 特許請求の範囲第1〜3項において、アクリ
ル系繊維の単糸繊度が0.5〜5d、繊維長が1〜10
mmであるアクリル系繊維を補強繊維とするセメン
ト成形物。
[Scope of Claims] 1. Consisting of an acrylonitrile-based polymer mainly composed of acrylonitrile having an intrinsic viscosity of at least 2.0 (value measured at 25°C using dimethylformamide as a solvent), and having a tensile strength of at least
10g/d, 1% by weight of acrylic fiber obtained by wet-dry spinning with an initial elastic modulus of 180g/d or more.
The reinforcing fibers are acrylic fibers that contain acrylic fibers in an amount of less than 3% by weight and have a bending strength of 50 kg/cm 4 /g 2 or more and an impact strength of 1.5 kg/cm 2 or more based on the density of the molded product. Cement moldings. 2. A cement molded product according to claim 1, in which reinforcing fibers are acrylic fibers having a tensile strength of 11 g/d or more and an initial elastic modulus of 200 g/d or more. 3 In claims 1 and 2, the intrinsic viscosity of the acrylonitrile polymer (measured at 25°C using dimethylformamide as a solvent) is
A cement molded product whose reinforcing fibers are acrylic fibers with a rating of 3.0 or higher. 4 In claims 1 to 3, the acrylic fiber has a single yarn fineness of 0.5 to 5 d and a fiber length of 1 to 10
Cement molded product using acrylic fibers as reinforcing fibers.
JP12581984A 1984-06-19 1984-06-19 Cement product containing acrylic fiber as reinforcement fiber Granted JPS616161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12581984A JPS616161A (en) 1984-06-19 1984-06-19 Cement product containing acrylic fiber as reinforcement fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12581984A JPS616161A (en) 1984-06-19 1984-06-19 Cement product containing acrylic fiber as reinforcement fiber

Publications (2)

Publication Number Publication Date
JPS616161A JPS616161A (en) 1986-01-11
JPH0364463B2 true JPH0364463B2 (en) 1991-10-07

Family

ID=14919718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12581984A Granted JPS616161A (en) 1984-06-19 1984-06-19 Cement product containing acrylic fiber as reinforcement fiber

Country Status (1)

Country Link
JP (1) JPS616161A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1191661B (en) * 1986-01-31 1988-03-23 S I P A Spa ACRYLIC FIBERS WITH IMPROVED DISPERSIBILITY IN ORGANIC OR INORGANIC VISCOUS MATRICES
US4772328A (en) * 1986-12-18 1988-09-20 Basf Corporation Hydraulic cementitious compositions reinforced with fibers containing polyacrylonitrile
CN109023574B (en) * 2017-06-08 2020-12-29 中国石油化工股份有限公司 Polyacrylonitrile chopped fiber for building reinforcement and preparation method thereof
CN109023577A (en) * 2017-06-08 2018-12-18 中国石油化工股份有限公司 Build the preparation method of reinforced polypropylene nitrile chopped strand

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170869A (en) * 1981-03-20 1982-10-21 Ametex Ag Fiber-containing solid substance employing hydraulic binder and manufacture
JPS58120811A (en) * 1982-01-05 1983-07-18 Toray Ind Inc Acrylic fiber for reinforcing cement and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57170869A (en) * 1981-03-20 1982-10-21 Ametex Ag Fiber-containing solid substance employing hydraulic binder and manufacture
JPS58120811A (en) * 1982-01-05 1983-07-18 Toray Ind Inc Acrylic fiber for reinforcing cement and its production

Also Published As

Publication number Publication date
JPS616161A (en) 1986-01-11

Similar Documents

Publication Publication Date Title
FI105912B (en) Fiber-reinforced moldings
TWI583651B (en) Cement reinforcing fiber and cement hardened body using the same
US4474907A (en) Fiber-reinforced hydraulically setting materials
NL8102974A (en) FIBER-BASED PRODUCT MADE WITH HYDRAULIC BINDERS.
US4861659A (en) High tenacity acrylonitrile fibers and a process for production thereof
JPH0216258B2 (en)
JPH0364463B2 (en)
JPS6127340B2 (en)
JP2867087B2 (en) Polypropylene fiber and fiber reinforced cement molding
JPH07286401A (en) Hydraulic setting inorganic papermaking product
Bajaj et al. Modification of acrylic fibres for specific end uses
JP2007092229A (en) Acrylic conjugate fiber and method for producing the same
JP6375125B2 (en) Polyvinyl alcohol fiber
JPS5943112A (en) Manufacture of polyvinyl alcohol synthetic fiber
JP5307470B2 (en) Cement-reinforced wholly aromatic polyamide fiber and method for producing the same
JP3227234B2 (en) Hydraulic inorganic molded products
JPH0317080Y2 (en)
JPS6059116A (en) Acrylic fiber as precursor for carbon fiber
JPS63282144A (en) Production of fiber reinforced inorganic product
JPS59207859A (en) Cement slurry composition
JP6309798B2 (en) Reinforcing fiber
JPH01115853A (en) Fiber-reinforced water-setting moldings
JPH04175252A (en) Acrylic synthetic fiber and its production
JPH04245913A (en) Production of fiber for reinforcing cement
JP2011226034A (en) Meta-type wholly aromatic polyamide short fiber