JP6375125B2 - Polyvinyl alcohol fiber - Google Patents
Polyvinyl alcohol fiber Download PDFInfo
- Publication number
- JP6375125B2 JP6375125B2 JP2014059654A JP2014059654A JP6375125B2 JP 6375125 B2 JP6375125 B2 JP 6375125B2 JP 2014059654 A JP2014059654 A JP 2014059654A JP 2014059654 A JP2014059654 A JP 2014059654A JP 6375125 B2 JP6375125 B2 JP 6375125B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- streak
- polyvinyl alcohol
- pva
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Artificial Filaments (AREA)
Description
本発明は、マトリクスの補強効果に優れた補強用繊維に関する。 The present invention relates to a reinforcing fiber having an excellent matrix reinforcing effect.
従来、セメント補強用繊維として石綿が使用されてきたが、近年の環境問題から石綿に替わるセメント補強用繊維として種々の無機繊維、合成繊維の使用が提案され、合成繊維としてはポリビニルアルコール系繊維(以下PVA系繊維と称する場合がある)、ポリプロピレン系繊維、アクリル系繊維などが主として用いられてきている。中でもPVA系繊維は耐アルカリ性が良好で比較的機械的物性も優れているため好ましく用いられている。 Conventionally, asbestos has been used as a fiber for cement reinforcement, but due to environmental problems in recent years, various inorganic fibers and synthetic fibers have been proposed as cement reinforcing fibers to replace asbestos. As synthetic fibers, polyvinyl alcohol fibers ( Hereinafter, it may be referred to as PVA fiber), polypropylene fiber, acrylic fiber, and the like have been mainly used. Among these, PVA fibers are preferably used because they have good alkali resistance and relatively excellent mechanical properties.
補強用繊維に要求される性能は、第一に強度・弾性であるといわれている。繊維が充分な強度・弾性を有していない場合には、得られる繊維補強成形物は当然のことながら強靭性を有しないこととなる。 It is said that the performance required for reinforcing fibers is primarily strength and elasticity. When the fiber does not have sufficient strength and elasticity, the resulting fiber-reinforced molded product does not have toughness as a matter of course.
第二に要求される性能は、マトリクスとの接着性とされている。補強用繊維とマトリクスの接着が不十分な場合、外部からの応力に対し補強用繊維の強度・弾性が充分に利用されず、繊維補強成形体は補強効果が得られないままクラックや破壊を生じることになる。繊維とマトリクスとの接着性を向上させるには繊維の表面積を大きくすることが有効であり、具体的には繊維断面の扁平化、異型化、細デニール化等の方法が検討されている。 The second required performance is adhesiveness with the matrix. If the adhesion between the reinforcing fiber and the matrix is insufficient, the strength and elasticity of the reinforcing fiber against the external stress are not fully utilized, and the fiber reinforced molded product may crack or break without obtaining a reinforcing effect. It will be. In order to improve the adhesion between the fiber and the matrix, it is effective to increase the surface area of the fiber, and specifically, methods such as flattening the fiber cross-section, making it atypical, and making fine denier are being studied.
高強度のPVA系繊維を得る方法として種々の検討が行われている(例えば、特許文献1〜4)。しかしながらこれらの方法で得られる繊維は、強度・弾性が大幅に改善されているものの、均質であるため断面が円形に近く、表面積が小さいものである。一般に補強用繊維の強度が増すにつれ限界繊維長が長くなるため、応力を受けたときに抜けが生じやすくなる。これまで検討されてきた繊維も、限界繊維長が長くかつ表面積が小さいため、繊維の強度の割には思ったほど補強効果が得られない。 Various studies have been conducted as methods for obtaining high-strength PVA fibers (for example, Patent Documents 1 to 4). However, although the fibers obtained by these methods are greatly improved in strength and elasticity, they are homogeneous, so that their cross sections are almost circular and have a small surface area. In general, as the strength of the reinforcing fiber increases, the limit fiber length becomes longer, so that the fiber tends to come off when subjected to stress. Since the fibers that have been studied so far have a long limit fiber length and a small surface area, the reinforcing effect cannot be obtained as much as expected for the strength of the fiber.
一方、繊維の表面積を大きくする手段として、異型ノズルを用いて紡糸し繊維断面を異型化する方法があるが、この方法で得られた繊維は機械的物性に劣り繊維補強成形体としては満足のいくものが得られにくい。また繊維の繊度を小さくすることによっても単位量当たりの表面積を大きくすることができるが、この場合マトリクス中での分散性が悪化するため繊維補強成形体の機械的物性は向上しない。 On the other hand, as a means of increasing the surface area of the fiber, there is a method of spinning using a variant nozzle to make the fiber cross-section atypical. It is hard to get something. Further, the surface area per unit amount can be increased by reducing the fineness of the fiber, but in this case, the dispersibility in the matrix is deteriorated, so that the mechanical properties of the fiber reinforced molded article are not improved.
また、繊維の表面積を大きくする別の形態として、繊維表面に繊維軸方向に伸びるひだが存在する繊維があり(特許文献6)、90kg/mm2以上の強度、ひだとして巾が0.5〜2ミクロンメーター、高さあるいは深さが0.5〜1ミクロンメーターのひだが少なくとも存在することを特徴とするポリビニルアルコール系繊維とそれを含む繊維補強セメント成形品が開示されている。しかし、繊維としてある程度十分な強度を有しているものの、繊維補強セメント成形品としては石綿など別の補強用材料も併せて用いており、繊維のみによる補強効果については更なる改善の余地があった。 Further, as another form of increasing the surface area of the fiber, there is a fiber having a fold extending in the fiber axis direction on the fiber surface (Patent Document 6), a strength of 90 kg / mm 2 or more, and a width of 0.5 to A polyvinyl alcohol fiber and a fiber-reinforced cement molded article including the same are disclosed, characterized in that at least pleats having a diameter of 2 microns, height or depth of 0.5 to 1 microns are present. However, although it has a certain degree of strength as a fiber, other reinforcing materials such as asbestos are also used as the fiber reinforced cement molded product, and there is room for further improvement in the reinforcing effect of the fiber alone. It was.
以上の如く、これまで補強用繊維に要求される2つの性能、すなわち強度・弾性および接着性を両立させることは難しく、従って得られる繊維補強成形体の機械的物性も十分満足できるものではなかった。 As described above, it has been difficult to achieve the two performances required for reinforcing fibers, that is, strength / elasticity and adhesiveness, and the mechanical properties of the resulting fiber-reinforced molded article have not been sufficiently satisfactory. .
本発明は、優れた強度・弾性および接着性を有し、補強効率に優れた補強用繊維、および該繊維で補強された成形体を提供することを目的とする。 An object of the present invention is to provide a reinforcing fiber having excellent strength / elasticity and adhesiveness and excellent reinforcing efficiency, and a molded body reinforced with the fiber.
本発明者らは、上記課題を解決するために鋭意検討した結果、極端に繊維を異型断面化することなく、繊維表面に筋状の凹部を導入することによって、強度と弾性を維持しつつ、マトリクスとの接着性を高めようとする際、該凹部の存在比が特に重要であることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have introduced a streak-like recess on the fiber surface without extremely making the fiber atypical cross section, while maintaining strength and elasticity, The inventors have found that the abundance ratio of the recesses is particularly important when trying to improve the adhesion to the matrix, and have completed the present invention.
すなわち本発明は、繊維表面に繊維の長さ方向に平行な筋状の凹部を有し、下記(1)〜(4)をともに満足するポリビニルアルコール系繊維である。
(1)前記筋状の凹部の平均深さが0.05〜2μmであること
(2)前記筋状の凹部の開口部の平均幅が0.1〜4μmであること
(3)前記筋状の凹部の存在比が5%以上存在であること
(4)破断強度が8cN/dtex以上であること
That is, the present invention is a polyvinyl alcohol fiber having a streak-like recess parallel to the fiber length direction on the fiber surface and satisfying the following (1) to (4).
(1) The average depth of the streak-shaped recess is 0.05 to 2 μm (2) The average width of the opening of the streak-shaped recess is 0.1 to 4 μm (3) The streak (4) The breaking strength is 8 cN / dtex or more.
前記ポリビニルアルコール系繊維は、結晶化度が40%以上、配向度が60%以上であってもよい。 The polyvinyl alcohol fiber may have a crystallinity of 40% or more and an orientation of 60% or more.
前記ポリビニルアルコール系繊維は、固化性の高い固化浴で固化させる工程と、その後、固化性の低い固化浴で固化させる工程を含む製造方法によって製造されてもよい。 The polyvinyl alcohol fiber may be manufactured by a manufacturing method including a step of solidifying in a solidification bath having high solidification property and a step of solidifying in a solidification bath having low solidification property.
前記ポリビニルアルコール系繊維は、アスペクト比が2以上の化合物を紡糸原液中に含む製造工程によって製造されてもよい。 The polyvinyl alcohol fiber may be manufactured by a manufacturing process in which a compound having an aspect ratio of 2 or more is contained in a spinning dope.
本発明によれば、繊維の強度と弾性を維持しつつ、マトリクスとの接着性を高めることができるため、補強効率に優れた補強用繊維、および該繊維で補強された成形体を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, since the adhesiveness with a matrix can be improved, maintaining the intensity | strength and elasticity of a fiber, the reinforcing fiber excellent in reinforcement efficiency and the molded object reinforced with this fiber are provided. Can do.
本発明は、繊維表面に繊維の長さ方向に平行な筋状の凹部を有するポリビニルアルコール系繊維であることが重要である。繊維表面に繊維の長さ方向に平行な筋状の凹部を有することによって、接着面積を上げることができ、マトリクスとの接着性を向上させることができる。 It is important for the present invention to be a polyvinyl alcohol fiber having a streak-like recess parallel to the fiber length direction on the fiber surface. By having a streak-like recess parallel to the length direction of the fiber on the fiber surface, the adhesion area can be increased and the adhesion to the matrix can be improved.
前記凹部の平均深さは0.05〜2μmであることが重要である。0.05μm未満では、マトリクスとの接着面積が小さく、効果的にマトリクスを補強できなくなることがある。また2μmより大きいと、繊維強度が低下する場合がある。平均深さは、0.08〜1.9μmであることが好ましく、0.1〜1.8μmであることがより好ましく、0.2〜1.7μmであることが更に好ましい。
凹部の平均深さは後述の方法で求めることができる。
It is important that the average depth of the recesses is 0.05 to 2 μm. If it is less than 0.05 μm, the adhesion area with the matrix is small, and the matrix may not be effectively reinforced. If it is larger than 2 μm, the fiber strength may decrease. The average depth is preferably 0.08 to 1.9 μm, more preferably 0.1 to 1.8 μm, and still more preferably 0.2 to 1.7 μm.
The average depth of the recess can be obtained by the method described later.
前記凹部の開口部の平均幅は0.1〜4μmであることが重要である。0.1μm未満の場合、接着面積が小さくなるばかりでなく、例えばセメント系材料の場合CSHゲル(硬化セメントペースト)が凹部に効率的に侵入・結合しにくいため、接着性が十分得られないことがある。また凹部の平均幅が4μmより大きいと、繊維強度が低下する場合がある。平均幅は、0.2〜3.9μmであることが好ましく、0.3〜3.8μmであることがより好ましく、0.4〜3.7μmであることが更に好ましい。
凹部の開口部の平均幅は後述の方法で求めることができる。
It is important that the average width of the opening of the recess is 0.1 to 4 μm. If it is less than 0.1 μm, not only the bonding area becomes small, but in the case of cement-based materials, for example, CSH gel (hardened cement paste) is difficult to efficiently enter and bond into the recess, so that sufficient adhesion cannot be obtained. There is. If the average width of the recesses is larger than 4 μm, the fiber strength may be lowered. The average width is preferably 0.2 to 3.9 μm, more preferably 0.3 to 3.8 μm, and still more preferably 0.4 to 3.7 μm.
The average width of the opening of the recess can be determined by the method described later.
本発明によるPVA系繊維は、前記凹部の存在比が5%以上であることが重要である。凹部が5%未満の場合、接着面積が小さくなる。凹部の存在比は、10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることが更に好ましい。また、前記凹部の存在比は80%以下であることが好ましく、60%以下である事がより好ましく、50%以下であることが更に好ましく、40%以下であることが特に好ましい。
凹部の存在比は後述の方法で求めることができる。
In the PVA fiber according to the present invention, it is important that the abundance ratio of the recesses is 5% or more. When the concave portion is less than 5%, the adhesion area becomes small. The abundance ratio of the recesses is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more. The abundance ratio of the recesses is preferably 80% or less, more preferably 60% or less, still more preferably 50% or less, and particularly preferably 40% or less.
The abundance ratio of the recesses can be determined by the method described later.
本発明のPVA系繊維の結晶化度は40%以上、配向度は60%以上であることが好ましい。結晶化度が40%未満では、繊維の機械特性、耐湿熱性に劣る場合がある。また、配向度が60%未満では、耐熱性、機械特性、耐湿熱性に劣る場合がある。結晶化度は50%以上であることがより好ましく、60%以上であることが更に好ましい。また、配向度は、機械特性の観点から、70%以上であることがより好ましく、75%以上であることが更に好ましい。
結晶化度、配向度は後述の方法で求めることができる。
The PVA fiber of the present invention preferably has a crystallinity of 40% or more and an orientation of 60% or more. If the crystallinity is less than 40%, the mechanical properties and heat and humidity resistance of the fiber may be inferior. Further, when the degree of orientation is less than 60%, the heat resistance, mechanical properties, and heat and humidity resistance may be inferior. The crystallinity is more preferably 50% or more, and further preferably 60% or more. The degree of orientation is more preferably 70% or more, and further preferably 75% or more from the viewpoint of mechanical properties.
The degree of crystallinity and the degree of orientation can be determined by the methods described below.
本発明のPVA系繊維の破断強度は8cN/dtex以上であることが好ましい。破断強度が8cN/dtex未満の場合には、該繊維を添加した成形体において、マトリクスと繊維とが十分に接着している場合でも繊維そのものが破断してしまうので曲げ強度等において十分な補強効果が得られない場合がある。破断強度は、9cN/dtex以上であることがより好ましく、10cN/dtex以上であることが更に好ましく、12cN/dtex以上であることが特に好ましく、13cN/dtex以上であることが殊更に好ましい。 The breaking strength of the PVA fiber of the present invention is preferably 8 cN / dtex or more. When the breaking strength is less than 8 cN / dtex, in the molded body to which the fiber is added, even when the matrix and the fiber are sufficiently bonded, the fiber itself is broken, so that sufficient reinforcing effect in bending strength and the like is obtained. May not be obtained. The breaking strength is more preferably 9 cN / dtex or more, further preferably 10 cN / dtex or more, particularly preferably 12 cN / dtex or more, and particularly preferably 13 cN / dtex or more.
本発明のPVA系繊維の破断伸度は3〜20%であることが好ましい。破断伸度が3%未満では、該繊維を添加した成形体において、耐衝撃強度が低くなるばかりでなく、繊維の製造において延伸工程性が悪化する場合がある。また破断伸度が20%を超えると、耐衝撃性は向上するものの曲げ強度等において十分な補強効果が得られない場合がある。破断伸度は4〜15%であることがより好ましく、5〜10%であることが更に好ましい。 The breaking elongation of the PVA fiber of the present invention is preferably 3 to 20%. When the elongation at break is less than 3%, not only the impact strength is lowered in the molded article to which the fiber is added, but also the drawing processability may be deteriorated in the production of the fiber. On the other hand, if the elongation at break exceeds 20%, the impact resistance is improved, but a sufficient reinforcing effect may not be obtained in bending strength. The breaking elongation is more preferably 4 to 15%, still more preferably 5 to 10%.
本発明のPVA系繊維の断面形状は本発明の効果に影響を与えない限り、特に制限されるものではないが、機械的強度の観点から、凹部を有する円形または略円形であることが好ましい。断面形状の指標として、平均断面充実度を算出した場合、60〜99%であることが好ましく、65〜98%であることがより好ましく、70〜97%であることが更に好ましい。断面充実度は、繊維の断面積をS1、その繊維を取り囲む最小円の面積をS2とし、以下の式により算出される。
断面充実度(%)=(S1/S2)×100
平均断面充実度は、より具体的には、後述の方法で求めることができる。
The cross-sectional shape of the PVA fiber of the present invention is not particularly limited as long as the effect of the present invention is not affected, but from the viewpoint of mechanical strength, a circular shape having a recess or a substantially circular shape is preferable. When the average degree of cross-section is calculated as an index of the cross-sectional shape, it is preferably 60 to 99%, more preferably 65 to 98%, and still more preferably 70 to 97%. The degree of cross-section fulfillment is calculated by the following equation, where S1 is the cross-sectional area of the fiber and S2 is the area of the minimum circle surrounding the fiber.
Cross-sectional quality (%) = (S1 / S2) × 100
More specifically, the average cross-section fulfillment degree can be obtained by a method described later.
図1に本発明のPVA系繊維の繊維側面写真を、また図2に同繊維の断面写真を示す。図1に示すとおり、本発明のPVA系繊維の表面には、筋状の凹部が繊維の長さ方向に平行に存在している。また図2に示すとおり、各凹部はある程度深さを持ったものでありながら、繊維断面形状は略円形であり、よって本発明のPVA系繊維は接着性が高く、かつ機械的特性が維持されている。 FIG. 1 is a fiber side view photograph of the PVA fiber of the present invention, and FIG. 2 is a cross-sectional photograph of the fiber. As shown in FIG. 1, streaky concave portions are present on the surface of the PVA fiber of the present invention in parallel to the length direction of the fiber. In addition, as shown in FIG. 2, each concave portion has a certain depth, but the cross-sectional shape of the fiber is substantially circular. Therefore, the PVA fiber of the present invention has high adhesiveness and maintains mechanical characteristics. ing.
本発明の繊維の形態は、ショートカット、マルチフィラメント、モノフィラメント、メッシュ織物など、必要に応じた形態とすることができる。 The form of the fiber of this invention can be made into forms as needed, such as a shortcut, a multifilament, a monofilament, a mesh fabric.
本発明の繊維の繊度は特に限定されないが、0.1〜10000dtexであることが好ましい。スレートに配合する場合には、0.1〜100dtexであることが、モルタルに配合する場合には1〜2000dtexであることが、分散性および繊維本数に起因する補強効果の点から好ましい。コンクリートに配合する場合には、100〜10000dtexであると繊維が折れにくいため好ましい。またメッシュ織物として用いる場合には総繊度が50〜2,000dtexのマルチフィラメントヤーン、または2〜5,000dtexのモノフィラメントであることが好ましい。またショートカットとして用いる場合のアスペクト比は50〜2000であることが好ましく、150〜600であることがより好ましい。 Although the fineness of the fiber of this invention is not specifically limited, It is preferable that it is 0.1-10000 dtex. When blended with slate, it is preferably 0.1 to 100 dtex, and when blended with mortar, it is preferably 1 to 2000 dtex in terms of the reinforcing effect due to dispersibility and the number of fibers. When mix | blending with concrete, since it is hard to break a fiber, it is preferable that it is 100-10000 dtex. When used as a mesh fabric, a multifilament yarn having a total fineness of 50 to 2,000 dtex or a monofilament of 2 to 5,000 dtex is preferable. The aspect ratio when used as a shortcut is preferably 50 to 2000, more preferably 150 to 600.
本発明のPVA系繊維を構成するPVA系ポリマーは特に限定されないが、ポリマーの結晶性、機械的性能、難燃性等の点から、粘度平均重合度1000以上、特に1500以上とするのが好ましく、紡糸性、コストの点から5000以下とするのが好ましい。また同理由からケン化度98モル%以上、なかでも99モル%以上、特に99.5モル%以上とするのが好ましい。 The PVA polymer constituting the PVA fiber of the present invention is not particularly limited, but from the viewpoint of polymer crystallinity, mechanical performance, flame retardancy, etc., the viscosity average polymerization degree is preferably 1000 or more, particularly preferably 1500 or more. In view of spinnability and cost, it is preferably 5000 or less. For the same reason, the saponification degree is preferably 98 mol% or more, more preferably 99 mol% or more, and particularly preferably 99.5 mol% or more.
PVA系ポリマーには他のモノマーが共重合されていてもよく、共重合成分としてはたとえばエチレン、酢酸ビニル、イタコン酸、ビニルアミン、アクリルアミド、ピバリン酸ビニル、無水マレイン酸、スルホン酸含有ビニル化合物などが挙げられる。繊維性能、難燃性能等の点からはビニルアルコールユニットを全構成ユニットの70モル%以上含有することが好ましい。 Other monomers may be copolymerized in the PVA polymer, and examples of the copolymer component include ethylene, vinyl acetate, itaconic acid, vinylamine, acrylamide, vinyl pivalate, maleic anhydride, and sulfonic acid-containing vinyl compounds. Can be mentioned. From the viewpoint of fiber performance, flame retardancy, etc., it is preferable to contain a vinyl alcohol unit in an amount of 70 mol% or more of all constituent units.
また本発明の効果を損わない範囲であれば、繊維にPVA系ポリマー以外のポリマーや他の添加剤を含んでいてもかまわない。繊維性能等の点からはPVA系ポリマーの含有量を30質量%以上/繊維、特に50質量%以上/繊維とするのが好ましい。 Moreover, as long as the effect of the present invention is not impaired, the fiber may contain a polymer other than the PVA polymer and other additives. From the viewpoint of fiber performance and the like, the content of the PVA polymer is preferably 30% by mass or more / fiber, particularly 50% by mass or more / fiber.
また本発明では、L/Dが2以上のアスペクト比を持つ化合物を、PVA系ポリマー原液中に微細分散させることで、より効率的に繊維表面に筋状の凹部を有する繊維を得ることができる。該アスペクト比を持つ化合物が微細分散された紡糸原液は、ノズルより吐出される際に吐出方向にシェアがかかるため、吐出後の繊維中では該化合物は繊維方向に異方性をもって並ぶことになる。そのため、スキン層形成、体積収縮をおこしながら固化していく過程で、該化合物の存在が体積収縮を阻害するためか、深く幅の大きな凹部を形成しやすい。 Moreover, in this invention, the fiber which has a streak-like recessed part on the fiber surface can be obtained more efficiently by finely disperse | distributing the compound with L / D of 2 or more aspect ratio in a PVA-type polymer stock solution. . Since the spinning stock solution in which the compound having the aspect ratio is finely dispersed takes a share in the discharge direction when discharged from the nozzle, the compound is arranged with anisotropy in the fiber direction in the discharged fiber. . Therefore, in the process of solidifying while forming a skin layer and volume shrinkage, it is easy to form a deep and wide concave part because the presence of the compound inhibits volume shrinkage.
前記化合物は、効率的な凹部の形成、及び紡糸工程性の点で、平均粒子径は小さい方が好ましい。具体的には、0.01〜10μmの範囲であることが好ましく、0.02〜9μmであることがより好ましく、0.03〜8μmであることが更に好ましい。また添加量は繊維に対して0.01〜30質量%の範囲であることが好ましく、0.02〜29質量%であることがより好ましく、0.03〜28質量%であることが更に好ましい。 The compound preferably has a smaller average particle diameter in terms of efficient formation of recesses and spinning processability. Specifically, it is preferably in the range of 0.01 to 10 μm, more preferably 0.02 to 9 μm, and still more preferably 0.03 to 8 μm. The amount added is preferably in the range of 0.01 to 30% by mass, more preferably 0.02 to 29% by mass, and still more preferably 0.03 to 28% by mass with respect to the fiber. .
前記化合物は、L/Dが2以上のアスペクト比を持ち、平均粒子径が0.01〜10μmであれば何でもよいが、効果的に固化過程での体積収縮を阻害するためには硬度が高い方が好ましく、無機系の繊維状・針状・ウィスカー状フィラーや層状化合物が好ましい。具体的には、カーボンカーボンファイバー、カーボンナノチューブなどの繊維状物、グラファイトウイスカー、ホウ酸アルミニウムウイスカー、チタン酸カリウムウイスカーなどのウイスカー状物、モンモリロナイト、サポナイト、ハイデライト、ノントロナイト、ヘクトライト、バイロサイト及びステイブンサイト等のスメクタイト系粘土化合物や、ジ−バーミキュライト、トリ−バーミキュライト、フッ素バーミキュライト等のバーミキュライト系粘土化合物、白雲母、パラゴナイト、イライト等の雲母系粘土化合物、Li型フッ素テニオライト、Na型フッ素テニオライト、合成フッ素雲母(Li型四珪素フッ素雲母、Na型四珪素フッ素雲母等)などの層状化合物を例示することができ、これらは、天然物であっても合成物であってもよい。 The compound may have any aspect ratio as long as the L / D has an aspect ratio of 2 or more and the average particle diameter is 0.01 to 10 μm, but the hardness is high in order to effectively inhibit volume shrinkage during the solidification process. More preferred are inorganic fibrous, needle-like, whisker-like fillers, and layered compounds. Specifically, fibrous materials such as carbon carbon fiber and carbon nanotube, whisker-like materials such as graphite whisker, aluminum borate whisker, potassium titanate whisker, montmorillonite, saponite, hydelite, nontronite, hectorite, and viro Smectite clay compounds such as sites and stave sites, vermiculite clay compounds such as di-vermiculite, tri-vermiculite and fluorine vermiculite, mica clay compounds such as muscovite, paragonite and illite, Li-type fluorine teniolite, Na-type Layered compounds such as fluorine teniolite and synthetic fluorine mica (Li-type tetrasilicon fluorine mica, Na-type tetrasilicon fluorine mica, etc.) can be exemplified, and these are natural products or synthetic products. Good.
次に本発明のPVA系繊維の製造方法を説明する。
本願発明において、繊維表面に繊維の長さ方向に平行な筋状の凹部を有するPVA系繊維を得るためには、繊維の固化の制御が重要である。表面に筋状の凹部を形成する方法としては、まず固化初期に繊維表面に薄いスキン層を形成し、次いでゆっくり体積収縮を起こさせ、表面の薄いスキン層の周長が体積収縮後の周長よりも実質的に長い状態が作られれば、表面スキン層が折りたたまれ、結果として繊維表面に凹部が形成されることとなる。例えば、紡糸原液濃度を薄くすることによって繊維の外周部と内部で固化に要する時間の差を大きくするような紡糸条件を設定する等の方法が可能であるが、紡糸原液を固化させるための固化浴の濃度を調整する方法がより好ましく選択される。
Next, the manufacturing method of the PVA type fiber of this invention is demonstrated.
In the present invention, in order to obtain a PVA-based fiber having a streak-like recess parallel to the fiber length direction on the fiber surface, control of fiber solidification is important. As a method of forming a streak-like recess on the surface, first, a thin skin layer is formed on the fiber surface at the initial stage of solidification, and then volume shrinkage is caused slowly. The circumference of the thin skin layer is the circumference after volume shrinkage. If a substantially longer state is created, the surface skin layer is folded, resulting in the formation of recesses on the fiber surface. For example, it is possible to set a spinning condition so as to increase the difference in time required for solidification between the outer peripheral portion and the inside of the fiber by reducing the concentration of the stock solution for spinning, but solidification for solidifying the stock solution for spinning. A method of adjusting the concentration of the bath is more preferably selected.
具体的には、まず表面にスキン層を形成させるため、ノズルより吐出された直後の紡糸原液を固化性の高い固化浴で固化させ、その後、紡糸筒内でゆっくり固化させる。
ゆっくり固化させる方法としては、紡糸筒内に固化性を下げる溶媒を流入させる方法や、固化性の高い固化浴中でスキン層を形成後に離浴し、次に固化性の低い固化浴中でゆっくりと固化させる方法などが挙げられる。紡糸原液の濃度は低い方が好ましく、更には、離浴速度も遅い方が好ましい。
Specifically, first, in order to form a skin layer on the surface, the spinning dope immediately after being discharged from the nozzle is solidified in a solidifying bath having a high solidification property, and then slowly solidified in a spinning cylinder.
As a method of slowly solidifying, a method of allowing a solvent that lowers the solidification property to flow into the spinning cylinder, a method of separating after forming a skin layer in a solidification bath having a high solidification property, and then slowly in a solidification bath having a low solidification property. And a method of solidifying. The concentration of the spinning dope is preferably low, and more preferably the slow bathing rate is low.
前記要素が制御できれば、紡糸方法は特に限定されず、PVA系ポリマーを含む紡糸原液を溶液紡糸、具体的には湿式紡糸、乾湿式紡糸、乾式紡糸して製造される。紡糸原液に用いる溶媒としては、PVA系繊維の製造に際して従来から用いられている溶媒、例えば水、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド、ジメチルアセトアミド、グリセリン、エチレングリコール、トリエチレングリコール等の多価アルコールなどの1種または2種以上を組み合わせて用いることができる。この中でも、供給性、環境負荷への影響の観点から、水及びDMSOが特に好ましい。紡糸原液中のポリマー濃度は、前述のとおり低い方が好ましいため、PVA系ポリマーの組成や重合度、溶媒によって異なるが、6〜25質量%の範囲が好ましい。本発明の効果を損なわない範囲であれば、紡糸原液にはPVA系ポリマー以外にも、目的に応じて、界面活性剤、分解抑制剤、凍結防止剤、pH調整剤、隠蔽剤、着色剤、油剤などの添加剤などが含まれていてもよい。 If the above elements can be controlled, the spinning method is not particularly limited, and the spinning solution containing a PVA polymer is produced by solution spinning, specifically, wet spinning, dry wet spinning, and dry spinning. Solvents used in the spinning dope include solvents conventionally used in the production of PVA fibers, such as water, dimethyl sulfoxide (DMSO), dimethylformamide, dimethylacetamide, glycerin, ethylene glycol, triethylene glycol and other polyhydric alcohols. 1 type, or 2 or more types can be used in combination. Among these, water and DMSO are particularly preferable from the viewpoint of supplyability and influence on environmental load. Since the lower concentration of the polymer in the spinning dope is preferable as described above, the polymer concentration varies depending on the composition, polymerization degree, and solvent of the PVA polymer, but is preferably in the range of 6 to 25% by mass. As long as the effects of the present invention are not impaired, the spinning dope includes a surfactant, a decomposition inhibitor, an antifreezing agent, a pH adjuster, a concealing agent, a colorant, in addition to the PVA polymer, depending on the purpose. An additive such as an oil may be included.
本発明において用いる固化浴は、紡糸原液が水溶液の場合と原液溶媒が有機溶媒の場合で異なる。
紡糸原液が水溶液の場合には、芒硝水溶液からなる固化浴を用いる。また硼酸を添加した原液については、苛性ソーダと芒硝の混合水溶液を用いる。この場合、固化は脱水によるものなので、芒硝濃度が高いほど、固化性は高くなる。固化性の高い固化浴の芒硝濃度としては200〜400g/Lであることが好ましく、210〜390g/Lであることがより好ましく、220g/L〜380g/Lであることが更に好ましい。
有機溶媒を用いた原液の場合は、固化溶媒と原液溶媒からなる混合液が好ましく、そしてその固化溶媒としては、メタノール、エタノールなどのアルコール類や、アセトン、メチルエチルケトンなどのケトン類などのPVAに対して固化能を有する有機溶媒が好ましい。この場合、固化浴中の固化溶媒の比率が高いほど、固化性は高くなる。固化性の高い固化浴の固化溶媒の比率としては50%以上であることが好ましく、55%以上であることがより好ましく、60%以上であることが更に好ましい。
The solidification bath used in the present invention differs depending on whether the spinning stock solution is an aqueous solution or the stock solution solvent is an organic solvent.
When the spinning dope is an aqueous solution, a solidification bath composed of an aqueous solution of sodium sulfate is used. For the stock solution to which boric acid is added, a mixed aqueous solution of caustic soda and mirabilite is used. In this case, since solidification is due to dehydration, the higher the concentration of sodium sulfate, the higher the solidification property. The concentration of salt cake of the solidification bath having high solidification property is preferably 200 to 400 g / L, more preferably 210 to 390 g / L, and still more preferably 220 g / L to 380 g / L.
In the case of an undiluted solution using an organic solvent, a mixed solution composed of a solidified solvent and a undiluted solvent is preferable, and as the solidified solvent, for PVA such as alcohols such as methanol and ethanol, and ketones such as acetone and methyl ethyl ketone. An organic solvent having a solidifying ability is preferable. In this case, the higher the ratio of the solidification solvent in the solidification bath, the higher the solidification property. The ratio of the solidification solvent in the solidification bath having a high solidification property is preferably 50% or more, more preferably 55% or more, and further preferably 60% or more.
前記の紡糸方法により得られた固化糸は、抽出・洗浄され、乾燥後延伸・熱処理される。 The solidified yarn obtained by the spinning method is extracted / washed, dried, stretched / heat treated.
本発明のPVA系繊維は、破断強度を8cN/dtex以上とするために、延伸熱処理される。この延伸熱処理は、一般的には温度210℃以上、好ましくは220℃〜260℃の温度で行うのがよく、8倍以上の全延伸倍率、好ましくは10〜25倍の全延伸倍率で延伸すると、繊維の結晶化度と配向度が向上し、それに伴って繊維の機械特性が向上するので好ましい。 The PVA fiber of the present invention is subjected to a drawing heat treatment so that the breaking strength is 8 cN / dtex or more. This stretching heat treatment is generally performed at a temperature of 210 ° C. or higher, preferably 220 ° C. to 260 ° C., and when stretched at a total stretching ratio of 8 times or more, preferably 10 to 25 times. The crystallinity and orientation of the fiber are improved, and the mechanical properties of the fiber are improved accordingly.
本発明のPVA系繊維では、用途や目的に応じ、耐熱水性を向上させることを目的としてPVA系繊維で一般的に行われているアセタール化処理やその他の架橋処理を施すこともできる。すなわち、PVA系繊維をPVA系ポリマーの水酸基と反応するホルムアルデヒド等の架橋剤を含む水溶液中で処理して、水酸基を封鎖することで繊維を疎水化することができる。 The PVA fiber of the present invention can be subjected to acetalization treatment and other crosslinking treatments generally performed for PVA fibers for the purpose of improving hot water resistance depending on applications and purposes. That is, the fiber can be hydrophobized by treating the PVA fiber in an aqueous solution containing a crosslinking agent such as formaldehyde that reacts with the hydroxyl group of the PVA polymer to block the hydroxyl group.
本発明のPVA系繊維はスレート、ボード、パネル等の補強、モルタル・コンクリートの補強、FRP等に広く使用できる。
また用途に応じて、例えばパルプなどの天然繊維、他のPVA系繊維、アクリル繊維、アラミド繊維、炭素繊維、PPS繊維、PBO繊維などの合成繊維などの他の繊維と併用することもできる。
The PVA fiber of the present invention can be widely used for reinforcement of slate, board, panel, etc., reinforcement of mortar / concrete, FRP and the like.
Further, depending on the application, for example, natural fibers such as pulp, other PVA fibers, acrylic fibers, aramid fibers, carbon fibers, PPS fibers, synthetic fibers such as PBO fibers, and other fibers can be used in combination.
以下、本発明を実施例、及び比較例にてさらに詳しく説明するが、本発明はこれらの例に限定されるものではない。なお以下で部、%は特に断りのない限り、質量部、質量%を指す。また各種測定方法、セメント成形物の製造方法は以下の方法による。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to these examples. In the following, parts and% refer to parts by mass and% by mass unless otherwise specified. Various measuring methods and methods for producing cement moldings are as follows.
[繊維の破断強度 cN/dtex、破断伸度 %]
JIS L1013に準拠して測定した。
[Fracture strength of fiber cN / dtex, elongation at break%]
Measurement was performed in accordance with JIS L1013.
[結晶化度(Xc) %]
繊維の結晶化度の測定は、Perkin Elmer社製Pyris−1型示差走査型熱量計を用いて、試料の融解エンタルピーを測定した。測定条件は、昇温速度80℃/分で行い、以下の式より重量結晶化度を算出した。なお、標準物質として、インジウムおよび鉛を用いて、融点、融解熱の補正を行った。
Xc(%)=ΔHobs/ΔHcal×100
ΔHobs:実測融解熱(J/g)
ΔHcal:完全結晶の融解熱(174.5J/g)
[Crystallinity (Xc)%]
The fiber crystallinity was measured by measuring the melting enthalpy of the sample using a Pyris-1 differential scanning calorimeter manufactured by Perkin Elmer. The measurement conditions were a heating rate of 80 ° C./min, and the weight crystallinity was calculated from the following formula. In addition, correction of melting point and heat of fusion was performed using indium and lead as standard materials.
Xc (%) = ΔHobs / ΔHcal × 100
ΔHobs: Actual heat of fusion (J / g)
ΔHcal: heat of fusion of complete crystal (174.5 J / g)
[配向度 %]
株式会社オリエンテック製パルス式直読粘弾性測定器DDV―5―B型を用い、繊維サンプルの繊維軸に沿った10KHzの音波の速度Cを測定し、ポリビニルアルコールのキャストフィルムから得られた無配向試料の音速Cu(2.20km/sec)と比較してMoselayの式(配向度=1―Cu2/C2)により配向度を算出した。
[Orientation%]
Using a pulse direct-reading viscoelasticity measuring instrument DDV-5-B manufactured by Orientec Co., Ltd., the velocity C of 10 KHz sound wave along the fiber axis of the fiber sample was measured, and the non-oriented obtained from the cast film of polyvinyl alcohol Compared with the sound velocity Cu (2.20 km / sec) of the sample, the degree of orientation was calculated by the Mosley equation (degree of orientation = 1-Cu2 / C2).
[繊維表面の筋状の凹部の開口部の平均幅μm、凹部の平均深さμm、凹部の存在比%]
繊維断面画像を走査型電子顕微鏡にて撮影し、画像解析ソフトでこの断面の外周に見られる凹部に対して外接するように接線を引き、その接線の長さを見かけ凹部幅W1とした。また、凹部の最底部から前記接線へ垂線を引き、この垂線長をその凹部の見かけ深さL1とした。この操作を各凹部ごとに行った後、幅・深さ各々について全凹部を加算し(ΣW、ΣL)、抽出した凹部の個数nで除することで全凹部の平均幅W、平均深さLを算出した。また、ΣWを、接線と実繊維周で囲まれた略多角形の周長Cで除して繊維表面における凹部の存在比率を算出した。
平均幅W[μm]=ΣW[μm]/n[個]
平均深さL[μm]=ΣL[μm]/n[個]
存在比率[%]=ΣW[μm]/C[μm]×100
[Average width μm of openings of streaky recesses on fiber surface, average depth of recesses μm, presence ratio of recesses]
A fiber cross-sectional image was taken with a scanning electron microscope, and a tangent line was drawn so as to circumscribe the concave portion seen on the outer periphery of the cross-section with image analysis software, and the length of the tangent line was apparently defined as a concave portion width W1. In addition, a perpendicular line was drawn from the bottom of the recess to the tangent line, and the perpendicular length was defined as the apparent depth L1 of the recess. After performing this operation for each recess, add all recesses for each width and depth (ΣW, ΣL), and divide by the number n of extracted recesses to obtain the average width W and average depth L of all recesses. Was calculated. Further, ΣW was divided by a substantially polygonal circumferential length C surrounded by the tangent line and the actual fiber circumference to calculate the abundance ratio of the recesses on the fiber surface.
Average width W [μm] = ΣW [μm] / n [pieces]
Average depth L [μm] = ΣL [μm] / n [pieces]
Abundance ratio [%] = ΣW [μm] / C [μm] × 100
〔平均断面充実度%〕
走査型電子顕微鏡にて繊維の断面形状を測定し、繊維の断面積をS1、図3に示すとおり、その繊維を取り囲む最小の真円の面積をS2とし、任意の断面10箇所について、以下の式により断面充実度を算出し、その平均値を求めた。
断面充実度(%)=(S1/S2)×100
[Average cross-sectional area%]
The cross-sectional shape of the fiber is measured with a scanning electron microscope, the cross-sectional area of the fiber is S1, and the area of the smallest perfect circle surrounding the fiber is S2, as shown in FIG. The degree of cross-section was calculated by the formula and the average value was obtained.
Cross-sectional quality (%) = (S1 / S2) × 100
[セメント成形板の作成方法]
(1)配合
繊維:2wt%
パルプ(セロファイバー、パルテック株):3wt%
セメント(普通ポルトランドセメント):95wt%
(2)作成
必要量の繊維、パルプ、セメント、水を加えてTAPPI離解機にて分散後、綿布上に流し込んで抄造。得られた抄造シートを型枠に10枚積層し、プレス機にて75kg/cm2の圧力で加圧脱水し、タテ20cmxヨコ25cm、厚さ0.4cmの成形板にする。これを50℃湿空下24hr養生後、20℃湿空下14日養生して得た。
[Cement molded board production method]
(1) Compounding fiber: 2wt%
Pulp (Cellofiber, Partec Co.): 3wt%
Cement (ordinary Portland cement): 95wt%
(2) Creation After adding the required amount of fiber, pulp, cement and water and dispersing with a TAPPI disintegrator, it is poured onto a cotton cloth to make paper. 10 sheets of the obtained paper sheets are laminated on a mold and dehydrated under pressure at a pressure of 75 kg / cm 2 with a press machine to form a molded plate having a length of 20 cm × width of 25 cm and a thickness of 0.4 cm. This was obtained by curing for 14 hours under a 20 ° C. wet air after curing for 24 hours under a 50 ° C. wet air.
[セメント成形板の曲げ試験]
JIS A1408に準拠し、幅2.5cm、長さ8cm、厚さ0.4cmに切り出した試験片をスパン5cmで曲げ試験を行い、MOR(Modulus of Rapture)における曲げ強度および曲げたわみで示した。尚、曲げ強度は応力ひずみ曲線の最大応力を示し、曲げたわみは最大応力時のひずみ量を示す。
曲げ強度は次の式から嵩密度1.7に規格化した補正強度を示した。
補正曲げ強度=測定曲げ強度×(1.7/嵩比重)2
(参考例1)
[Bending test of molded cement board]
In accordance with JIS A1408, a test piece cut into a width of 2.5 cm, a length of 8 cm, and a thickness of 0.4 cm was subjected to a bending test with a span of 5 cm, and indicated by bending strength and bending deflection in MOR (Modulus of Rapture). The bending strength indicates the maximum stress of the stress strain curve, and the bending deflection indicates the amount of strain at the maximum stress.
The bending strength was a corrected strength normalized to a bulk density of 1.7 from the following equation.
Corrected bending strength = Measured bending strength × (1.7 / bulk specific gravity) 2
(Reference Example 1 )
粘度平均重合度1700、鹸化度99.9モル%のPVAを濃度16.5質量%となる様に水に添加し、その後硼酸3.0質量%/PVAも添加して、90℃にて溶解し、PVA紡糸原液を得た。得られた紡糸原液を、ホール数1000のノズルを通し、離浴速度3m/分で苛性ソーダ15g/Lと芒硝350g/Lを含有する70℃の水溶液よりなる固化浴中に湿式紡糸した。その後、紡糸筒途中で容量比で75%となるように70℃の水を注入し、水注入後の固化浴組成が苛性ソーダ11g/L、芒硝が260g/Lとなるように調整して固化を遅らせた後、離浴した。次いで中和、湿延伸、水洗、乾燥を行った後、230℃で乾熱延伸を施して、PVA系繊維を得た。得られた繊維の単繊維繊度は2.0dtexであった。全延伸倍率は20倍であった。また、得られた繊維を6mmにカットし、上述のセメント成形体の製造方法に従い、成形物を得た。得られた繊維の物性を表1に、この繊維を用いて得られた成形物の物性を表2に示す。同等の繊維強度である比較例1よりも成形物の曲げ強度が高く、接着性の効果が表れていた。
(参考例2)
PVA having a viscosity average degree of polymerization of 1700 and a saponification degree of 99.9 mol% was added to water to a concentration of 16.5% by mass, and then 3.0% by mass of boric acid / PVA was added and dissolved at 90 ° C. As a result, a PVA spinning dope was obtained. The obtained spinning solution was passed through a nozzle with 1000 holes and wet-spun into a solidification bath consisting of an aqueous solution at 70 ° C. containing 15 g / L of caustic soda and 350 g / L of sodium sulfate at a separation bath speed of 3 m / min. Thereafter, water at 70 ° C. is injected so that the volume ratio becomes 75% in the middle of the spinning cylinder, and the solidification bath composition after water injection is adjusted to 11 g / L of caustic soda and 260 g / L of sodium sulfate to solidify. After delaying, he took a bath. Next, after neutralization, wet stretching, washing with water and drying, dry heat stretching was performed at 230 ° C. to obtain PVA fibers. The single fiber fineness of the obtained fiber was 2.0 dtex. The total draw ratio was 20 times. Moreover, the obtained fiber was cut into 6 mm, and a molded product was obtained according to the above-described method for producing a cement molded body. Table 1 shows the physical properties of the obtained fiber, and Table 2 shows the physical properties of a molded product obtained using this fiber. The bending strength of the molded product was higher than that of Comparative Example 1 having the same fiber strength, and the adhesive effect was exhibited.
(Reference Example 2 )
PVA紡糸原液を得る際にPVA濃度を10.0質量%としたことと、紡糸筒途中で水を注入しないこと以外は参考例1と全く同様にして繊維およびセメント成形物を得た。得られた繊維の物性を表1に、この繊維を用いて得られた成形物の物性を表2に示す。同等の繊維強度である比較例1よりも成形物の曲げ強度が高く、接着性の効果が表れていた。
(参考例3)
Fibers and cement moldings were obtained in the same manner as in Reference Example 1 except that the PVA concentration was 10.0% by mass when obtaining the PVA spinning dope and that water was not injected in the middle of the spinning cylinder. Table 1 shows the physical properties of the obtained fiber, and Table 2 shows the physical properties of a molded product obtained using this fiber. The bending strength of the molded product was higher than that of Comparative Example 1 having the same fiber strength, and the adhesive effect was exhibited.
(Reference Example 3 )
PVA紡糸原液を得る際にPVA濃度を10.0質量%としたこと以外は参考例1と全く同様にして繊維およびセメント成形物を得た。得られた繊維の物性を表1に、成形物の物性を表2に示す。同等の繊維強度である比較例1よりも成形物の曲げ強度が高く、接着性の効果が表れていた。
(実施例1)
Fibers and cement moldings were obtained in exactly the same manner as in Reference Example 1, except that the PVA concentration was 10.0% by mass when obtaining the PVA spinning dope. Table 1 shows the physical properties of the obtained fiber, and Table 2 shows the physical properties of the molded product. The bending strength of the molded product was higher than that of Comparative Example 1 having the same fiber strength, and the adhesive effect was exhibited.
( Example 1)
紡糸原液を得るに際し、四国化成工業(株)製硼酸アルミニウムウィスカー(商品名:アルボレックスY)をPVAに対して3質量%添加する以外は、参考例2と全く同様にして繊維およびセメント成形物を得た。得られた繊維の物性を表1に、成形物の物性を表2に示す。同等の繊維強度である比較例1よりも成形物の曲げ強度が高く、接着性の効果が表れていた。
(実施例2)
A fiber and cement molded product were obtained in the same manner as in Reference Example 2 except that 3% by mass of an aluminum borate whisker (trade name: Arbolex Y) manufactured by Shikoku Kasei Kogyo Co., Ltd. was added to PVA when obtaining the spinning dope. Got. Table 1 shows the physical properties of the obtained fiber, and Table 2 shows the physical properties of the molded product. The bending strength of the molded product was higher than that of Comparative Example 1 having the same fiber strength, and the adhesive effect was exhibited.
( Example 2)
紡糸原液を得るに際し、クニミネ工業(株)製モンモリロナイト(商品名:クニピアF)をPVAに対して3質量%添加する以外は、参考例2と全く同様にして繊維およびセメント成形物を得た。得られた繊維の物性を表1に、成形物の物性を表2に示す。同等の繊維強度である比較例1よりも成形物の曲げ強度が高く、接着性の効果が表れていた。 Fibers and cement moldings were obtained in exactly the same manner as in Reference Example 2 except that 3% by mass of montmorillonite (trade name: Kunipia F) manufactured by Kunimine Kogyo Co., Ltd. was added to PVA when obtaining the spinning dope. Table 1 shows the physical properties of the obtained fiber, and Table 2 shows the physical properties of the molded product. The bending strength of the molded product was higher than that of Comparative Example 1 having the same fiber strength, and the adhesive effect was exhibited.
比較例1
原液濃度を18%、離浴速度を8m/分とする以外は参考例2と全く同様にして繊維およびセメント成形物を得た。得られた繊維の物性を表1に、成形物の物性を表2に示す。皺がないため、繊維強度は高いにも関わらず、成形物の曲げ強度は低いものであった。
Comparative Example 1
Fibers and cement moldings were obtained in exactly the same manner as in Reference Example 2 except that the stock solution concentration was 18% and the bathing speed was 8 m / min. Table 1 shows the physical properties of the obtained fiber, and Table 2 shows the physical properties of the molded product. Since there was no wrinkle, the bending strength of the molded product was low although the fiber strength was high.
比較例2
実施例1において、全延伸倍率が6倍である以外は参考例2と全く同様にして繊維およびセメント成形物を得た。得られた繊維の物性を表1に、成形物の物性を表2に示す。所定の皺は得られているが、繊維強度が低いため、成形物の曲げ強度は低く、曲げたわみも低いものであった。
Comparative Example 2
In Example 1, fibers and cement moldings were obtained in the same manner as in Reference Example 2 except that the total draw ratio was 6. Table 1 shows the physical properties of the obtained fiber, and Table 2 shows the physical properties of the molded product. Although a predetermined wrinkle was obtained, since the fiber strength was low, the bending strength of the molded product was low, and the bending deflection was also low.
1 凹部
2 繊維断面模式図(断面積:S1)
3 繊維断面を取り囲む最小の真円(面積:S2)
1 Concave part 2 Fiber cross-sectional schematic diagram (cross-sectional area: S1)
3 The smallest perfect circle that surrounds the fiber cross section (area: S2)
Claims (4)
(1)前記筋状の凹部の平均深さが0.05〜2μmであること
(2)前記筋状の凹部の開口部の平均幅が0.1〜4μmであること
(3)前記筋状の凹部の存在比が5%以上であること
(4)破断強度が8cN/dtex以上であること A polyvinyl alcohol-based fiber having a streak-shaped recess along the length of the fiber on the fiber surface and satisfying the following (1) to (4), which contains a compound having an aspect ratio of 2 or more, A polyvinyl alcohol fiber, wherein the compound having an aspect ratio of 2 or more is a whisker-like material or a smectite clay compound .
(1) The average depth of the streak-shaped recess is 0.05 to 2 μm (2) The average width of the opening of the streak-shaped recess is 0.1 to 4 μm (3) The streak (4) The breaking strength is 8 cN / dtex or more.
(1)前記筋状の凹部の平均深さが0.05〜2μmであること
(2)前記筋状の凹部の開口部の平均幅が0.1〜4μmであること
(3)前記筋状の凹部の存在比が5%以上であること
(4)破断強度が8cN/dtex以上であること Including a step of solidifying a polyvinyl alcohol spinning dope in a solidification bath having a high solidification property, and a step of solidifying in a solidification bath having a low solidification property thereafter, a streak-like concave portion is formed on the fiber surface along the length direction of the fiber. A method for producing a polyvinyl alcohol fiber, which satisfies the following (1) to (4).
(1) The average depth of the streak-shaped recess is 0.05 to 2 μm (2) The average width of the opening of the streak-shaped recess is 0.1 to 4 μm (3) The streak (4) The breaking strength is 8 cN / dtex or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014059654A JP6375125B2 (en) | 2014-03-24 | 2014-03-24 | Polyvinyl alcohol fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014059654A JP6375125B2 (en) | 2014-03-24 | 2014-03-24 | Polyvinyl alcohol fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015183307A JP2015183307A (en) | 2015-10-22 |
JP6375125B2 true JP6375125B2 (en) | 2018-08-15 |
Family
ID=54350190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014059654A Active JP6375125B2 (en) | 2014-03-24 | 2014-03-24 | Polyvinyl alcohol fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6375125B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113185222B (en) * | 2021-04-23 | 2022-07-15 | 河北孚领商品混凝土有限公司 | Concrete for building reinforcement and preparation method and application thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2982151B2 (en) * | 1990-04-11 | 1999-11-22 | 株式会社クラレ | High-strength polyvinyl alcohol-based synthetic fiber with fine irregularities |
JPH11100716A (en) * | 1997-09-22 | 1999-04-13 | Kuraray Co Ltd | High strength fiber with large diameter and its production |
-
2014
- 2014-03-24 JP JP2014059654A patent/JP6375125B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015183307A (en) | 2015-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI290593B (en) | Polyvinyl alcohol fibers, and nonwoven fabric comprising them and method for manufacture nonwoven fabric | |
AU2018235910A1 (en) | Regenerated cellulosic fibres spun from an aqueous alkaline spindope | |
Liu et al. | Liquid crystal microphase separation of cellulose nanocrystals in wet-spun PVA composite fibers | |
JP6134327B2 (en) | Regenerated cellulose fiber | |
TWI583651B (en) | Cement reinforcing fiber and cement hardened body using the same | |
JP5770091B2 (en) | Fiber-cement product compositions and shaped products obtained therefrom | |
CN107207345A (en) | Improved polypropylene fibre, the method for manufacturing the fiber and its purposes for being used to produce fiber cement products | |
JP5096203B2 (en) | Method for producing polypropylene fiber having excellent heat resistance and strength | |
JP6375125B2 (en) | Polyvinyl alcohol fiber | |
JP2002541048A (en) | Synthetic fiber and cement-based tissue containing the same | |
JPS6232144B2 (en) | ||
Uddin et al. | A novel approach to reduce fibrillation of PVA fibres using cellulose whiskers | |
KR20160038800A (en) | Crimped Lyocell Fiber | |
JP3828550B2 (en) | Polyvinyl alcohol fiber and non-woven fabric using the same | |
JP2015172121A (en) | Production method of cellulosic resin composite | |
JP4990827B2 (en) | Hydraulic composition and cured product | |
RU2457290C2 (en) | Polypropylene fibres, production methods thereof and use thereof | |
KR20110098604A (en) | Eco-friendly incombustible biocomposite | |
JP2565517B2 (en) | Fiber reinforced hydraulic molding | |
JPH0469098B2 (en) | ||
JP4364343B2 (en) | Kneaded molded hydraulic material reinforcing material and kneaded molded body | |
JP2004308038A (en) | Low-density wet type nonwoven fabric | |
JP6309798B2 (en) | Reinforcing fiber | |
JP3227234B2 (en) | Hydraulic inorganic molded products | |
JP2023016362A (en) | Method for producing molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171031 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20171226 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180206 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180710 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180723 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6375125 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |