JP2565517B2 - Fiber reinforced hydraulic molding - Google Patents

Fiber reinforced hydraulic molding

Info

Publication number
JP2565517B2
JP2565517B2 JP62274784A JP27478487A JP2565517B2 JP 2565517 B2 JP2565517 B2 JP 2565517B2 JP 62274784 A JP62274784 A JP 62274784A JP 27478487 A JP27478487 A JP 27478487A JP 2565517 B2 JP2565517 B2 JP 2565517B2
Authority
JP
Japan
Prior art keywords
fiber
fibers
pva
cross
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62274784A
Other languages
Japanese (ja)
Other versions
JPH01115853A (en
Inventor
昭雄 溝辺
知男 佐伯
功 桜木
正一 西山
秀樹 保城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP62274784A priority Critical patent/JP2565517B2/en
Priority to EP88117568A priority patent/EP0313068B1/en
Priority to ES88117568T priority patent/ES2077560T3/en
Priority to DE19883854253 priority patent/DE3854253T2/en
Publication of JPH01115853A publication Critical patent/JPH01115853A/en
Application granted granted Critical
Publication of JP2565517B2 publication Critical patent/JP2565517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、偏平な断面を有し、かつ結晶の長さと幅の
比が大きいポリビニルアルコール系合成繊維(以下PVA
系繊維と略記する)を補強材とする繊維強化水硬性成形
物(以下FRCと略記する)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention relates to a polyvinyl alcohol-based synthetic fiber (hereinafter referred to as PVA) having a flat cross section and a large crystal length / width ratio.
The present invention relates to a fiber-reinforced hydraulic molded product (hereinafter abbreviated as FRC) having a reinforcing material of (a type fiber).

<従来の技術> 従来よりFRCの補強材としてアスベストが最も一般的
に用いられているが、近年アスベストの発癌性が明らか
にされ、その使用規制がすすむ中で、その代替材として
PVA系繊維、アクリル繊維等の各種合成繊維およびスチ
ール繊維やガラス繊維等の無機繊維が提案されており、
中でもPVA系繊維は耐アルカリ性が良好で比較的に機械
的物性に優れているため好ましく用いられている。
<Prior art> Asbestos has been most commonly used as a reinforcing material for FRC, but as the carcinogenicity of asbestos has been revealed in recent years and its use is being regulated, it is used as an alternative material.
Various synthetic fibers such as PVA-based fibers and acrylic fibers, and inorganic fibers such as steel fibers and glass fibers have been proposed,
Among them, PVA fibers are preferably used because they have good alkali resistance and relatively excellent mechanical properties.

しかしながらこのように優れたPVA系繊維といえども
以下に示すような補強用繊維に要求される性能を充分に
満足するに到らず、従ってこれを補強材として用いたFR
Cもまた満足できるものではなかった。
However, even with such excellent PVA-based fiber, the performance required for the reinforcing fiber as shown below has not been sufficiently satisfied, and therefore FR using this as a reinforcing material is used.
C was also unsatisfactory.

補強用繊維に要求される性能は、第1に高強度・高弾
性であるといわれている。繊維が充分な強度・弾性を有
していない場合には、得られる繊維補強成形物は当然の
ことながら強靭性を有しないことになる。
The performance required of the reinforcing fiber is said to be firstly high strength and high elasticity. When the fibers do not have sufficient strength and elasticity, the resulting fiber-reinforced molded product naturally does not have toughness.

第2に要求される性能は、補強繊維がセメントで代表
される水硬性物質との接着性に優れていることとされて
いる。補強繊維と水硬性物質との接着が不充分な場合、
繊維補強成形体は、外部からの応力に対し補強繊維の強
度・弾性が充分に利用されず補強効果が得られないまま
クラツクや破壊が生ずることになる。繊維と水硬性物質
との接着性を向上させるには繊維の表面積を大きくする
ことが有効であり、具体的には繊維断面の偏平化、異形
化、細デニール化等の方法がある。
Secondly, the performance required is that the reinforcing fiber has excellent adhesiveness to a hydraulic substance represented by cement. If the adhesion between the reinforcing fiber and the hydraulic material is insufficient,
In the fiber-reinforced molded product, the strength and elasticity of the reinforcing fiber are not sufficiently utilized against external stress, and cracking or breakage occurs without the reinforcing effect being obtained. It is effective to increase the surface area of the fiber in order to improve the adhesion between the fiber and the hydraulic substance, and specifically, there are methods such as flattening, deforming, and fine denier of the cross section of the fiber.

PVA系繊維の製造方法のうち最も代表的な方法は、PVA
水溶液を脱水能を有する塩類を含む常温の凝固浴中に湿
式紡糸し、延伸、熱処理し、必要に応じてアセタール化
を行う方法である。この方法で得られるPVA系繊維は、
よく知られているようにスキン・コアの二層構造を有す
るまゆ形断面で比較的大きな表面積を有しているもの
の、全延伸倍率8倍程度にしか延伸できず強度は約7g/d
にすきず、強度の点から補強用繊維としては到底満足で
きるものではない。
The most typical method for producing PVA-based fibers is PVA
It is a method in which an aqueous solution is wet-spun in a coagulation bath at room temperature containing salts having a dehydrating ability, drawn, heat-treated, and optionally acetalized. PVA fiber obtained by this method,
As is well known, it has a relatively large surface area with a cocoon-shaped cross section having a two-layer structure of skin and core, but it can be stretched only to a total stretching ratio of about 8 times and its strength is about 7 g / d.
It is not satisfactory as a reinforcing fiber from the viewpoint of dust and strength.

またより高強度のPVA系繊維を得る方法として、特公
昭48−32623号、特公昭53−1368号、特開昭60−126312
号及び特開昭61−108712号等の各公報で提案された方法
がある。しかしながらこれらの方法で得られる繊維は、
強度・弾性が大幅に改善されているものの非常に均質で
あるため断面が円形に近く、表面積が小さいものであ
る。一般に補強繊維の強度が増すにつれ限界繊維長が長
くなるため、応力を受けたときに抜けが生じやすくな
る。かかる繊維も、限界繊維長が長くかつ表面積が小さ
いため、繊維の強度の割には思つた程補強効果が得られ
ないのである。
Further, as a method for obtaining a PVA-based fiber having higher strength, Japanese Patent Publication No. 48-32623, Japanese Patent Publication No. 53-1368, and Japanese Patent Publication No. 60-126312.
And Japanese Patent Laid-Open No. 61-108712. However, the fibers obtained by these methods are
Although the strength and elasticity are greatly improved, it is very homogeneous and has a cross section close to a circle and a small surface area. In general, as the strength of the reinforcing fiber increases, the limit fiber length becomes longer, so that the fiber tends to come off when stress is applied. Since such fibers also have a long critical fiber length and a small surface area, a reinforcing effect cannot be obtained as expected for the strength of the fibers.

一方、意図的に繊維の表面積を大きくする手段とし
て、異型ノズルを用いて紡糸し断面を異形化する方法が
あるが、この方法で得られた繊維は機械的物性に劣りFR
Cとしては満足のいくものではない。また繊維のデニー
ルを小さくすることによつても単位量当りの表面積を大
きくすることができるが、この場合セメントスラリー中
での分散性が悪化するためFRCの機械的物性は向上しな
い。
On the other hand, as a means to intentionally increase the surface area of the fiber, there is a method in which the cross-section is modified by spinning using a modified nozzle, but the fiber obtained by this method is inferior in mechanical physical properties.
Not as satisfactory as C. Further, by decreasing the denier of the fiber, the surface area per unit amount can be increased, but in this case, the dispersibility in the cement slurry is deteriorated and the mechanical properties of FRC are not improved.

以上の如く、従来の繊維は補強用繊維に要求される2
つの性能を兼備しておらず、従つて得られるFRCの機械
的物性も十分満足できるものではなかつたのである。
As described above, conventional fibers are required to be reinforcing fibers.
It does not combine the two performances, and the mechanical properties of the FRC obtained accordingly cannot be fully satisfied.

<発明が解決しようとする問題点> 本発明は、機械的物性の優れたFRCを提供することを
目的とするものである。
<Problems to be Solved by the Invention> The present invention aims to provide an FRC having excellent mechanical properties.

<問題点を解決するための手段> 本発明者らは、優れた機械的物性を有するFRCを開発
するために種々のPVA系繊維の補強効果について検討し
た結果、補強効果は、補強繊維の強度・弾性率よりも、
なぜかはわからないが、繊維の結晶の長さ(L)と幅
(W)の比(以後L/Wと略記する)の方がより密接に関
係し、充分な補強効果を得るにはL/Wが2.1以上で、かつ
断面充実度が65%以下であることが不可欠であり、好ま
しくはL/Wが2.3以上で断面充実度が60%以下あることを
見出し本発明に至つた。繊維の結晶の長さLはその繊維
の機械的物性及び補強効果とはあまり相関がなく、L/W
としてはじめて強い相関が現われるのである。
<Means for Solving Problems> As a result of examining the reinforcing effect of various PVA-based fibers in order to develop an FRC having excellent mechanical properties, the present inventors found that the reinforcing effect is the strength of the reinforcing fiber.・ Rather than elastic modulus
I do not know why, but the ratio of the length (L) to the width (W) of the fiber crystals (hereinafter abbreviated as L / W) is more closely related and L / W is sufficient to obtain a sufficient reinforcing effect. The present invention has been found out that it is essential that W is 2.1 or more and the cross-sectional solidity is 65% or less, preferably L / W is 2.3 or more and the cross-sectional solidity is 60% or less. The length L of the crystal of the fiber has little correlation with the mechanical properties of the fiber and the reinforcing effect, and L / W
For the first time, a strong correlation appears.

本発明で用いられるPVA系繊維の有効な製造方法は、
硼酸または硼酸塩を含有するPVA水溶液を紡糸原液と
し、脱水能を有する塩類を含む55〜95℃のアルカリ性凝
固浴に湿式紡糸し、得られた紡糸原糸を17倍以上の延伸
倍率で延伸を行う方法である。かかる方法は、従来20〜
50℃の凝固浴温度で実施されているのに対し、これを55
〜95℃と高温にすることを特徴とするものである。得ら
れる繊維は、断面が偏平であり、また繊維のL/Wが大き
くなつて繊維の機械的性質も著しく向上する。その理由
についてはよくわからないが、従来の紡糸方法とは凝固
機構が全く異なるものと考えられる。
Effective manufacturing method of the PVA fiber used in the present invention,
A PVA aqueous solution containing boric acid or borate is used as a spinning dope, and wet spinning is performed in an alkaline coagulation bath at 55 to 95 ° C containing salts having a dehydrating ability, and the obtained spinning dope is drawn at a draw ratio of 17 times or more. Is the way to do it. Such a method is conventionally 20-
Compared to the coagulation bath temperature of 50 ° C, this is 55
It is characterized by raising the temperature to ~ 95 ° C. The obtained fiber has a flat cross section, and the L / W of the fiber increases, so that the mechanical properties of the fiber are significantly improved. Although the reason is not well understood, it is considered that the solidification mechanism is completely different from the conventional spinning method.

以下本発明で用いられるPVA系繊維の製造方法の1例
を詳細に説明する。
Hereinafter, one example of the method for producing the PVA fiber used in the present invention will be described in detail.

用いるPVAの重合度は1500以上、好ましくは2000以
上、更に好ましくは3000以上である。
The degree of polymerization of the PVA used is 1500 or more, preferably 2000 or more, and more preferably 3000 or more.

紡糸原液は、該PVAの5〜30重量%の濃度の水溶液
で、硼酸または硼酸塩を該PVAに対し、0.5〜5重量%含
有するものでPVAの濃度は好ましくは6〜25重量%、更
に好ましくは7〜18重量%であつて、PVAの重合度に応
じて適宜調節するのが好ましい。
The spinning solution is an aqueous solution having a concentration of 5 to 30% by weight of the PVA, containing 0.5 to 5% by weight of boric acid or borate with respect to the PVA, and the concentration of PVA is preferably 6 to 25% by weight, It is preferably from 7 to 18% by weight, and it is preferable to adjust it appropriately according to the degree of polymerization of PVA.

紡糸原液温度は85〜125℃、好ましくは95〜120℃であ
り、低すぎると延伸性を阻害し、高すぎると原液の沸騰
をきたす。また紡糸調子を安定化させるため、酢酸など
の有機酸または硝酸等の無機酸を紡糸原液に適当量添加
することもできる。
The spinning dope temperature is 85 to 125 ° C., preferably 95 to 120 ° C. If it is too low, the drawability is hindered, and if it is too high, the stock solution boils. To stabilize the spinning condition, an appropriate amount of an organic acid such as acetic acid or an inorganic acid such as nitric acid can be added to the spinning solution.

凝固浴の温度は55〜95℃、好ましくは60〜80℃であ
る。55℃以下では繊維の断面があまり偏平とならず、ま
たL/Wが大きくならない。一方95℃以上では、凝固浴の
沸騰及び単繊維間で膠着が生じるため好ましくない。
The temperature of the coagulation bath is 55 to 95 ° C, preferably 60 to 80 ° C. Below 55 ° C, the fiber cross section does not become flat and L / W does not increase. On the other hand, if the temperature is 95 ° C or higher, it is not preferable because boiling of the coagulating bath and sticking between the single fibers occur.

凝固浴のアルカリ成分としては水酸化ナトリウム、水
酸化カリウム等の苛性アルカリが用いられ、その濃度は
2〜200g/、好ましくは5〜50g/である。また、凝
固浴の塩類成分としては硫酸ナトリウム、炭酸ナトリウ
ム等の脱水能を有する塩が用いられ、濃度は100g/〜
飽和濃度であり、飽和に近い方が好ましい。
A caustic alkali such as sodium hydroxide or potassium hydroxide is used as the alkali component of the coagulation bath, and the concentration thereof is 2 to 200 g /, preferably 5 to 50 g /. As the salt component of the coagulation bath, a salt having a dehydrating ability such as sodium sulfate and sodium carbonate is used, and the concentration is 100 g / ~
It is a saturated concentration, and it is preferable that the concentration is close to saturation.

紡糸ノズルは通常の円型ノズルあるいはそれに近い形
状のノズルが用いられる 紡糸後の繊維はアルカルの中和、湿熱延伸、水洗、乾
燥、延伸、熱処理を常法に従つて実施すればよいが少な
くとも17倍以上、好ましくは20倍以上の延伸を行なう必
要がある。延伸倍率を大きくする程L/Wが大きくなり、1
7倍未満ではL/Wが2.1に達しない。
As the spinning nozzle, an ordinary circular nozzle or a nozzle having a shape similar to that is used. For the fiber after spinning, neutralization of alcal, wet heat drawing, washing with water, drying, drawing and heat treatment may be carried out in accordance with a usual method, but at least 17 It is necessary to perform stretching at least twice, preferably at least 20 times. The larger the draw ratio, the larger the L / W.
If it is less than 7 times, the L / W will not reach 2.1.

かかる補強性に優れたPVA繊維は成形物の製法や工法
等に応じていかなる形態においても利用できる。例え
ば、シヨートカツトした単繊維やチヨツプドストランド
でもよいし、フイラメントヤーン状または集束したフイ
ラメントヤーンを長繊維状で利用したり、或いはいわゆ
るフアイバーロツドで利用してもよい。さらに不織布、
マツト状物、メツシユ状物、ニツト状物、二次元或いは
三次元織物等として用いることもできる。またかかるPV
A繊維は鉄筋を併用することもできるし、ガラス繊維、
スチール繊維、アクリル繊維等とハイブリツドで使用す
ることもできる。
The PVA fiber excellent in the reinforcing property can be used in any form depending on the manufacturing method or the construction method of the molded product. For example, a single fiber or a chopped strand that has been cut and cut may be used, or filament yarns or bundled filament yarns may be used in the form of long fibers, or may be used in so-called fiber rods. Further non-woven fabric,
It can also be used as a mat-like material, a mesh-like material, a knit-like material, a two-dimensional or three-dimensional fabric, and the like. PV that takes again
A fiber can be used in combination with rebar, glass fiber,
It can also be used as a hybrid with steel fibers, acrylic fibers and the like.

一方、成形物の製法は何等特別な方法をとる必要はな
く、一般的なFRCの製法でよい。例えば、薄板の場合の
典型的な製法は湿式抄造法でありハチエツク法が代表例
である。
On the other hand, it is not necessary to use any special method for producing the molded product, and a general FRC production method may be used. For example, in the case of a thin plate, a typical production method is a wet papermaking method, and a typical example is the hachiek method.

モルタルやコンクリート等の場合、現場成形法とし
て、打設、吹付け成形、注入成形法等がある。また工場
成形では、振動成形、遠心力成形、押出成形法等があ
る。
In the case of mortar, concrete, etc., there are casting, spray molding, injection molding, etc. as the on-site molding method. Further, in factory molding, there are vibration molding, centrifugal molding, extrusion molding and the like.

本発明の水硬性成形物における該PVA系繊維の添加率
は0.2〜20重量%、好ましくは1〜5重量%である。ま
た短繊維として用いる場合のアクペスト比は50〜2000、
好ましくは150〜600である。
The addition ratio of the PVA fiber in the hydraulic molded product of the present invention is 0.2 to 20% by weight, preferably 1 to 5% by weight. Also, when used as short fibers, the ASPECT ratio is 50 to 2000,
It is preferably 150 to 600.

本発明の水硬性物質としては、セメントが典型的なも
のであり、ポルトランドセメントがその代表的なもので
あるが、高炉セメント、フライタツシユセメント、アル
ミナセメント等も用いることができるし、また、これら
を混合して用いてもよい。さらにこれらのセメントと砂
や砂利を混合してモルタルやコンクリートとして用いる
こともできる。その他の水硬性物質としてはセツコウ、
セツコウスラグ、マグネシア等があるが、水硬性物質で
ありさえすれば何でもよい。
As the hydraulic material of the present invention, cement is a typical one, and Portland cement is a typical one, but blast furnace cement, fly tattoo cement, alumina cement and the like can also be used, and, You may mix and use these. Further, these cements can be mixed with sand or gravel to be used as mortar or concrete. Other hydraulic materials include Setsukou,
There are setucous rug, magnesia, etc., but any material can be used as long as it is a hydraulic substance.

またマイカ、セピオライト、アタパルジヤイト等の助
剤を用いることができる。
Further, auxiliary agents such as mica, sepiolite and attapulgite can be used.

<発明の効果> 本発明のFRCは、従来のFRCに比べ、L/Wが大きくかつ
断面充実度が65%以下というように偏平断面で大きな表
面積を有するPVA系繊維で補強されているため、卓越し
た機械的性質を有しており、スレート板、パイプ類、ブ
ロツク、壁パネル、床パネル、屋根材、間仕切り、道路
舗装、トンネルライニング、法面保護等のすべてのセメ
ント、コンクリート成形物や2次製品に用いることがで
きる。
<Effects of the Invention> The FRC of the present invention is reinforced by PVA-based fibers having a large surface area with a flat cross section such that the L / W is large and the cross-section solidity is 65% or less as compared with the conventional FRC, It has excellent mechanical properties and is used for all cements, concrete moldings such as slate boards, pipes, blocks, wall panels, floor panels, roofing materials, partitions, road paving, tunnel linings, slope protection, etc. It can be used for the next product.

以下実施例によつて更に具体的に説明する。なお本発
明で規定する断面充実度(断面の偏平さの度合であつ
て、数値の小さい方が偏平である)、結晶の長さと幅の
比(L/W)、繊維の機械的性質およびセメント成形体
(スレート板)の曲げ強度は以下の方法で測定されるも
のである。
Hereinafter, the present invention will be described more specifically with reference to Examples. The cross-sectional solidity (the degree of flatness of the cross-section, the smaller the numerical value is flatness), the ratio of the length of the crystal to the width (L / W), the mechanical properties of the fiber and the cement specified in the present invention. The bending strength of the molded body (slate plate) is measured by the following method.

○断面充実度 繊維の断面写真を約100mm2に拡大描写しその断面積F
を求める。
○ enlarged depict cross-sectional photograph of a cross section adequacy fibers about 100 mm 2 cross-sectional area F
Ask for.

次に断面中最も広い幅Bを求め次式により算出した。 Next, the widest width B in the cross section was obtained and calculated by the following formula.

尚1本のマルチフイラメントヤーンから任意取り出し
た20本の単繊維についてこれを求め、その平均値を以て
該マルチフイラメントヤーンを構成する繊維の断面充実
度と規定する。
In addition, this value is obtained for 20 single fibers arbitrarily taken out from one multifilament yarn, and the average value thereof is defined as the cross-sectional integrity of the fibers constituting the multifilament yarn.

○結晶の長さと幅の比(L/W) 公知の広角X線回折法により次の条件で測定した。○ Ratio of crystal length to width (L / W) It was measured under the following conditions by a known wide-angle X-ray diffraction method.

広角X線 (1)理学電機(株)製回転対陰極形X線回折装置 (Type RAD−rA)で40kV、100mA CuKα(グラフアイトモノクロメーター) シンチレーションカウンター使用 (2)ゴニオメーター スリツト系:DS 1/2゜,SS 1/2゜,RS 0.15mm 走査速度:2θ=1/2゜/分 (3)試料(125mgの繊維を長さ2.5cm、巾1.5cmに平行
に並べたもの)を繊維試料台に取り付け、透過法にて面
指数(020),(100)の回折曲線を測定し、各曲線の半
価幅B(hkl)を得た。
Wide-angle X-ray (1) Rigaku Denki Co., Ltd. rotating anticathode type X-ray diffractometer (Type RAD-rA) with 40kV, 100mA CuKα (Graphite Monochromator) scintillation counter (2) Goniometer slit system: DS 1 / 2 °, SS 1/2 °, RS 0.15mm Scanning speed: 2θ = 1/2 ° / min (3) Sample (fiber of 125 mg arranged in parallel with 2.5 cm in length and 1.5 cm in width) The sample was mounted on a sample table, and the diffraction curves of surface indices (020) and (100) were measured by the transmission method to obtain the half-value width B (hkl) of each curve.

結晶サイズの比(L/w) 上記透過法により得られた面指数(020),(100)の
ピークの半価幅B(hkl)の値からScherrerの式を用い
て各々の結晶サイズを算出した。
Ratio of crystal size (L / w) Calculate each crystal size from Scherrer's formula from the value of half-value width B (hkl) of peaks of plane index (020) and (100) obtained by the above transmission method. did.

D(hkl)=Kλ/Bo(hkl)COSθ(hkl) 但し K=0.9 λ=1.5418(Å) Bo:Jonesの方法によるスリツトの補正後の回折曲線の広
がり(radian) θ(hkl):ブラツグ角(deg.) L/W=D(020)/D(100)として求めた。
D (hkl) = Kλ / Bo (hkl) COSθ (hkl) where K = 0.9 λ = 1.5418 (Å) The spread of the diffraction curve after correction of the slit by the method of Bo: Jones (radian) θ (hkl): Bragg angle (Deg.) L / W = D (020) / D (100).

○乾破断強伸度、初期弾性率 (1)試 料……マルチフイラメントヤーン (2)乾破断強伸度、初期弾性率……温度20℃、相対湿
度65%の雰囲気下でJIS−1017に準拠し、試長20cm引張
り速度10cm/分でインストロン試験機にて測定、初期弾
性率はその伸長〜荷重曲線より求めた。
○ Dry rupture strength / elongation, initial elastic modulus (1) Sample …… Multifilament yarn (2) Dry rupture strength / elongation, initial elasticity …… Temperature of 20 ℃ and relative humidity of 65% In accordance with the test, a test length of 20 cm and a pulling speed of 10 cm / min were measured with an Instron tester, and the initial elastic modulus was determined from its elongation-load curve.

○スレート板の曲げ強度 JIS K6911に準拠して、インストロン試験機にて測定
した。
Bending strength of slate plate Measured with an Instron tester according to JIS K6911.

実施例1〜2、比較例1 重合度3500の完全ケン化PVAを水に9重量%の濃度に
溶解し、これに硼酸をPVAに対して3.5重量%加え、紡糸
原液を調整した。次にこの紡糸原液を105℃に加熱し、
水酸化ナトリウム15g/、硫酸ナトリウム350g/から
なる60℃(実施例1)、70℃(実施例2)、30℃(比較
例1)の各温度の凝固浴に1000ホールの円形ノズルを有
する口金を通じて紡糸し、6m/分の速度で離浴せしめ
た。引続きローラー延伸、中和、湿熱延伸、水洗及び乾
燥を行なつた後、230℃で乾燥延伸して1800d/1000fのマ
ルチフイラメントヤーンを得た。全延伸倍率は22.5(実
施例1)、26.8(実施例2)、14.6(比較例1)であつ
た。
Examples 1 and 2, Comparative Example 1 Fully saponified PVA having a degree of polymerization of 3500 was dissolved in water to a concentration of 9% by weight, and boric acid was added to the PVA at 3.5% by weight to prepare a spinning dope. Next, this spinning solution is heated to 105 ° C.,
A base having a 1000-hole circular nozzle in a coagulation bath consisting of 15 g of sodium hydroxide / 350 g of sodium sulfate / 60 ° C. (Example 1), 70 ° C. (Example 2) and 30 ° C. (Comparative Example 1). Was spun through, and the bath was allowed to separate at a speed of 6 m / min. Subsequently, roller drawing, neutralization, wet heat drawing, washing with water and drying were carried out, and then dry drawing was carried out at 230 ° C. to obtain a 1800 d / 1000 f multifilament yarn. The total draw ratio was 22.5 (Example 1), 26.8 (Example 2), and 14.6 (Comparative Example 1).

各繊維を6mmの長さに切断し、ハチエツクマシンにて
該繊維2部、パルプ4部、ポルトランドセメント94部の
配合にて湿式抄造し、15日間の自然養生を経て厚さ5mm
のスレート板を作製した。
Each fiber is cut into a length of 6 mm, wet-machined with a Hachiekku machine by mixing 2 parts of the fiber, 4 parts of the pulp, and 94 parts of Portland cement, and after 5 days of natural curing, a thickness of 5 mm.
The slate board of was produced.

それぞれの繊維とスレート板の物性を第1表に示す。 Table 1 shows the physical properties of each fiber and the slate plate.

この例からわかるように、本発明のFRCは卓越した機
械的性質を有している。
As can be seen from this example, the FRC of the present invention has outstanding mechanical properties.

比較例2 乾燥までは実施例2と同じ方法で紡糸し、乾湿延伸率
を減じて延伸倍率を16倍とし、断面充実度36%、L/W 2.
0、単糸デニール1.8d、破断強度12.8g/d、弾性率280g/d
の繊維を得た。これを6mmの長さに切断し、前記方法で
スレート板を作製した。このスレート板の、曲げ強度は
第1表に示すように290kg/cm2で、実施例2よりもはる
かに劣るものであつた。
Comparative Example 2 Spinning was carried out in the same manner as in Example 2 until drying, and the dry-wet draw ratio was reduced to a draw ratio of 16 times, the cross-sectional solidity was 36%, L / W 2.
0, single yarn denier 1.8d, breaking strength 12.8g / d, elastic modulus 280g / d
Fibers were obtained. This was cut into a length of 6 mm, and a slate plate was produced by the above method. The bending strength of this slate plate was 290 kg / cm 2 as shown in Table 1, which was far inferior to that of Example 2.

比較例3 重合度3500の完全ケン化PVAを10重量%の濃度でジメ
チルスルホキシドに溶解して紡糸原液とし、これを50ホ
ールのノズルから10℃のメタノール凝固浴に乾・湿式紡
糸した。得られた紡糸原糸は脱溶媒しつつ、6倍の湿延
伸を行ない乾燥させた。次いで240℃で乾熱延伸を実施
し、全延伸倍率を24倍とした。得られた繊維のデニール
は1.8でその断面充実度は92%と非常に高くほぼ円形で
あつた。またL/Wは2.6と大きく強度21.0g/d、弾性率530
g/dであつた。この繊維を6mmの長さに切断し、前記方法
でスレート板を作製した。
Comparative Example 3 A fully saponified PVA having a degree of polymerization of 3500 was dissolved in dimethylsulfoxide at a concentration of 10% by weight to prepare a spinning stock solution, which was dry-wet spun from a 50-hole nozzle into a methanol coagulation bath at 10 ° C. The obtained spun raw yarn was subjected to 6-fold wet drawing while being desolvated and dried. Next, dry heat drawing was carried out at 240 ° C., and the total draw ratio was 24 times. The denier of the obtained fiber was 1.8, and its cross-section solidity was 92%, which was very high and was almost circular. The L / W is 2.6, which is a strength of 21.0 g / d and elastic modulus of 530.
It was g / d. This fiber was cut into a length of 6 mm, and a slate plate was produced by the above method.

このスレート板の曲げ強度は前記第1表に示すように
350kg/cm2で、補強用繊維の強度の割には機械的性質の
劣るものであつた。
The bending strength of this slate plate is as shown in Table 1 above.
At 350 kg / cm 2 , the mechanical properties were inferior for the strength of the reinforcing fiber.

また実施例1,2及び比較例1〜3の全てのFRCについ
て、曲げ強度測定後のサンプルの破断面を電子顕微鏡で
観察したところ、比較例1と3に、補強用繊維が切断さ
れずに引き抜きが生じていたが、比較例3の方がより顕
著に認められた。
Further, for all the FRCs of Examples 1 and 2 and Comparative Examples 1 to 3, when the fracture surface of the sample after bending strength measurement was observed with an electron microscope, it was found that the reinforcing fibers were not cut in Comparative Examples 1 and 3. Although withdrawal occurred, Comparative Example 3 was more noticeable.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 保城 秀樹 岡山県岡山市海岸通1丁目2番1号 株 式会社クラレ内 審査官 井上 雅博 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Hojo 1-2-1 Kaigandori, Okayama City, Okayama Prefecture Kuraray Co., Ltd. Examiner Masahiro Inoue

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】断面充実度が65%以下であり、かつ結晶の
長さと幅の比が2.1以上であるポリビニルアルコール系
合成繊維を補強材とする繊維強化水硬性成形物。
1. A fiber-reinforced hydraulically-molded article comprising a polyvinyl alcohol-based synthetic fiber as a reinforcing material, which has a cross-sectional solidity of 65% or less and a crystal length / width ratio of 2.1 or more.
JP62274784A 1987-10-22 1987-10-29 Fiber reinforced hydraulic molding Expired - Fee Related JP2565517B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62274784A JP2565517B2 (en) 1987-10-29 1987-10-29 Fiber reinforced hydraulic molding
EP88117568A EP0313068B1 (en) 1987-10-22 1988-10-21 Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles
ES88117568T ES2077560T3 (en) 1987-10-22 1988-10-21 FIBERS OF POLYVINYL ALCOHOL OF FINE CROSS SECTION, AND USE FOR REINFORCED ITEMS.
DE19883854253 DE3854253T2 (en) 1987-10-22 1988-10-21 Polyvinyl alcohol fibers with thin cross-section and application for reinforced articles.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62274784A JP2565517B2 (en) 1987-10-29 1987-10-29 Fiber reinforced hydraulic molding

Publications (2)

Publication Number Publication Date
JPH01115853A JPH01115853A (en) 1989-05-09
JP2565517B2 true JP2565517B2 (en) 1996-12-18

Family

ID=17546514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62274784A Expired - Fee Related JP2565517B2 (en) 1987-10-22 1987-10-29 Fiber reinforced hydraulic molding

Country Status (1)

Country Link
JP (1) JP2565517B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09109129A (en) * 1995-10-18 1997-04-28 Asahi Concrete Works Co Ltd Perforated concrete product, method and apparatus for manufacturing the product and extracting form for its manufacture
JP4667998B2 (en) * 2004-08-11 2011-04-13 株式会社クラレ Non-asbestos hydraulic paperboard

Also Published As

Publication number Publication date
JPH01115853A (en) 1989-05-09

Similar Documents

Publication Publication Date Title
FI105912B (en) Fiber-reinforced moldings
JPS6028775B2 (en) Fiber-reinforced cementitious material free of asbestos and glass fibers
TWI583651B (en) Cement reinforcing fiber and cement hardened body using the same
WO2010037628A1 (en) Fibre-cement product compositions and shaped products obtained therefrom
JPH0216258B2 (en)
JPH0140785B2 (en)
JP2565517B2 (en) Fiber reinforced hydraulic molding
US5380588A (en) Polyvinyl alcohol-based synthetic fiber
JPS6232144B2 (en)
JP2948884B2 (en) Fiber reinforced hydraulic molding
JP2867087B2 (en) Polypropylene fiber and fiber reinforced cement molding
JPH0733273B2 (en) Fiber-reinforced cement cured product
JP6375125B2 (en) Polyvinyl alcohol fiber
JPH08239252A (en) Hydraulic molded product and its production
JP4364343B2 (en) Kneaded molded hydraulic material reinforcing material and kneaded molded body
JPH05262545A (en) Fiber-reinforced hydraulic molding
JPH0450403B2 (en)
JPH0469098B2 (en)
JPS6251906B2 (en)
JP2002029793A (en) Composite fiber for reinforcing cement
JP3090759B2 (en) Method for producing hydraulic molded product
JP2014065998A (en) High strength fiber for hydraulic cured article excellent in moist heat resistance
US20220064824A1 (en) Bundled yarn, hydraulic composition and molded body
JPH06115989A (en) Acrylic fiber-reinforced hydraulic inorganic molded product and its production
JPS6221743B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees