JPS61167011A - Ultrafine fiber of polyvinyl alcohol and production thereof - Google Patents

Ultrafine fiber of polyvinyl alcohol and production thereof

Info

Publication number
JPS61167011A
JPS61167011A JP296585A JP296585A JPS61167011A JP S61167011 A JPS61167011 A JP S61167011A JP 296585 A JP296585 A JP 296585A JP 296585 A JP296585 A JP 296585A JP S61167011 A JPS61167011 A JP S61167011A
Authority
JP
Japan
Prior art keywords
fibers
pva
asbestos
strength
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP296585A
Other languages
Japanese (ja)
Other versions
JPH0450403B2 (en
Inventor
Tsuneo Genma
玄馬 恒夫
Akio Mizobe
溝辺 昭雄
Masaki Okazaki
正樹 岡崎
Isao Sakuragi
桜木 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP296585A priority Critical patent/JPS61167011A/en
Publication of JPS61167011A publication Critical patent/JPS61167011A/en
Publication of JPH0450403B2 publication Critical patent/JPH0450403B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Paper (AREA)

Abstract

PURPOSE:PVA is dissolved in aqueous boric acid to prepare an aqueous solution of a specific concentration and the solution is extruded into a coagulation bath under specific conditions, then drawing is effected at a high draw ratio to give flat PVA fibers of fine denier, high strength and high water resistance. CONSTITUTION:PVA of 1,200-3,000 polymerization degree is dissolved in water containing 0.5-5wt% of boric acid or its salt and an acid in such an amount as the solution becomes lower than 5 in pH after dissolution to prepare a polymer solution of 8-14wt%. The solution is used as a spinning dope to extrude the solution through round-nozzles of 0.02-0.04mm diameter into a bath of alkaline high-concentration salt solution with a bath draft ranging from 10 to 60%. Then, drawing is carried out at a ratio over 10 to give the objective fiber of 0.05-0.5 filament denier, higher than 9.0g/d tensile strength, higher than 105 deg.C softening point in water and less than 70% filament circularity.

Description

【発明の詳細な説明】 A0本発明の技術分野 本発明は、極細で強度が慧<、耐水性のすぐれた扁平な
ポリビニルアルコール系繊維とその製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a flat polyvinyl alcohol fiber that is extremely fine and has excellent strength and water resistance, and a method for producing the same.

B、従来技術とその問題点 ポリビニルアルコール(以下PVAと略記する)系極細
繊維製造の試みはこれまでになされてきた。
B. Prior art and its problems Attempts have been made to produce polyvinyl alcohol (hereinafter abbreviated as PVA)-based ultrafine fibers.

例えば特公昭47−31376号公報記載の方法は、完
全ケン化PVAと低ケン化PVAを常法によシ混合紡糸
し延伸熱処理した通常デニールの繊維を叩解によυフィ
ブリル状の極細とした製紙用繊維を得んとするものであ
る。この方法は大きな側鎖を有する部分ケ/化PVAを
使用するために延伸しにりく、かつ結晶化が著しく阻害
される。従って叩解前においてすらも強度が低く、耐水
性も低いが、さらに機械的な叩解によシ非晶中の分子及
び結晶の配向が乱されたシ結晶が破壊されるために、そ
の傾向はいっそう助長されることになる。
For example, in the method described in Japanese Patent Publication No. 47-31376, fully saponified PVA and low saponified PVA are mixed and spun in a conventional manner, and normal denier fibers are drawn and heat-treated, and then fibers of normal denier are beaten to form ultrafine υ fibrils. The aim is to obtain fibers for use in Since this method uses partially siliconized PVA with large side chains, it is difficult to stretch and crystallization is severely inhibited. Therefore, even before beating, the strength and water resistance are low, but mechanical beating destroys the crystals in which the orientation of molecules and crystals within the amorphous structure is disrupted, so this tendency becomes even more pronounced. It will be encouraged.

また特開昭54−77720号公報にも極細繊維の製造
方法が開示されている。これも、高ケン化PVAと低ケ
ン化PVAを混合紡糸する方法で、得られた通常デニー
ルの繊維よシ低ケン化PVAを水洗によシ溶解除去し、
1/数10〜1/数100デニールの極細繊維を得んと
するものである。こめ製造法と前者製造法との差は通常
デニールを極細デニールにする手段が、叩解という機械
的な力を借りて低ケン化PVAを溶出させつつフィブリ
ル化するか、水洗によシ著しく膨潤させて洗い出すかの
差であシ、低強度で耐水性が低いという繊維物性には変
シない。
Furthermore, Japanese Patent Application Laid-Open No. 54-77720 also discloses a method for producing ultrafine fibers. This is also a method of mixing and spinning high-saponification PVA and low-saponification PVA, and removing the low-saponification PVA by dissolving and removing the resulting normal denier fiber by washing with water.
The aim is to obtain ultrafine fibers of 1/10 to 1/100 of a denier. The difference between the rice grain production method and the former production method is that the method used to make denier into ultra-fine denier is to use the mechanical force of beating to elute low-saponification PVA and fibrillate it, or to significantly swell it by washing with water. However, the physical properties of the fibers, which are low strength and low water resistance, remain the same.

また特公昭58−38526号公報に記載の方法も同様
で、部分ケン化PVAとして低重合度PVAを使用する
ことに特徴があるが、得られる繊維物性は同様で低強力
、低耐水性である。この特許公報の実施例にはPVA系
の極細フィブリルが例示されているが、水洗前の通常デ
ニール繊維にシいてもわずか3.4P/drと記載され
ている。
The method described in Japanese Patent Publication No. 58-38526 is also similar, and is characterized by the use of low polymerization degree PVA as the partially saponified PVA, but the resulting fiber properties are the same, low tenacity and low water resistance. . The example of this patent publication exemplifies PVA-based ultrafine fibrils, but it is stated that the shearing rate of normal denier fibers before washing with water is only 3.4 P/dr.

更に、特開昭54−30930号公報に記載の方法は、
低ケン化PVAのかわシに非晶性の水溶性高分子を使用
するものであるが、基本的には同様である0 いづれにしても公知の極細PVA繊維は、強度成分とな
る結晶性PVAに低結晶性で水への易溶性高分子を混合
紡糸した通常デニールのPVA繊維から何等かの方法で
易溶解性成分を溶出除去しつつ極細化する方法であシ、
得られる繊維はいづれも強度、耐水性が低いことに加え
て溶解除去する工程が必要なこと、溶解除去成分が損失
となること等のために高価なものとなる。
Furthermore, the method described in Japanese Patent Application Laid-Open No. 54-30930,
Although it uses an amorphous water-soluble polymer as a base for low-saponification PVA, it is basically the same. It is a method in which the easily soluble components are eluted and removed by some method from a normal denier PVA fiber made by mixing and spinning a low-crystalline and easily water-soluble polymer, and the fiber is made ultra-fine.
The resulting fibers are expensive because they have low strength and water resistance, require a step of dissolving and removing them, and cause a loss of components to be dissolved and removed.

以上の如く高強度、高耐水性のPVA系極細繊維は今ま
で知られていないが、加えて扁平である該PVA系繊維
は想像だに出来ないものであったといっても過言ではな
い。何故ならば、湿式紡糸によるPVA系繊維の歴史は
、高強力、高耐水性の繊維を得るためにいかに断面の円
形性を上げて均質化をはかるかにあったからである。P
VA系繊維の湿式法による最初の工業的製造方法は、通
 4 、常のPVA水溶液を高濃度芒硝浴で紡糸する方
法であり、現在においても操業生産品の大部分はこの方
法によっている。かかる方法によるPVA系繊維は、断
面充実度が50チ程度のスキン層とコア一層を有する不
均一構造でおって、強度は、高い場合でも3P/dr程
度であシ、通常5〜72/drである。
As described above, PVA-based ultrafine fibers with high strength and high water resistance have not been known until now, but it is no exaggeration to say that the PVA-based fibers, which are flat, are something that could not be imagined. This is because the history of wet-spun PVA fibers has focused on how to improve the circularity and homogenization of cross-sections in order to obtain fibers with high strength and high water resistance. P
The first wet industrial manufacturing method for VA fibers was generally a method in which a conventional PVA aqueous solution was spun in a highly concentrated sodium sulfate bath, and even today, most of the products produced in operation are still produced by this method. The PVA fiber produced by this method has a non-uniform structure having a skin layer with a cross-sectional solidity of about 50 cm and a single core layer, and its strength is about 3 P/dr at the highest, usually 5 to 72 P/dr. It is.

かかる扁平で不均一な断面を円形に近づけて高強力を得
ようとした最初の試みは凝固浴を濃厚アルカリにするこ
とであった(繊維学会誌昭和37年18巻183頁)。
The first attempt to obtain high strength by making such a flat, non-uniform cross section nearly circular was to make the coagulation bath a concentrated alkali (Journal of the Japan Institute of Textile Technology, Vol. 18, 1960, p. 183).

本方法によれば、断面充実度は70チを越えてスキン、
コアのない均一構造となシ、強度も延伸倍率を高めるこ
とによシ10f/dr以上を得ることが可能となった。
According to this method, the cross-sectional fullness exceeds 70 inches and the skin,
It is possible to obtain a uniform structure without a core and a strength of 10 f/dr or more by increasing the stretching ratio.

更には、原液中へ硼酸を添加したPVA原液をアルカリ
性凝固浴中へ紡糸する方法が発明され(特公昭47−6
1685号、同46−11456号)、断面充実度は7
0%以上、強度も11f/dr以上と改善された。その
他にも種々の方法が開示されているが、いづれも、高強
力、高耐水性を得る手段として繊維の断面充実度を上げ
る方法がとられたか、あるいは高強力なPVA系繊維を
得ようとして結果として断面充実妾が上がったかである
。かかる歴史的流れのなかで、極細、扁平で高強力、高
耐水性のPVA系繊維が知られようはずがない。
Furthermore, a method was invented in which a PVA stock solution containing boric acid was spun into an alkaline coagulation bath (Japanese Patent Publication No. 47-6).
No. 1685, No. 46-11456), the cross-sectional solidity is 7
0% or more, and the strength was improved to 11 f/dr or more. Various other methods have been disclosed, but all of them either involve increasing the cross-sectional solidity of the fibers as a means of obtaining high strength and water resistance, or are methods used to obtain high strength PVA fibers. As a result, the number of concubines has increased. In this historical trend, there is no way that ultra-fine, flat, highly strong, and highly water-resistant PVA fibers would become known.

一方かくの如き極細、扁平で性能のすぐれた安価なPV
A系繊維のニーズが高まっている。その典型的な例がセ
メント硬化体のような脆性物質やプラスチックのような
低強力塑性物質の補強分野である。補強効果は、基本的
には繊維の強度が高いことが重要であるが、加えてマト
リックスとの接着力も大きな因子である。繊維を細くシ
、扁平化することはマトリックスとの接触面積を著しく
増加させることになシ、従って接着力が大きく向上し、
補強効果を高めることKなる。さらに成形の際の工程通
過性を著しく改善する。
On the other hand, ultra-thin, flat, and inexpensive PV like this one has excellent performance.
The need for A-type fibers is increasing. A typical example is the reinforcement of brittle materials such as hardened cement and low-strength plastic materials such as plastics. For the reinforcing effect, it is basically important that the strength of the fibers is high, but in addition, the adhesive force with the matrix is also a major factor. Making the fibers thinner and flat will significantly increase the contact area with the matrix, thus greatly improving the adhesive strength.
This increases the reinforcing effect. Furthermore, process passability during molding is significantly improved.

マ) IJラックス水硬性物質の場合は特に耐水性も重
要である。即ち成形中や凝結過程で比較的高温水にさら
されるので、繊維が膨潤しその結果強度が著しく低下す
るようなことがあってはならない。かくの如き要求特性
は公知のPVA系極細繊維では、とうてい満し得ない。
M) Water resistance is also important, especially in the case of IJ Lux hydraulic materials. That is, since the fibers are exposed to relatively high temperature water during molding and setting, the fibers must not swell and as a result their strength will be significantly reduced. Such required properties cannot be satisfied by known PVA-based ultrafine fibers.

セメント等の水硬性脆性無機物質を繊維で補強した製品
の代表例に石綿スレート板があシ、該スレート板は、繊
維質の石綿とセメントのような水硬性物質とを主成分と
する複合体である。
A typical example of a product made by reinforcing a hydraulic brittle inorganic material such as cement with fibers is asbestos slate board, which is a composite material whose main components are fibrous asbestos and a hydraulic material such as cement. It is.

その主たる製造方法は、石綿等の繊維成分とセメント等
の水硬性結合成分を他の添加剤と共に5〜30重量%の
水分散液(抄造スラリー)とした後、これを丸網又は長
網上に抄き上げ、脱水後成型、硬化、乾燥して製品とす
る湿式抄造法がとられている。この方法は簡単な設備で
生産性が高く、高強度の安価な不燃材を提供するもので
あり、かかる製品は建築材料として幅広い分野で多量に
使用されている。
The main manufacturing method is to make a 5 to 30% by weight aqueous dispersion (papermaking slurry) of fiber components such as asbestos and hydraulic binding components such as cement together with other additives, and then pour this onto a round net or fourdrinier. A wet papermaking method is used in which the paper is made into paper, dehydrated, molded, hardened, and dried to produce a product. This method is highly productive with simple equipment, and provides a high-strength, inexpensive noncombustible material, and such products are used in large quantities as building materials in a wide range of fields.

かかる水硬性無機質抄造製品での石綿の役割は、(1)
抄造工程における高生産性付与効果体)併用される繊維
質の均一な分散性の付与(b)  水硬性物質を主とす
る粒子状物質の捕捉と適当な炉水性の付与 (C)  メーキングロールや成型ロールでの層間剥離
や水割れ現象の防止 (dl  表面平滑性、プレス成型時の型付は性の付(
e)  グリーンシートの強力向上(取扱性の向上)(
2)製品物性の確保(水硬性物質の補強)(a)  曲
げ、引張り、衝撃強度等の機械的物性の向上 (b)  寸法安定性の付与 (C)耐ひび削性、耐久性の向上 と言われている。さらに例えば不燃性を損わない等水硬
性物質の本来有している特長をほとんど低下させること
がない。加えて非常に安価な物質であるO かくの如く無機質抄造製品における石綿の役割は極めて
重要であシ、すぐれた物性を有する安価な該製品は石綿
の存在なしにはあり得ないとまで言われる所以である。
The role of asbestos in such hydraulic inorganic paper products is (1)
High productivity imparting effect in the papermaking process) Imparting uniform dispersibility of fibers used together (b) Capturing particulate matter, mainly hydraulic substances, and imparting appropriate reactor water properties (C) Making rolls and Prevention of delamination and water cracking phenomena in forming rolls (dl) Surface smoothness, molding during press molding (dl)
e) Improved green sheet strength (improved handling) (
2) Ensuring product physical properties (reinforcing hydraulic substances) (a) Improving mechanical properties such as bending, tensile, and impact strength (b) Improving dimensional stability (C) Improving cracking resistance and durability It is said. Furthermore, the inherent features of the hydraulic material, such as not impairing its nonflammability, are hardly reduced. In addition, asbestos is a very cheap substance.The role of asbestos in inorganic paper products is extremely important, and it is even said that such inexpensive products with excellent physical properties would not be possible without the presence of asbestos. This is the reason.

石綿のかかるすぐれた特性は、石綿がフィブリル状物質
であること、水硬性物質との親和性に富  ”むこと、
高強力、高ヤング率であること、無機繊維であること、
保水性が高いこと等に起因する。
The excellent properties of asbestos include the fact that asbestos is a fibrillar material and has a high affinity with hydraulic substances.
High strength, high Young's modulus, and inorganic fibers.
This is due to high water retention.

一方石綿は、該石綿を含有する製品を製造する時及び加
工、施工する時に空気中にその粉塵を発生する。近年、
石綿の微細な粉塵が人体く吸引されると肺がん等を引き
起こす可能性が指摘され、その使用はしだいに法規制等
によシ制限されはじめ、使用禁止の方向へ向う気配すら
ある。さらに石綿産出国が特定国に偏在しておシ、又資
源枯渇の問題もある。かかる状況下で、多量に石綿を含
む水硬性無機質抄造製品にかわって石綿を全く含まずに
石綿使用時と同等の高生産性と高性能を有する水硬性無
機質抄造製品の提供が強く望まれている。
On the other hand, asbestos generates dust in the air when products containing asbestos are manufactured, processed, and installed. recent years,
It has been pointed out that fine asbestos dust, if inhaled into the human body, may cause lung cancer, etc., and its use is gradually being restricted by laws and regulations, and there are even signs that its use may be banned. Furthermore, asbestos-producing countries are unevenly distributed in certain countries, and there is also the problem of resource depletion. Under these circumstances, there is a strong desire to provide hydraulic inorganic paper products that do not contain asbestos and have the same high productivity and performance as when using asbestos, instead of hydraulic inorganic paper products that contain large amounts of asbestos. There is.

従来から石綿を他の物質で代替することによシ湿式抄造
法で製品を作る試みがなされてきたが充分ではなく、ご
く限定的な用途に使用されているのである。その理由は
、既述の如き石綿のすぐれた特性を有する代替物質が存
在しないことによる。
Attempts have been made to replace asbestos with other materials to produce products using wet papermaking methods, but these have not been sufficient and have only been used for very limited purposes. The reason for this is that there is no substitute material that has the excellent properties of asbestos as described above.

水硬性物質等の捕捉性を高めるには、繊維が、石綿繊維
束と同様に細いという物理的要件に加えて、水硬性物質
と親和性が強いという化学的要件が必要である。石綿は
、0.02〜0.03μの微細なフィブリル状物質が集
束してなる繊維束であり、その太さは、屑綿程度により
異なるが、0.5〜数μといわれている。しかしその集
束は完全なものではなく、フィブリル状のヒゲが出てい
る繊維束となっているので、水硬性物質の捕捉に非常に
好都合に出来ている。従って代替物は、単に石綿繊維束
と同程度の太さであればよいということにはならない。
In order to enhance the ability to capture hydraulic substances, etc., in addition to the physical requirement that the fibers be thin like asbestos fiber bundles, the chemical requirement is that the fibers have a strong affinity for hydraulic substances. Asbestos is a fiber bundle made up of fine fibrillar substances of 0.02 to 0.03 microns, and its thickness is said to be 0.5 to several microns, although it varies depending on the degree of waste. However, the convergence is not perfect, and the fibers are bundles with fibrillar whiskers, which are very convenient for trapping hydraulic substances. Therefore, the substitute does not simply have to have the same thickness as the asbestos fiber bundle.

また補強性を高める繊維自体の引張シ強度が高いこと、
硬化後の水硬性物質との接着力にすぐれていること即ち
水硬性物質との親和性のよいこと及び繊維が出来るだけ
細いこと、ひび割れ拘束性を高めるために繊維間の間隔
が出来るだけ小さいこと即ち細いこと、繊維の物性が成
形過程や使用中に変化しないこと等が必要である。さら
に表面性、プレス時の型つけ性の点では、繊維の分散性
が良好なること、細いこと、しなやかなこと(同じ物性
なら細い方がしなやか)である必要がある。
In addition, the fiber itself has high tensile strength, which increases reinforcing properties.
It must have excellent adhesive strength with the hydraulic substance after curing, that is, it must have good affinity with the hydraulic substance, the fibers must be as thin as possible, and the spacing between the fibers must be as small as possible to improve crack restraint. That is, it is necessary that the fiber is thin and that the physical properties of the fiber do not change during the molding process or during use. Furthermore, in terms of surface properties and moldability during pressing, the fibers need to have good dispersibility, be thin, and be flexible (thinner is more flexible if the physical properties are the same).

従って石綿を代替する繊維の具備すべき条件は、繊維が
出来るだけ細く、表面積大で強度が高く、耐水性、耐久
性にすぐれていて、水硬性物質との親和性、接着性にす
ぐれ、分散性が良いことということになる。
Therefore, fibers that can replace asbestos must be as thin as possible, have a large surface area, be strong, have excellent water resistance and durability, have good affinity with hydraulic substances, have good adhesion, and be dispersible. It means that sex is good.

水硬性物質の捕捉性という観点から天然パルプがよく検
討されている。この場合叩解を高度にす−すめることに
より、セメント等の水硬性物質の捕捉性は向上するが、
それでも石綿には及ばない。
Natural pulp has been widely studied from the viewpoint of its ability to trap hydraulic substances. In this case, increasing the degree of beating improves the ability to capture hydraulic substances such as cement, but
However, it is still not as good as asbestos.

一方、補強効果という点では、もともと強度の低いパル
プが叩解によシ著しく損傷を受けるためにほとんど効果
がない。さらには硬化体中で劣化することがよく知られ
ている。合成パルプも石綿代替としての検討がなされて
いる。例えばポリエチレン系のswp(三井ゼフバンク
製)がそうであるが、水硬性物質の捕捉性という点では
、フィブリル状で石綿に似ている点はあるが、疎水性と
いうこともあって石綿よシ劣シ、不満足である。さらに
補強性という点では、補強に必要な強度が低いことに加
えて、swp自身が疎水性のために水硬性物質との接着
が悪く補強効果を有しない。さらに抄造スラリ一工程で
合成パルプ自身がフロックを形成して、抄造性を低下さ
せたり、製品の外観品位を損なう結果となる。
On the other hand, in terms of reinforcing effect, the pulp, which originally has low strength, is severely damaged by beating, so it has little effect. Furthermore, it is well known that it deteriorates in the cured product. Synthetic pulp is also being considered as an alternative to asbestos. For example, polyethylene-based SWP (manufactured by Mitsui ZEF Bank) is similar to asbestos because it has a fibrillar shape in terms of its ability to capture hydraulic substances, but it is also hydrophobic and is inferior to asbestos. Shi, I'm not satisfied. Furthermore, in terms of reinforcing properties, in addition to the low strength required for reinforcement, swp itself is hydrophobic, so it has poor adhesion to hydraulic substances and has no reinforcing effect. Furthermore, the synthetic pulp itself forms flocs in one step of making the papermaking slurry, resulting in a decrease in papermaking properties and a loss in the appearance quality of the product.

またアラミドパルプも石綿代替として話題になっている
が、ブレーキシュー等の他の分野ならともかく、少なく
とも石綿スレート板で代表される水硬性無機質抄造製品
における石綿代替にはなシ得ない。即ち水硬性物質の捕
捉性はフィブリル状であるという点で石綿に似てはいる
が、疎水性ということもあって石綿よシ劣り充分でない
。補強性という点では、ポリエチレン系パルプと同様疎
水性のために水硬性物質との親和性に乏しく、接着が悪
く、そのために水硬性無機質抄造製品の破断に際しアラ
ミドパルプの引抜けが起こυ、本来有している高強度が
全く利用されていない結果となり、補強効果がほとんど
発揮されない。また非常に高価であることも難点である
Aramid pulp has also been talked about as an alternative to asbestos, but it cannot be used as an alternative to asbestos, at least not in other fields such as brake shoes, but at least in hydraulic inorganic paper products such as asbestos slate boards. In other words, the trapping ability of hydraulic substances is similar to asbestos in that it is fibrillar, but it is not as good as asbestos, partly because it is hydrophobic. In terms of reinforcing properties, like polyethylene pulp, it is hydrophobic and therefore has poor affinity with hydraulic substances, resulting in poor adhesion.As a result, when a hydraulic inorganic paper product breaks, aramid pulp pulls out, which is inherently As a result, the high strength it possesses is not utilized at all, and the reinforcing effect is hardly exhibited. Another disadvantage is that it is very expensive.

一方、補強効果ということを力点において耐アルカリガ
ラスがよく検討されているが、耐アルカ((リガラスと
言えども耐久性には問題がアシ、加えて太い繊維なので
水硬性物質の捕捉性はほとんどない。
On the other hand, alkali-resistant glass is often studied with an emphasis on its reinforcing effect, but alkali-resistant glass (even though it is called alkali-resistant glass, has problems with durability, and in addition, because it is a thick fiber, it has little ability to trap hydraulic substances. .

高強力な繊維としてカーボン繊維、アラミド繊維が検討
されているが、繊維自体の強度は高いものの水硬性物質
との接着性が悪く補強性に乏しい。
Carbon fibers and aramid fibers are being considered as highly strong fibers, but although the fibers themselves have high strength, they have poor adhesion to hydraulic substances and lack reinforcing properties.

またガラス繊維と同様、水硬性物質の捕捉性はないし加
えて非常に高価である。
Also, like glass fiber, it does not have the ability to trap hydraulic substances and is also very expensive.

アクリル系繊維の検討もなされている。例えば特開昭5
1−20222号公報によると、湿式紡糸されたアクリ
ル系繊維は、表面のヒダが多いためにセメントとの接着
性にすぐれておシ、破断に際し繊維の切断が起こり、補
強効果が高いとしている。
Acrylic fibers are also being considered. For example, JP-A-5
According to Japanese Patent No. 1-20222, wet-spun acrylic fibers have many folds on the surface, so they have excellent adhesion to cement, and when they break, the fibers are cut, resulting in a high reinforcing effect.

しかし繊維の強度自体が低いために繊維が切れても大き
な補強効果は期待できないし、さらにセメントの捕捉性
もない。
However, since the strength of the fibers itself is low, even if the fibers break, no significant reinforcing effect can be expected, and furthermore, they do not have the ability to trap cement.

また英国特許第2,075,076号公報によれば、太
さが0.1〜1 dtex(0,09〜0.9 dr)
、強度20〜80 CN/lex (2,3〜6.8 
S’/dr )ノアクリル系繊維が水硬性物質の捕捉性
、補強性という点ですぐれておシ、石綿代替となり得る
としている。
Further, according to British Patent No. 2,075,076, the thickness is 0.1 to 1 dtex (0.09 to 0.9 dr).
, strength 20~80 CN/lex (2,3~6.8
S'/dr) Noacrylic fibers are excellent in their ability to capture hydraulic substances and reinforcing properties, and can be used as a substitute for asbestos.

しかしながら水硬性物質の捕捉性は、繊維の形状のみに
支配されるものではなく、水硬性物質との親和性も重要
な因子である。アクリル系繊維は、本来疎水性であるの
で石綿に比べて親和性はかなシ劣シ、従って捕捉性も劣
る。さらに重要なことは、該英国特許の表IVC記述の
如く、繊維自身の強度が石綿に比べて著しく小さく、従
って補強効果がかなシ劣ることは必至である。また該英
国特許で注目すべきことは、PVA系極細繊維について
の記述である。既述の如く、公知の極細デニールPVA
系繊維は全て強度が低く、耐水性が低いが、該英国特許
には一頁44〜52行に(−PVA系繊維の場合、  
l dtex (0,9dr )以下のものは耐水性が
低く、セメントサスペンション(スラリー)中で部分的
に溶解し、補強効果がない」と記載されている。
However, the ability to trap hydraulic substances is not only controlled by the shape of the fibers, but also the affinity with the hydraulic substances is an important factor. Since acrylic fibers are naturally hydrophobic, their affinity is weaker than that of asbestos, and therefore their capture ability is also inferior. More importantly, as shown in Table IVC of the British patent, the strength of the fiber itself is significantly lower than that of asbestos, and therefore the reinforcing effect is inevitably inferior. Also noteworthy in the British patent is the description of PVA-based ultrafine fibers. As mentioned above, known ultra-fine denier PVA
Although all PVA-based fibers have low strength and low water resistance, the British patent states on page 1, lines 44-52 (-In the case of PVA-based fibers,
1 dtex (0,9 dr) or less has low water resistance, partially dissolves in the cement suspension (slurry), and has no reinforcing effect.''

以上の述べた如くすぐれた特性を有する石綿を代替する
満足な繊維は存在しないのが現状である。
At present, there is no fiber that can satisfactorily replace asbestos and has excellent properties as described above.

C1本発明の目的 石綿代替における代表的な例として、極細、扁平で乱強
度、高耐水性のPVA系繊維が望まれている。
C1 Purpose of the Present Invention As a representative example of asbestos replacement, ultrafine, flat PVA-based fibers with high random strength and high water resistance are desired.

かかる状況下で本発明の目的は、極細で強度が高く耐水
性のすぐれた扁平なPVA繊維及びその安価な製造法を
提供せんとするものである。
Under such circumstances, an object of the present invention is to provide a flat PVA fiber that is ultra-fine, has high strength, and has excellent water resistance, and a method for producing the same at low cost.

D1本発明の構成 本発明の性能のすぐれたPVA系極細繊維は、公知の高
価な溶解除去法によるものではなく、通常の紡糸方法に
ても、特定の条件を採用することにより製造可能なるこ
とを見い出し、本発明に到達したものである。
D1 Structure of the present invention The PVA-based microfiber with excellent performance of the present invention can be produced not by the known expensive dissolution and removal method, but also by a normal spinning method by adopting specific conditions. This is what led to the present invention.

即ち本発明は、単繊維デニールが0.05〜0,5dr
であり、引張シ強度が9.Qf/dr以上で水中軟化点
105℃以上、断面充実度が70%以下を満足するPV
A系繊維及びその製造方法であシ、かかるPVA系繊維
は、特定な条件下でなされる湿式紡糸において得られる
ものであシ、以下に詳細を説明する。
That is, in the present invention, the single fiber denier is 0.05 to 0.5 dr.
The tensile strength is 9. PV that satisfies Qf/dr or higher, underwater softening point of 105℃ or higher, and cross-sectional solidity of 70% or lower.
The A-based fibers and the method for producing the same, such PVA-based fibers, are obtained through wet spinning under specific conditions, and will be described in detail below.

本発明に使用するPVAは、平均重合度が1,200〜
3,000、ケン化度が96q6以上(後述のアルカリ
性凝固浴中でほぼケン化される程度のケン化度以上)の
ものであシ、該PVAに対して0.5〜5重量−の硼酸
もしくは硼酸塩と、溶解後の原液用が5以下になるよう
な量の酸等と共に、常法により水に溶解し、8〜14重
量%の比較的うすい溶液とし、紡糸原液とする。濃度が
8%未満では紡糸不能となり、また14%を越えると金
板調子が著しく悪化する上に断面の扁平な繊維が得られ
ない0 該紡糸原液を、単孔直径が0.02〜0.04鶏の細孔
径口金よりバスドラフト10〜−60チの範囲内でアル
カリ性高濃度塩類浴へ吐出させ曳糸する。本発明でのバ
スドラフトとは、次式で定義されるものである。
The PVA used in the present invention has an average degree of polymerization of 1,200 to
3,000, with a saponification degree of 96q6 or more (a degree of saponification that is almost saponified in the alkaline coagulation bath described later), and 0.5 to 5 weight of boric acid to the PVA. Alternatively, it is dissolved in water by a conventional method with a borate and an acid or the like in an amount such that the concentration of the stock solution after dissolution is 5 or less to form a relatively dilute solution of 8 to 14% by weight, which is used as a spinning stock solution. If the concentration is less than 8%, spinning becomes impossible, and if it exceeds 14%, the condition of the metal plate deteriorates significantly and fibers with a flat cross section cannot be obtained. It is discharged into an alkaline high concentration salt bath with a bath draft of 10 to -60 inches from a 04 chicken pore diameter mouthpiece and then spun. The bus draft in the present invention is defined by the following equation.

なお上記離俗速度は、第10−ラー速度のことである。Note that the above-mentioned speed is the 10th-ra speed.

湿式紡糸用口金の孔径は、溶融紡糸、乾式紡糸のそれに
比し一般に小さいが、PVA系繊  1維の湿式紡糸の
場合は、これまでの常識では0.05−が最低とされて
おり、それ以下では紡糸調子が著しく不安定となる。本
発明者等は、極細繊維を得るには口金孔径をさらに小さ
くすることが必要であると考え、紡糸調子向上方法につ
いて種々の検討を行った。その結果、原液の濾過を高度
に行って異物をなくすことも必要であるが、それ以上に
バスドラフトを10〜−60%にすることが安定な紡糸
を確保する上で非常に重要であることを見い出した。し
かしながら孔径が0.02m以下ではやや不安定であっ
た。凝固浴組成も、紡糸調子及び単繊維断面の扁平化に
重要な影響を及ぼすもので、アルカリ性高濃度塩類浴で
なければならない。アルカリ性高濃度塩類浴とは、l0
CI/J以下、1f/1以上の苛性アルカリを含む25
0?71以上飽和までの塩類溶液を意味し、塩としては
芒硝、硫安が好ましく用いられる。苛性アルカリが、1
2/1未満であれば紡糸調子が悪化し、また1002/
71を越えると断面が円形に近づき、断面充実度が70
%を越えるし、紡糸調子もあまシよくない。
The pore diameter of a wet spinning nozzle is generally smaller than that for melt spinning and dry spinning, but in the case of wet spinning of a single PVA fiber, conventional wisdom holds that the minimum diameter is 0.05-. Below this, the spinning condition becomes extremely unstable. The present inventors believed that it was necessary to further reduce the diameter of the spinneret hole in order to obtain ultrafine fibers, and conducted various studies on methods for improving the spinning condition. As a result, it is necessary to perform high-level filtration of the stock solution to eliminate foreign substances, but more than that, it is extremely important to keep the bath draft at 10 to -60% in order to ensure stable spinning. I found out. However, when the pore diameter was less than 0.02 m, it was somewhat unstable. The composition of the coagulation bath also has an important influence on the spinning condition and the flattening of the single fiber cross section, and it must be an alkaline high concentration salt bath. What is an alkaline high concentration salt bath?
CI/J or less, containing caustic alkali of 1f/1 or more 25
It means a salt solution having a saturation level of 0-71 or more, and as the salt, sodium sulfate and ammonium sulfate are preferably used. Caustic alkali is 1
If it is less than 2/1, the spinning condition will deteriorate;
When the value exceeds 71, the cross section approaches a circular shape, and the degree of fullness of the cross section becomes 70.
% and the spinning condition is not good.

塩類の濃度が250171未満であると紡糸調子が悪く
、単繊維の膠着が起とシ、好ましくない。
If the concentration of salts is less than 250,171, the spinning condition will be poor and the single fibers will stick together, which is not preferable.

断面充実度は後述の如く70%を越えると特に湿式抄造
工程におけるセメントの捕捉性が悪化し好ましくない。
As will be described later, if the cross-sectional solidity exceeds 70%, the ability to trap cement in the wet papermaking process will deteriorate, which is undesirable.

更にマイクロフィルター等に使用する場合は捕捉効率が
低下する。また繊維のしなやかさも、断面充実度が70
チを越えると急速に低下するので柔軟性を求められる用
途では好ましくない。本発明での繊維の断面充実度とは
、以下の如くして得られるものを意味する。3X3X1
0鮨位のコルクの直方体を作り、中央に切込みを入れ、
その中に繊維束を挿入し、次に安全カミソリの刃にて0
,1〜0゜3.w位の厚さに切断する。その薄片を顕微
鏡を用い、写真撮影し、約100−に拡大描写し、各々
の断面積Fを求める。次に描写断面中量も広い幅Bをも
って直径として円を描き、この円の面積を求め、次の式
により断面の充実度矢に吐出量は、デニールが0.05
〜0,5drになるように調整する。0.05 dr以
下では繊維が細すき゛て紡糸筒内で切れたりして安定な
生産が出来ないし、また使用面からも、例えばセメント
、プラスチツクの補強や製紙用を考足し友場合1分散上
の問題よシ1■以下に切断する必☆があるが、そのよう
な切断は、工業的には不可能であり意味がない。またQ
、5drを越えては期待する細デニールの効果が充分で
ない。
Furthermore, when used in microfilters, etc., the capture efficiency decreases. In addition, the flexibility of the fibers has a cross-sectional fullness of 70.
If it exceeds 100, it rapidly decreases, which is not preferable for applications where flexibility is required. The cross-sectional fullness of the fiber in the present invention means that obtained as follows. 3X3X1
Make a rectangular parallelepiped of cork with the size of 0 sushi, make a notch in the center,
Insert the fiber bundle into it, then use a safety razor blade to remove the fiber bundle.
,1~0°3. Cut into w-thickness. The thin sections are photographed using a microscope, enlarged to about 100 -, and the cross-sectional area F of each section is determined. Next, draw a circle with a wide width B as the diameter of the middle volume of the drawn cross section, find the area of this circle, and use the following formula to calculate the discharge volume based on the fullness arrow of the cross section.The denier is 0.05.
Adjust so that it becomes ~0.5 dr. If the dr. Problem: It is necessary to cut the material to 1■ or less, but such cutting is industrially impossible and meaningless. Also Q
, if it exceeds 5 dr, the expected effect of fine denier will not be sufficient.

かかる紡糸稜の繊維は、ローラー延伸後中和し、引続い
て残存硼酸が0.1〜0.6%/PVAになるように水
洗し、芒硝浴中で湿熱延伸するか、またはローラー延伸
後中和し、湿熱延伸して残存硼酸を0.1〜0.6%/
PVAとなす。残存硼酸が0.6%/PVAより犬では
延伸性が著しく阻害され、所望の強度、耐水性を得るこ
とが出来ない。また0、1%/PVAよシ小にするには
、厳しい水洗条件を取らざるを得す、従って繊維が著し
く膨潤し、品質の低下を招くことKなる。湿潤部の全延
伸倍率は少なくとも3倍は行う。
Such spinning ridge fibers are neutralized after roller stretching, then washed with water so that the residual boric acid becomes 0.1 to 0.6%/PVA, and subjected to moist heat stretching in a sodium sulfate bath, or after roller stretching. Neutralize and moist heat stretch to reduce residual boric acid to 0.1-0.6%/
PVA and eggplant. When the residual boric acid is 0.6%/PVA, the stretchability is significantly inhibited in dogs, and the desired strength and water resistance cannot be obtained. Furthermore, in order to make the fiber smaller than 0.1%/PVA, severe washing conditions must be used, resulting in significant swelling of the fibers and a deterioration in quality. The total stretching ratio in the wet area is at least 3 times.

しかる徒に乾燥を行い、引続き全延伸倍率が10倍以上
になるように乾熱延伸をする。さらに必要に応じ熱収縮
、熱処理を行い水中軟化点を105゜以上まで上昇さす
。10倍以上の延伸をしないと9、 Q f/dr以上
の強度が得られない。引張強度がg、QP/dr以下で
は、補強用繊維としてはその効果が充分でなく、また一
般的な産業資材としての適性も欠くことになる。
After drying, dry heat stretching is performed so that the total stretching ratio is 10 times or more. Further, if necessary, heat shrinkage and heat treatment are performed to raise the underwater softening point to 105° or more. Unless the film is stretched 10 times or more, a strength of 9.Q f/dr or higher cannot be obtained. If the tensile strength is less than g, QP/dr, the effect as a reinforcing fiber will not be sufficient, and it will also lack suitability as a general industrial material.

水中軟化点は、特にセメント等の水硬性物質の補強用途
に用いる場合重要であp、105℃より低い場合には成
形工程で膨潤が起こり、本来の強度が低下し、従って補
強効果が著しく低下することになる。また一般的な用途
においても水系で後加工する場合が多く、105℃未満
では加工処理後の乾燥で繊維が膨潤し強度低下をきたし
たシ、表面が一部溶解し膠着する等の問題を引き起こす
結果となる。伺、本発明で水中軟化点とけ、次の測定法
によって求めたものである。
The underwater softening point is particularly important when used for reinforcing hydraulic materials such as cement, and if it is lower than 105°C, swelling will occur during the molding process, reducing the original strength and therefore significantly reducing the reinforcing effect. I will do it. In addition, even in general applications, post-processing is often done in aqueous systems, and if the temperature is below 105°C, the fibers will swell during drying after processing, resulting in a decrease in strength, and the surface will partially dissolve, causing problems such as sticking. result. The softening point in water according to the present invention was determined by the following measuring method.

水中軟化点:繊維束デニールが約1000 drになる
ように任意に取シ出し、引揃えた上で繊維束デニールの
11500fのおもりを一端につけて、  1 、目盛
板上、におもりより10口のところに固定する。
Underwater softening point: Take out the fiber bundle arbitrarily so that the fiber bundle denier is about 1000 dr, align it, attach a weight with a fiber bundle denier of 11500 f to one end, and place 1. Fix it in place.

これを水のはいった加圧可能なガラス管に垂直にして水
中に浸漬する。常温よシ約1分間に1 ”Cの速度で昇
温し、繊維束が10%収縮するか又は溶断する時の温度
This is placed vertically in a pressurizable glass tube filled with water and immersed in water. The temperature is raised at a rate of 1"C per minute from room temperature, and the temperature at which the fiber bundle shrinks by 10% or melts.

以上の如き条件の組合せにおいて得られるPVA系繊維
のみが、デニールが0.05〜0.5ar、強度9.Q
r/dr以上、水中軟化点105℃以上、断面充実度7
0%以下のすぐれた物性を有しているものであシ、加え
て本発明によれば従来の湿式製造設備工程で製造可能で
、かつ紡糸調子が非常に良好なために、生産性が高く、
通常デニールのPVA系繊維とあま)変らないコストで
極細繊維が出来るという大きな特長を有している。
Only PVA-based fibers obtained under the above combination of conditions have a denier of 0.05 to 0.5 ar and a strength of 9. Q
r/dr or higher, underwater softening point 105℃ or higher, cross-sectional solidity 7
It has excellent physical properties of 0% or less, and in addition, according to the present invention, it can be manufactured using conventional wet manufacturing equipment processes, and the spinning condition is very good, resulting in high productivity. ,
It has the great advantage of being able to produce ultra-fine fibers at the same cost as regular denier PVA fibers.

次に本発明の極細繊維の代表的な用途である水硬性無機
質抄造製品及びその製造方法について述べる。
Next, a hydraulic inorganic paper product, which is a typical use of the ultrafine fiber of the present invention, and a method for producing the same will be described.

特徴とするところは、石綿代替繊維として高強度で耐水
性のすぐれた扁平な極細PVA系繊維を使用するところ
にあ勺、該PVA系極細繊維は、種々の特性を有する石
綿を完全に代替しうるという画期的な事実を見い出した
ものである。即ちデニールが0.05〜0.5 dr、
強度9.0 f / dr以上、水中軟化点105℃以
上、断面充実度70チ以下のPVA系極細繊維を単に従
来の湿式抄造法における石綿のかわシに使用するのみで
、石綿使用時と同等の高生産性と高性能を有する水硬性
無機質抄造製品を得ることが可能となったのである。以
下詳細に説明をする。
The unique feature is that it uses flat, ultra-fine PVA-based fibers with high strength and excellent water resistance as an asbestos replacement fiber.The PVA-based micro-fine fibers can completely replace asbestos and have various properties. This is an epoch-making fact that has been discovered. That is, the denier is 0.05 to 0.5 dr,
By simply using PVA-based ultrafine fibers with a strength of 9.0 f/dr or more, an underwater softening point of 105°C or more, and a cross-sectional solidity of 70 inches or less for asbestos glue in the conventional wet papermaking method, it is equivalent to using asbestos. This made it possible to obtain hydraulic inorganic paper products with high productivity and high performance. A detailed explanation will be given below.

石綿の最も重要な役割の第1は、水硬性物質等の粒状物
質の捕捉である。石綿は、既述の如く0.5〜数μの繊
維束でさらにフィブリル状のヒゲを有するために、物理
的に捕捉性にすぐれていることに加えて、その化学構造
より水硬性物質との親和性が良好なために化学的にも捕
捉しやすい物質である。PVA系繊維は本来分子内に水
酸基を有しているために、化学的にはセメント等の水硬
性物質との親和性にすぐれている。従ってあとは物理的
に捕捉しやすい形態を取りさえすればよいことになる。
The first and most important role of asbestos is to trap particulate materials such as hydraulic materials. As mentioned above, asbestos is a fiber bundle of 0.5 to several microns and has fibrillar whiskers, so it has excellent physical capture ability, and its chemical structure makes it difficult to interact with hydraulic substances. It is a substance that is easy to capture chemically due to its good affinity. Since PVA fibers originally have hydroxyl groups in their molecules, they have chemically excellent affinity with hydraulic substances such as cement. Therefore, all that is left is to take a form that is physically easy to capture.

そこで種々のデニールのサンプルを作成し、湿式抄造法
にて水硬性物質の捕捉性を検討したところ、0.05〜
o、s dr (円換算の直径としテ2〜5μ)であっ
て、かつ断面充実度が70%以下の場合のみがほぼ石綿
並の捕捉性を有することを見い出した。石綿束の太さ数
μ程度にPVA系繊維の太さを合せるだけでは石綿束の
ヒゲの部分に相補するものがないために不充分であった
。そこでPVA極細繊維の側面を若干でもフィブリル化
されることを試みてみたが、フィブリル化するものの、
もつれが起ったり、本来有する強度、耐水性が低下した
ために目的を達成出来外かった。次に繊維を扁平化する
ことを試みたところ、驚ろくべきことに断面充実度を7
0チ以下にすると全くパルプを使用せずしてほぼ石綿並
の捕捉性を有することを見い出したものである。
Therefore, we created samples of various deniers and examined their ability to trap hydraulic substances using a wet papermaking method.
It has been found that only when the diameter is 2 to 5μ in terms of yen and the cross-sectional solidity is 70% or less, the trapping property is almost the same as that of asbestos. It was insufficient to match the thickness of the PVA fiber to the thickness of the asbestos bundle, which is about several microns, because there was nothing to complement the whiskers of the asbestos bundle. Therefore, I tried to make the sides of the PVA ultra-fine fibers become fibrillated, but although they were fibrillated,
The purpose could not be achieved because tangles occurred and the original strength and water resistance decreased. Next, when we tried to flatten the fibers, we were surprised to find that the cross-sectional fullness was 7.
It has been discovered that when the content is less than 0%, it has a trapping ability almost equal to that of asbestos, without using any pulp at all.

石綿並の捕捉性を有するための必要充分条件は、PVA
系繊維のデニールが0105〜0.5drであること、
断面充実度が70チ以下であることであって、いづれか
の条件がこの範囲をはずれると目的を達成しえない。
The necessary and sufficient conditions for having a trapping property comparable to that of asbestos are PVA.
The denier of the fiber is 0105 to 0.5 dr,
The degree of fullness of the cross section is 70 inches or less, and if any of the conditions is out of this range, the objective cannot be achieved.

デニールは0.05〜o、sarであるが、好ましくは
0.2dr以下である。なお0.05 dr以下は、繊
維の製造がしがたく、仮に製造出来ても分散性という点
から1m以下に切断する必要があり、現時点では工業的
に不可能であまシ意味がない。但し、切断技術が開発さ
れるとおもしろい領域である。
The denier is 0.05 to 0, sar, but preferably 0.2 dr or less. It should be noted that it is difficult to produce fibers with a diameter of 0.05 dr or less, and even if it were possible to produce fibers, it would be necessary to cut the fibers into pieces of 1 m or less from the viewpoint of dispersibility, which is currently industrially impossible and meaningless. However, this is an interesting area if cutting technology is developed.

また断面充実度は70%以下が必要であるが、製造可能
なる範囲内で小さければ小さい程よい。
Further, the cross-sectional solidity must be 70% or less, but the smaller it is within the range of manufacturability, the better.

石綿を使用しない湿式抄造製品の抄造はパルプを使用す
ることが常識となってきているが、本発明によれば全く
パルプを使用せずして石綿使用時と同等の抄造性を得る
ことが可能となった。
It has become common knowledge that pulp is used to make wet paper products that do not use asbestos, but according to the present invention, it is possible to obtain the same formability as when using asbestos without using pulp at all. It became.

石綿の重要な役割の第2は、水硬性物質の補強である。The second important role of asbestos is to reinforce hydraulic materials.

引張シ、曲げ強力等の機械的物性を上げるkは、繊維が
高強力高耐水性であって、水硬性硬化体との接着にすぐ
れていることが不可決である0 接着性という点では、PVA系繊維が有する水酸基の存
在によシ化学的にすぐれた接着性を有するが、比表面積
を犬にして水硬性物質との硬化体の接触面積を大きくす
ることも重要である。デニールを/JSさくしかつ扁平
化することは接着面積を著しく増大し、補強効果を増す
。0.5dr以下、断面充実度70%以下で、理由はわ
からないが、両者の相乗的作用とも思われる程の大きな
補強効果を呈する。
In order to increase mechanical properties such as tensile strength and bending strength, it is essential that the fibers have high strength, high water resistance, and excellent adhesion to hydraulic cured materials.0 In terms of adhesion, Although PVA fibers have excellent chemical adhesion due to the presence of hydroxyl groups, it is also important to increase the specific surface area to increase the contact area of the cured product with the hydraulic substance. Reducing the denier/JS and flattening it significantly increases the adhesive area and increases the reinforcing effect. At a 0.5 dr or less and a cross-sectional fullness of 70% or less, the reinforcing effect is so great that it seems to be a synergistic effect of both, although the reason is unknown.

繊維の強度は、9.0 P/dr以上なければ石綿を代
替するに必要な補強効果を上げることはむづかしい。
Unless the fiber strength is 9.0 P/dr or higher, it is difficult to achieve the reinforcing effect necessary to replace asbestos.

さらには耐水性は、製造、加工工程中、あるいは使用中
に物性変化を起こさせないための重要な物性である。抄
造スラリー中で膨潤し、強力低下を起こしてはならず、
まだ凝結過程での水和熱による温度上昇にも耐えなけれ
ばならない。そのためには少なくとも水中軟化点は10
5℃以上なければならない。
Furthermore, water resistance is an important physical property to prevent changes in physical properties during manufacturing, processing, or use. It must not swell in the papermaking slurry and cause a decrease in strength.
It still has to withstand the temperature rise caused by the heat of hydration during the condensation process. For this purpose, the softening point in water must be at least 10.
Must be at least 5°C.

石綿の補強効果で重要なものに耐ひび割れ性があるが、
無石綿水硬性抄造製品の物性中で最も懸念されているも
のである。かかる耐ひび割れ性を上げるには、繊維の強
度、ヤング率、水硬性硬化体との接着性に加えて、繊維
の本数が重要であり、かかる特性がいづれも一定値以上
なければならなイ。強度9.Qf/dr以上、0.05
〜0.5 dr、断面充実度70%以下の極細かつ扁平
であるPVA系繊維のみがかかる特性を満足し、石綿と
同等のひび割防止効果を有する。また繊維が細く扁平で
あることが得られる抄造製品表面の平滑性をよくし、プ
レス時のかたづけ性をよくする。さらにメーキングロー
ルや成型ロールでの眉間剥離や、しわ、水割れ現象を防
止することに寄与している。
An important reinforcement effect of asbestos is its crack resistance.
Among the physical properties of asbestos-free hydraulic paper products, this is the one of greatest concern. In order to increase such cracking resistance, the number of fibers is important in addition to the fiber strength, Young's modulus, and adhesion to the hydraulically cured body, and all of these properties must exceed a certain value. Strength9. Qf/dr or more, 0.05
Only ultrafine and flat PVA fibers with ~0.5 dr and a cross-sectional solidity of 70% or less satisfy these characteristics and have the same crack prevention effect as asbestos. In addition, thin and flat fibers improve the surface smoothness of the paper-made product and improve the cleaning properties during pressing. Furthermore, it helps prevent peeling between the eyebrows, wrinkles, and water cracking caused by making rolls and forming rolls.

以上の如く、強度9.Qf/dr以上、水中軟化点10
5℃以上、断面充実度70L%以下の0.05〜0.5
drのPVA系極細繊維を使用した水硬性無機質抄造製
品は、無石綿であシながら石綿を含んだ製品とほぼ同等
の性能を有するものである。かかる水硬性無機質抄造製
品は、通常湿式抄造法にて石綿のかわシに該PVA系繊
維を用いるだけで製造可能である。
As mentioned above, strength 9. Qf/dr or higher, underwater softening point 10
5°C or higher, cross-sectional solidity 70L% or less 0.05 to 0.5
Dr's hydraulic inorganic paper products using PVA-based ultrafine fibers are asbestos-free but have almost the same performance as products containing asbestos. Such a hydraulic inorganic paper product can be manufactured simply by using the PVA-based fiber as an asbestos glue using a normal wet paper-making method.

即ちPVA系極細繊維と水硬性物質とが濃度5〜30%
になるように水を加えてパルパー等で均一な分散液(ス
ラリー)にする。
That is, the concentration of PVA-based ultrafine fibers and hydraulic substances is 5 to 30%.
Add water to make a uniform dispersion (slurry) using a pulper.

PVA系繊維の添加量は0.5〜5%が好ましく、よシ
好ましくは1〜2%である。0,5%未満では添加効果
がなく、5%を越えると、分散性が悪化し、セメント等
の捕捉性、補強性は逆に低下し、表面平滑性を損い、層
間剥離や水割れ現象を惹起することになる。
The amount of PVA fiber added is preferably 0.5 to 5%, more preferably 1 to 2%. If it is less than 0.5%, there is no effect of addition, and if it exceeds 5%, the dispersibility deteriorates, the ability to capture cement, etc. and reinforcing properties decrease, the surface smoothness is impaired, and delamination and water cracking occur. This will cause

またアスペクト比も分散性と補強性との兼合いで限定さ
れねばならない。100〜1.500が好ましく、よシ
好ましくは300〜800である。
Furthermore, the aspect ratio must also be limited based on the balance between dispersibility and reinforcing properties. It is preferably from 100 to 1.500, more preferably from 300 to 800.

100より小さいと繊維の弓1抜けが起きて補強効果が
小さくなり、1500を越えると分散不良となシ好まし
くない。
If it is less than 100, one fiber bow will fall out, reducing the reinforcing effect, and if it exceeds 1,500, it will result in poor dispersion, which is undesirable.

かかるPVA系繊維と水硬性物質からなるスラリーを丸
網又は長網に抄き上げ、適轟な脱水、成型、硬化、乾燥
、必要に応じ着色等の加工を経て、製品を得ることが出
来る。
A product can be obtained by forming a slurry made of PVA fibers and a hydraulic substance into a round net or fourdrinier, and subjecting it to appropriate dehydration, molding, curing, drying, coloring if necessary, and other processing.

本発明によるPVA系繊維と水硬性物質のみで充分な工
程通過性と物性を有する湿式抄造製品を −得ることが
可能であるが、よシ向上するためにあるいは石綿スレー
ト製品よシもすぐれた生産性、物性を与えるために、必
要に応じ他の物質を単独又は組合せで併用使用すること
が可能である0たとえば水硬性物質の歩留シをさらpc
内向上せようと思えば、凝集剤を使用することができる
Although it is possible to obtain a wet paper-made product with sufficient process passability and physical properties using only the PVA fiber and hydraulic material according to the present invention, it is possible to obtain a wet paper-made product with sufficient process passability and physical properties, but in order to improve the quality, it is also possible to obtain a product with excellent production properties compared to asbestos slate products. If necessary, other substances may be used alone or in combination to provide properties and physical properties.
If you want to improve the quality, you can use a flocculant.

添加量は200 ppm以下が好適であ凱−慇的な市販
の凝集剤で充分である。200 ppm以上ではフェル
ト汚れを生じたシ、戸水性がよすぎたシして均一なグリ
ーンシートを得ることがむつかしい0水硬性物質の捕捉
性、PVA系極細繊維の分散性、表面性等の向上をはか
るために、/メルクを併用することもできる。添加量は
0.2〜5%で、よシ好ましくは0.5〜3%である。
The amount added is preferably 200 ppm or less, and a commercially available flocculant is sufficient. If it is more than 200 ppm, felt stains may occur, and wetability is too good, making it difficult to obtain a uniform green sheet. 0 Improved ability to capture hydraulic substances, dispersibility of PVA-based ultrafine fibers, surface properties, etc. /Merck can also be used in combination to measure. The amount added is 0.2 to 5%, preferably 0.5 to 3%.

5%を越えると寸法安定性が悪化し、又耐久性の懸念が
ある。さらに離燃性が低下し、嵩比重を上げにくい等の
問題を生ずる。0.2−以下の添加でも構わないが、こ
の物質による改善効果は期待出来ない。ノくルプとして
は、種々の叩□解度の天然ノくルプやポリエレン、アラ
ミド等の合成ノくルプを単独あるいは2種 1以上を混
ぜて使用することが出来る0ノくルプの効果を引き出す
ボイ/トは、ノ<ルプの水分散液にPVA系繊維を添加
することでろシ、その逆は好ましくない。バルブの水硬
性物質捕捉性、PVA系繊維分散性向上効果は非常に太
き(、PVA系極細繊維との相乗効果があると考えざる
を得ない。
If it exceeds 5%, dimensional stability deteriorates and there are concerns about durability. Furthermore, the flammability decreases, causing problems such as difficulty in increasing the bulk specific gravity. Although it is possible to add 0.2- or less, no improvement effect can be expected from this substance. As a nokurupu, natural nokurupu with various degrees of cracking and synthetic nokurupu such as polyethylene, aramid, etc. can be used alone or in combination of two or more types to bring out the effect of zero nokurupu. Voids are filtered by adding PVA fibers to the aqueous dispersion of Norp, but vice versa is not preferred. The effect of improving the valve's ability to capture hydraulic substances and the dispersibility of PVA-based fibers is extremely large (I can't help but think that there is a synergistic effect with the PVA-based ultrafine fibers.

平均粒子径1×10−2〜1×10−5期の無機成形材
を併用することも出来る。該無機成形材の平均粒子径と
は、粒子状の物質の場合、粒子の最大径の平均を意味し
、又繊維状物質の場合はその繊維長の平均を意味するも
のである。かかる無機成形材の効果は種々あるが、いわ
ば調味料的であって、PVA系極細繊維、水硬性物質そ
の他の添加材との微妙な相乗作用により、安定生産への
寄与と共に、物性の向上、商品価値の向上への寄与が太
きい。例えばPVA系極細繊維の分散性、水硬性物質の
捕捉性の向上、適度な泥水性の付与、抄造フリースの積
層性向上、メーキングロールでの水われ現象防止、しわ
や亀裂発生の防止、表面平滑性の向上、プレス成型時の
型つけ性付与効果がある。かかる無機成形材の添加量は
1〜20%であジ、よシ好ましくは2〜8チである。2
0%を越えると、添加量が多すぎて逆に物性を低下せし
める。一方、1%未満添加の場合障害はないが、この物
質が発揮する効果は期待できない。平均粒子径は、lX
l0−2〜1×10−5軍が好ましい。
An inorganic molding material having an average particle diameter of 1 x 10-2 to 1 x 10-5 may also be used. The average particle diameter of the inorganic molding material means, in the case of a particulate material, the average of the maximum diameter of the particles, and, in the case of a fibrous material, the average of its fiber lengths. There are various effects of such inorganic molding materials, but they are like seasonings, and due to the delicate synergistic effect with PVA-based ultrafine fibers, hydraulic substances, and other additives, they contribute to stable production and improve physical properties. It makes a significant contribution to improving product value. For example, improving the dispersibility of PVA-based ultrafine fibers, improving the ability to trap hydraulic substances, imparting suitable muddy water properties, improving the lamination properties of paper-made fleece, preventing water from forming on making rolls, preventing wrinkles and cracks, and smoothing the surface. It has the effect of improving properties and imparting moldability during press molding. The amount of such inorganic molding material added is 1 to 20%, preferably 2 to 8%. 2
If it exceeds 0%, the amount added will be too large and will conversely deteriorate the physical properties. On the other hand, if less than 1% is added, there is no problem, but the effect of this substance cannot be expected. The average particle diameter is lX
10-2 to 1 x 10-5 is preferred.

1×10−2龍以上では添加効果がなく、又1×10−
5醇以下では抄造時のシリンダーの目を詰めて好ましく
なく、又経済的でもない。
Above 1×10−2 dragon, there is no addition effect, and 1×10−
If the amount is less than 5, the holes in the cylinder during papermaking will become too tight, which is not preferable, and it is also not economical.

無機質成型材の種類は、天然の石灰石粉、重質炭カル、
又は合成して得られる軽微性炭カル、極微純炭カルと呼
ばれる炭酸カルシウムから選ばれるもの、その他塩基性
炭酸マグネシウムドロマイトなど炭酸塩からなる粉末を
用いることができる。
Types of inorganic molding materials include natural limestone powder, heavy charcoal,
Alternatively, it is possible to use powders selected from synthetically obtained calcium carbonates, called extremely fine carbonates, and other carbonates such as basic magnesium carbonate dolomite.

更に粘土鉱物で代表される珪酸塩化合物、例えば天然の
カオリン、クレー、ポールクレー、ろう石クレー、パイ
ロフィライト、ベントナイト、モンモリロナイト、ノン
トロナイト、サポメイト、セリサイト、ゼオライト、ネ
フエリンシナイト、メルク等の板状又は薄板状のもの、
更にアタパルジャイト、セビオライト、ワラストナイト
等の繊維状又は針状のものを用いることができる。また
合成品として、合成珪酸アルミ、合成珪酸カルシウムも
用いることができる。珪酸としては、天然品の珪藻土、
珪石粉等がある。また合成品としては、含水微粉珪酸、
無水微粉珪酸、ホワイトカーボンと呼ばれるもの、工業
用副性物あるいは廃棄物としてシリカダスト、シリカフ
ニーム、フライアッシュも用いることができる。
Furthermore, silicate compounds represented by clay minerals, such as natural kaolin, clay, pole clay, pyrophyllite, bentonite, montmorillonite, nontronite, sapomate, sericite, zeolite, nephelinsinite, merk plate-shaped or thin plate-shaped objects such as
Furthermore, fibrous or acicular materials such as attapulgite, seviolite, and wollastonite can be used. Furthermore, as synthetic products, synthetic aluminum silicate and synthetic calcium silicate can also be used. As silicic acid, natural product diatomaceous earth,
There are silica powder, etc. In addition, as synthetic products, hydrated fine powder silicic acid,
Anhydrous fine powder silicic acid, something called white carbon, silica dust, silica hneem, and fly ash can also be used as industrial byproducts or wastes.

雲母も5〜30%の範囲で併用使用できる。雲母は、P
VA系極細繊維の分散性を向上させると共に、極細繊維
との相乗効果により、水硬性物質等の粒状物質の捕捉性
を向上させると共に、バット水位が適当に保たれ、均一
なグリーンシートが出来る。さらに製品の寸法安定性、
耐ひび削性の向上、火災時に加熱された時のひび割れ防
止効果を有する。添加率は5〜30%で、よシ好ましく
は8〜15%である。5%未満の添加でも構わないが、
雲母の添加効果がほとんど期待できない。
Mica can also be used in combination in a range of 5 to 30%. Mica is P
In addition to improving the dispersibility of VA-based ultrafine fibers, the synergistic effect with the ultrafine fibers improves the ability to capture particulate matter such as hydraulic substances, and the vat water level is maintained appropriately, resulting in a uniform green sheet. Furthermore, the dimensional stability of the product,
Improves crack resistance and prevents cracking when heated during a fire. The addition rate is 5 to 30%, preferably 8 to 15%. It is okay to add less than 5%, but
Almost no effect of adding mica can be expected.

30%を越えるとグリーンシートに可撓性がなくなり、
種々の弊害をきたす。雲母は、アスペクト比が20(フ
レークの直径/フレークの厚さ)以上で粒子直径が30
〜5000μmで板状形態を有していれば化学組成、結
晶形、産地、粉砕法等により同等制限を受けるものでは
ない。例えば白雲母、金雲母、黒雲母、鱗雲母、ソーダ
雲母、合成雲母類等から適宜選択される。
If it exceeds 30%, the green sheet will lose its flexibility,
It causes various harmful effects. Mica has an aspect ratio of 20 or more (flake diameter/flake thickness) and a particle diameter of 30.
As long as it has a plate-like shape with a diameter of ~5000 μm, it is not subject to the same restrictions depending on chemical composition, crystal form, place of origin, pulverization method, etc. For example, it is appropriately selected from muscovite, phlogopite, biotite, lepidolite, soda mica, synthetic mica, and the like.

0.5〜10チの人造無機繊維も併用使用できる。Artificial inorganic fibers of 0.5 to 10 inches can also be used in combination.

かかる物質は、PVA系極細繊維あるいは他の添加材と
相乗して、水硬性粒子状物質等の抄造スラリー中の固形
分の捕捉性を向上させる。またグリーンシートに適度の
硬さを付与し、製品が加熱された時に発生するひび割れ
防止効果にも寄与する。
Such a substance works synergistically with PVA-based ultrafine fibers or other additives to improve the ability to capture solids such as hydraulic particulate matter in the papermaking slurry. It also imparts appropriate hardness to the green sheet and helps prevent cracks that occur when the product is heated.

0.5%以下では効果はなく、10%を越えるとグリー
ンシートが硬くなシすぎて旧形性に欠け、メーキングロ
ールよりシートを展開する時にひびがはいったり、型つ
け性が悪化し、好ましくない。
If it is less than 0.5%, it will not be effective, and if it exceeds 10%, the green sheet will be too hard and will lack old-shape properties, will crack when it is rolled out from a making roll, and will have poor moldability, so it is not preferable. do not have.

人造無機繊維は、いわゆる人造の無機繊維であればなん
でもよく、例えばガラス系繊維、シラス繊維、スラグウ
ール、ロックウール、セラミック繊維等がある。
The man-made inorganic fibers may be any so-called man-made inorganic fibers, such as glass fibers, shirasu fibers, slag wool, rock wool, and ceramic fibers.

10%以下の2価又は3価の金属水酸化物も併合使用可
能である。該金属水酸化物は、製品が加熱された際の有
機物の燃焼による発熱を吸収する効果が6凱 10%以
下で用いることが出来る。
Divalent or trivalent metal hydroxides of up to 10% can also be used in combination. The metal hydroxide can be used if its effectiveness in absorbing heat generated by combustion of organic matter when the product is heated is 6.1% or less.

10%を越えると製品物性が低下する等好ましくない。If it exceeds 10%, the physical properties of the product deteriorate, which is undesirable.

2価又は3価の金属水酸化物の典型的な例として、アル
ミニウム、鉄、マグネシウム、亜鉛の水酸化物がある。
Typical examples of divalent or trivalent metal hydroxides include hydroxides of aluminum, iron, magnesium, and zinc.

該水酸化物の粒子は微細な程好ましく、特に原料スラリ
ー中でコロイド状態で存在する場合がよい。
The finer the hydroxide particles are, the more preferable they are, and it is particularly preferable that they exist in a colloidal state in the raw material slurry.

本発明に使用する水硬性無機物は、例えば普通ポルトラ
ンドセメント、中庸熱ポルトランドセメント、超早強ポ
ルトランドセメント、白色ポルトランドセメント、耐硫
酸塩ポルトランドセメント等のポルトランドセメントや
高炉セメント、シリカセメント、フライアッシュセメン
ト等の混合セメント、アルミナセメント、超速硬セメン
ト、コロイドセメント、油井セメント等の特殊セメント
がある。さらに手水セラコラ、水利セラコラとスラグと
の混合水硬物、マグネシア等であるが、これに限定され
るものではなく、水硬性無機質であれば何れでもよい。
Hydraulic inorganic substances used in the present invention include, for example, Portland cement such as ordinary Portland cement, moderate heat Portland cement, ultra-early strength Portland cement, white Portland cement, and sulfate-resistant Portland cement, blast furnace cement, silica cement, and fly ash cement. There are special cements such as mixed cement, alumina cement, super fast hardening cement, colloidal cement, and oil well cement. Furthermore, the material may include hand-watering Ceracola, a mixed hydraulic material of water-containing Ceracola and slag, magnesia, etc., but is not limited thereto, and any hydraulic inorganic material may be used.

その他一般的な充填材を使用できる。例えば軽量化材と
しての中空パーライト、シラスバレーンや膨張性の混和
剤等である。
Other common fillers can be used. Examples include hollow pearlite, Shirasubarene, and expandable admixtures as lightweight materials.

また他の補強繊維との組合せも可能である。特に耐火性
を要求される場合は、耐アルカリガラス、カーボン繊維
、セラミック繊維等の無機繊維との組合せが有効である
。通常デニールのPVA系繊維、アクリル繊維、ポリア
ミド、アラミド系繊維の併用も可能であシ、また特に耐
衝撃性を向上させるにはポリオレフィン、ポリアミド系
繊維の組合せが有効である。
Combinations with other reinforcing fibers are also possible. In particular, when fire resistance is required, combinations with inorganic fibers such as alkali-resistant glass, carbon fibers, and ceramic fibers are effective. It is also possible to use a combination of normal denier PVA fibers, acrylic fibers, polyamide fibers, and aramid fibers, and a combination of polyolefin fibers and polyamide fibers is particularly effective for improving impact resistance.

以下実施例をもって説明する。This will be explained below using examples.

実施例−1〜2.比較例−1〜2 重合度1,750、ケン化Jf 99. Oモ# % 
OP V Aを、硼酸、酢酸をPVAに対してそれぞれ
1.5.0.3重量饅の量で加えて共に溶解し、PVA
濃度13重量%(粘度90℃で8ボイズ、川4.5)の
水溶液とし紡糸原液とした。
Examples-1 to 2. Comparative Examples-1-2 Polymerization degree 1,750, saponification Jf 99. OMo#%
OP V A was dissolved together by adding boric acid and acetic acid in an amount of 1.5 and 0.3 parts by weight based on PVA, respectively.
An aqueous solution with a concentration of 13% by weight (viscosity: 8 voids at 90° C., 4.5%) was used as a spinning dope.

コノ紡糸原液を、孔直径0.03m、孔数10,000
の口金よシカ性ソーダ50 ?/l 、芒硝300P/
Jの凝固浴中へ吐出させ糸篠を形成せしめた。この時の
吐出量を変更してバスドラフトを一10%(実施例−1
)、−40%(実施例−2)、+20%(比較例−1)
、−70チ(比較例−2)とした。
The Kono spinning stock solution was prepared with a pore diameter of 0.03 m and a number of pores of 10,000.
50 bucks of soda? /l, mirabilite 300P/
It was discharged into the coagulation bath of J and formed a thread. At this time, the discharge amount was changed to reduce the bath draft by 10% (Example-1)
), -40% (Example-2), +20% (Comparative Example-1)
, -70 inches (Comparative Example-2).

離俗速度10gIL/分とし、ローラー間で2.5倍に
延伸し、中和後1.8倍の湿熱延伸を施した後、残存硼
酸が0.3%/PVAになるように水洗し、さらに集束
処理を行なって全延伸倍率を12.6倍とし、2%の熱
収縮を施した。紡糸調子は10錘で8時間連続紡糸を行
い、判断した。品質測定結果を含めて表−IK示した。
At a stretching speed of 10 gIL/min, it was stretched 2.5 times between rollers, and after neutralization, it was subjected to wet heat stretching 1.8 times, and then washed with water so that the residual boric acid was 0.3%/PVA. Further, a focusing treatment was performed to increase the total stretching ratio to 12.6 times, and heat shrinkage was performed by 2%. The spinning condition was determined by continuous spinning for 8 hours with 10 spindles. Table IK including quality measurement results is shown.

実施例−3、比較例−3〜4 重合度1,650、’171炭化9.9モル1c)PV
Aを硼酸、酢酸をPVAに対してそれぞれ2.0.0.
3重量−の量で加えて共に溶解し、濃度を11重量%(
実施例−3)、7重量%(比較例−3)、16重量%(
比較例−4)の各水溶液(田はいずれも4.5)を作成
し、紡糸原液とした。該原液を、孔直径0.03+m、
孔数10,000の口金を用い、力性ソーダ20 f/
J、芒硝350 t/lの凝固浴へ吐出させて、糸篠を
形成せしめた。バスドラフトは一40%とし、離俗速度
は10m/分とした。この紡糸繊維を2倍にローラー延
伸し、中和後水洗して残存する硼酸を0.4%/PVA
とし、芒硝浴で処理し、延伸倍率を4.5倍の湿熱延伸
を施した。さらに乾燥後、乾熱延伸をして全延伸倍率を
12゜5倍とした。但し12,5倍の延伸ができないも
のは、切断延伸倍率を求めてその8割の倍率とした。引
続き2%の熱収縮を施し、芒硝洗滌、オイリング、乾燥
後、品質を測定した。その結果を表−2に示した0 実施例−4〜6、比較例−5〜6 実施例2において、凝固浴の力性ソーダ、芒硝の濃度を
それぞれ70f/J、2701/Ic実施例−4)、3
0f/I、3001/Ic実施例−5)、10f!/1
133(1/J (実施例−6)、110f/l、23
09/Ic比較例−5)、701/l、  、  。
Example-3, Comparative Examples-3 to 4 Degree of polymerization 1,650, '171 carbonization 9.9 mol 1c) PV
A is boric acid, acetic acid is 2.0.0.
3% by weight and dissolved together to make a concentration of 11% by weight (
Example-3), 7% by weight (Comparative Example-3), 16% by weight (
Comparative Example 4) Each aqueous solution (all had a rating of 4.5) was prepared and used as a spinning stock solution. The stock solution has a pore diameter of 0.03+m,
Using a cap with 10,000 holes, 20 f/
J, Glauber's salt was discharged into a coagulation bath of 350 t/l to form a thread. The bus draft was set at -40%, and the speed was set at 10 m/min. This spun fiber was stretched twice with a roller, neutralized, and then washed with water to remove the remaining boric acid by 0.4%/PVA.
The film was treated with a sodium sulfate bath and subjected to wet heat stretching at a stretching ratio of 4.5 times. After further drying, dry heat stretching was carried out to give a total stretching ratio of 12.degree. However, for those that cannot be stretched 12.5 times, the cutting stretching ratio was determined and the stretching ratio was set to 80%. Subsequently, it was subjected to 2% heat shrinkage, washed with sodium sulfate, oiled, dried, and then its quality was measured. The results are shown in Table 2. Examples 4 to 6, Comparative Examples 5 to 6 In Example 2, the concentrations of sodium sulfate and mirabilite in the coagulation bath were 70 f/J and 2701/Ic, respectively. 4), 3
0f/I, 3001/Ic Example-5), 10f! /1
133 (1/J (Example-6), 110 f/l, 23
09/Ic Comparative Example-5), 701/l, .

2309/Ic比較例−6)とした以外は全〈実施例−
2と同条件で試験を行った結果を表−3にまとめた。
All examples except 2309/Ic Comparative Example-6)
Table 3 summarizes the results of tests conducted under the same conditions as 2.

表  −1 表  −2 表  −3 以上、実施例はすべて紡糸調子良好で、断面充実度70
チ以下の高強力、高耐水性の極細繊維が得られるのに比
し、比較例は何等かの問題点を有する。
Table -1 Table -2 Table -3 As mentioned above, all the examples had good spinning condition, and the cross-sectional fullness was 70.
Compared to the ultrafine fibers with high tenacity and high water resistance of less than 100% obtained, the comparative example has some problems.

実施例−7〜8、比較例−7 重合度1,800. ケア化度97.51(7)PVA
を、硼酸1.5f/J%(PVAに対して)と共に溶解
し、酢酸を添加して% 4. O、粘度9ボイズ(90
℃)の紡糸原液を調整した。
Examples-7 to 8, Comparative Example-7 Degree of polymerization 1,800. Care degree 97.51 (7) PVA
was dissolved with boric acid 1.5f/J% (relative to PVA) and acetic acid was added to give %4. O, viscosity 9 voids (90
A spinning stock solution was prepared at ℃).

該紡糸原液を孔数6,000より紡出し、糸篠を形成せ
しめるに際し、デニール及び断面充実度をかえるために
、原液濃度13〜16%、バスドラフトO〜−40%、
孔径0.02〜0.04箇の範囲内で、また凝固浴の力
性ソーダ、芒硝濃度を変更した。凝固した糸篠を中和、
湿熱延伸後水洗を行い残存硼酸を0.5%/繊維とした
。なお湿潤部の全延伸倍率は5.0倍にした。しかる後
に乾燥し、強度が13.3 f/drになるような乾熱
延伸(最終延伸倍率はいずれも10倍以上)を行い、ま
た水中軟化点が115°C以上になるように熱処理し、
オイリング後乾燥し巻取った。
When spinning the spinning dope through 6,000 holes to form a thread, in order to change the denier and cross-sectional solidity, the dope concentration was 13 to 16%, the bath draft was O to -40%,
The pore diameter was within the range of 0.02 to 0.04, and the concentration of sodium sulfate and sodium sulfate in the coagulation bath was varied. Neutralizes solidified Itoshino,
After the wet heat stretching, the film was washed with water to make the residual boric acid 0.5%/fiber. The total stretching ratio in the wet area was 5.0 times. After that, it is dried and subjected to dry heat stretching (the final stretching ratio is 10 times or more in each case) so that the strength becomes 13.3 f/dr, and heat treated so that the softening point in water becomes 115 ° C or more.
After oiling, it was dried and rolled up.

繊維のデニール及び断面充実度は% 0.2dr%65
%(実施例−7)、0,4dr、63%(実施例−8)
、0.2dr、80%(比較例−7)とした。かかる繊
維をアスペクト比500になるように切断して、丸網湿
式抄造法(ハチニック法)にして固形分としてPVA系
繊維2%、残部ポルトランドセメントの組成で濃度15
%のスラリーを作成し、白水で割シながら厚さ6■のセ
メント板を抄造した。
Fiber denier and cross-sectional fullness are %0.2dr%65
% (Example-7), 0.4 dr, 63% (Example-8)
, 0.2 dr, and 80% (Comparative Example-7). The fibers were cut to have an aspect ratio of 500, and processed using the round net wet papermaking method (Hachinic method) to obtain a concentration of 15% with a solid content of PVA fibers of 2% and the balance of Portland cement.
% slurry was prepared, and a cement board with a thickness of 6 cm was made by diluting it with white water.

なお抄造に際し、s o ppmの市販のアニオン系凝
集剤を使用した。(市川毛織のIKフロックT−比較例
−8〜9 常法によりデニ−#0,7dr(比較例−8)、t、。
Note that during papermaking, a commercially available anionic flocculant of so ppm was used. (Ichikawa Keori's IK Flock T-Comparative Examples-8 to 9 Denny #0,7 dr (Comparative Example-8), t, by the usual method.

dr (比較例−9)、強度13.5り/ drs水中
軟化点115℃のPVA系繊維を作成し、実施例7〜8
と同じ方法でセメント板を作成した。
dr (Comparative Example-9), strength 13.5/DRS PVA-based fibers with an underwater softening point of 115°C were prepared and used in Examples 7 to 8.
A cement board was made using the same method.

参考例−1 石綿(6級)12%、パルプ1%、残部ポルトランドセ
メントの組成で、実施例−7〜8と同方法で石綿セメン
ト板を作成した。実施例−7〜8、比較例−7〜9、参
考例−1の実験結果を表−4にまとめた。
Reference Example 1 An asbestos cement board was prepared in the same manner as in Examples 7 and 8 with a composition of 12% asbestos (grade 6), 1% pulp, and the balance Portland cement. The experimental results of Examples 7 to 8, Comparative Examples 7 to 9, and Reference Example 1 are summarized in Table 4.

表  −4 なお表−4中の曲げ強度は、繊維の真の補強性を比較す
るために歩留シ補正をしたものである。
Table 4 The bending strengths in Table 4 were corrected for yield in order to compare the true reinforcing properties of the fibers.

実施例−7〜8は、わずか2チの本発明の極細繊維を使
用するのみでかつ全くパルプを含まずして従来の石綿セ
メント板(参考例−1)と同等のセメント捕捉性と補強
効果を示したが、比較例はかなシ低いことが明瞭である
。特に比較例−7は、デニールは本発明の範囲内にあっ
ても断面充実度が範囲外ならば満足すべき結果が得られ
ないことを示している。
Examples 7 and 8 use only 2 inches of the ultrafine fibers of the present invention and do not contain any pulp, and have the same cement retention and reinforcing effect as the conventional asbestos cement board (Reference Example 1). However, it is clear that the comparative example has a low level of fragility. In particular, Comparative Example 7 shows that even if the denier is within the range of the present invention, if the cross-sectional solidity is outside the range, satisfactory results cannot be obtained.

実施例−9〜10、比較例−10 実施例−1〜2に準じ、全延伸倍率を変更して強度13
.0 f/llr (実施例−9)、l l、Q r/
dr(実施例−10)、s、 s f/dr (比較例
−10)と変更したPVA繊維を作成し、セメント板に
よる補強効果をみた結果を表−5にまとめた。なおデニ
ールは全て0,2drとし、水中軟化点は113〜11
5℃とほぼ同じにした。
Examples-9 to 10, Comparative Example-10 According to Examples-1 to 2, the total stretching ratio was changed to obtain a strength of 13
.. 0 f/llr (Example-9), l l, Q r/
Table 5 summarizes the results of creating PVA fibers with changes such as dr (Example-10), s, and s f/dr (Comparative Example-10), and looking at the reinforcing effect of the cement board. The denier is 0.2 dr, and the underwater softening point is 113 to 11.
The temperature was approximately the same as 5°C.

実施例−11〜12、比較例−11 実施例−1〜2に準じて、デニール0.15dr。Examples-11 to 12, Comparative Example-11 According to Examples 1 and 2, denier 0.15 dr.

強度11〜11.5 t/dr 0PVA繊維でW伸温
度、熱処理温度を変更して、水中軟化点が110°(実
施例−11)、115°(実施例−12)、100゜(
比較例−11)なる試料を作成し、セメント板にて補強
効果をみた。その結果を表−5にまとめた0 表  −5 実施例−9〜12は、従来の石綿セメント板(参考例−
1)とほぼ同等の補強効果を示すが、比較例は低い。な
おセメント歩留はいづれも91〜94%であった。
Strength 11-11.5 t/dr 0PVA fibers were used to change the W stretching temperature and heat treatment temperature, and the softening point in water was 110° (Example-11), 115° (Example-12), and 100° (
Comparative Example 11) A sample was prepared and the reinforcing effect was examined using a cement board. The results are summarized in Table 5. Table 5 Examples 9 to 12 are based on conventional asbestos cement boards (Reference example
It shows almost the same reinforcing effect as 1), but the comparative example is lower. Incidentally, the cement yield was 91 to 94% in all cases.

実施例−13〜20  ’ (1)使用原料の説明 PVA系繊維;実施例−1〜2と同方法で製造したデ=
−A/ 0,2 dr、強度13.59/dr、水中軟
化点116℃、断面充実度62%の繊維で3鶴に切断し
たものを使用 バルブ;カナディアンフリーネス、lQQ+dの針葉樹
未晒パルプ ベントナイト;平均粒子径1.5X10−3mのものを
無機成形材として使用 マイカ;■り2し製のソゾライトマイカ4〇−ZK(平
均アスペクト比60) スラグウール;平均直径4×1O−3111I+のもの
をあらかじめシェアーを加えた後、ふるい分けして0.
5〜2■にしたものを使用。
Examples-13 to 20' (1) Description of raw materials used PVA-based fibers;
-A/ 0.2 dr, strength 13.59/dr, underwater softening point 116°C, cross-sectional solidity 62% fiber cut into 3 cranes is used. Valve; Canadian freeness, lQQ+d softwood unbleached pulp bentonite; Mica with an average particle diameter of 1.5 x 10-3 m is used as an inorganic molding material. Sozolite mica 40-ZK made by Sori 2 (average aspect ratio 60) Slag wool: with an average diameter of 4 x 1 O-3111I+ After adding the share in advance, sift it to 0.
Use 5-2■.

水酸化アルミニウム;住友アルミニウム社のC−303
を使用 凝集剤;市川毛織のIKフロックT−201(2)配合
組成;表−6にまとめた。
Aluminum hydroxide; C-303 from Sumitomo Aluminum Co., Ltd.
The flocculant used: IK Flock T-201 (2) by Ichikawa Keori Co., Ltd. The composition is summarized in Table 6.

(8)セメント板の製造方法 実施例−13:所定量のPVA繊維、ポルトランドセメ
ント及び白水をスラッシャ−付ノくルノく−に投入し、
短時間攪拌後、チェストへ移送し、約1.100り/l
の抄造用スラリーとする。
(8) Cement board manufacturing method Example-13: Put a predetermined amount of PVA fiber, Portland cement, and white water into a slusher-equipped nokuru-no-kuru,
After stirring for a short time, transfer to the chest and make about 1.100 l/l.
slurry for paper making.

かかるスラリーを、約s o ppmの凝集剤及び必要
量の割水を添加しつつ抄造槽(バット)へ導入し、60
メツシユの丸網にて抄き上げ、メーキングロールに巻き
取シ、切断後の生板を20 kp/iで加酸成形した。
This slurry was introduced into a papermaking tank (vat) while adding about so ppm of flocculant and the required amount of water, and
The raw board was formed using a circular mesh screen, wound onto a making roll, and after being cut, the raw board was acid-formed at 20 kp/i.

養生は50°Cで24時間の湿空養生後、気乾状態で4
週間放置とし、6wm厚さのセメント板を得た。
Curing was performed at 50°C for 24 hours in a humid air, then air-dried for 4 hours.
This was left for a week to obtain a cement board with a thickness of 6wm.

実施例−14〜20:それぞれの添加剤をパルパーに投
入攪拌分散後、PVA繊維及びポルトランドセメントを
加えて実施例−13と同方法にて実施した。
Examples 14 to 20: After each additive was put into a pulper and stirred and dispersed, PVA fibers and Portland cement were added, and the same method as in Example 13 was carried out.

(4)評価方法 分散性 分散性は、繊維状物質の抄造スラリー中における分散状
態を意味し、該抄造スラリーを丸網へ抄き上げる際の丸
網上のデコボコ状態を観察し、デコボコの少い非常に良
好な分散状態を◎、デコボコの多い分散不良状態を×と
し、その間を2ランクにわけて○、△とした。
(4) Evaluation method Dispersibility Dispersibility refers to the state of dispersion of a fibrous material in a papermaking slurry. When the papermaking slurry is drawn up into a papermaking slurry, the uneven state on the round screen is observed, and the number of unevenness is A very good dispersion state is marked as ◎, a poor dispersion state with many unevenness is marked as ×, and the two ranks are divided into ◯ and △.

バット内水位 充分均−なシートを抄き上げ可能な場合を◎、水位がほ
とんどとれず均一なシートが出来ない場合又はF水が悪
過ぎてバットよシ抄造スラリーがオーバーフローするよ
うな状態を×、その中間ランクを○、Δとして定性的に
判断した。
◎: When the water level in the vat is sufficiently uniform and it is possible to make a sheet; ◎: When the water level is almost constant and a uniform sheet cannot be formed; , and the intermediate ranks were qualitatively judged as ○ and Δ.

セメント捕捉性 セメントや無機成形材等の抄造スラリー中の固形分の捕
捉率を意味し、抄造槽内の抄き上げ前のスラリー濃度(
wl)と丸網を通して排出された排水型付は性 メーキングロール後の生板に通常の波形成形を施して、
ひび割の発生及び縮み皺の状態を観察し、ひび割や皺の
ないものを◎、ひどくひび割が出、かつ縮み皺の出るも
のを×、その間を2ランクに分けて○、Δとした。
Cement-capturing ability This refers to the capture rate of solid content in papermaking slurry such as cement and inorganic molding materials, and the slurry concentration before papermaking in the papermaking tank (
wl) and the drainage molding discharged through the round screen, the raw board after the sex-making roll is given a normal corrugated shape,
The appearance of cracks and shrinkage wrinkles were observed, and those with no cracks or wrinkles were marked as ◎, those with severe cracking and shrinkage wrinkles were marked as ×, and those in between were divided into two ranks: ○ and Δ. .

曲げ強度 JISA1408r建築ボード類の曲げ試験法」によシ
測定し、抄造方向(タテ方向)とその直角方向(ヨコ方
向)の平均値で示した。水硬性物質等の捕捉率が変わる
と補強繊維の配合量が実質的に変化したことになるので
、真の補強性を比較するために水硬性物質等固形分の捕
捉率を100%となるように補正を加えた曲げ強度を示
した。
Bending strength was measured according to JISA 1408r Bending Test Method for Architectural Boards, and is shown as the average value in the papermaking direction (vertical direction) and the direction perpendicular to it (horizontal direction). If the capture rate of hydraulic substances, etc. changes, the blended amount of reinforcing fibers will essentially change, so in order to compare the true reinforcing properties, we set the capture rate of solids such as hydraulic substances to 100%. The bending strength is shown with corrections added.

耐ひび削性 1ケ月間気乾状態に放置した板材を巾4. Ocm s
−長さ±30crnになるように切り出し、中央部に巾
2crnを残すように両側からICrnずつ直角に切シ
込みを入れる。そしてスパン28備となるように両側に
2個ずつの孔をあけ、5誼のボルトナツトで厚さ3sm
のステンレススチール板に固定する。これをこのまま2
0℃の水中へ1昼夜浸漬後室温で1昼夜風乾する。更に
40℃の熱風乾燥機にて1昼夜乾燥し、更に100″C
の乾燥機へ2時間投入し、その時のひび割発生の割合を
観察する。ひび割幅が0.05℃m以上をひび割とみな
し、タテ方向、ヨコ方向の試験片の総数に対し、ひぴ−
割の発生した数の割合で示した。ひび割発生の全然起ら
ないもの◎、20%未満を○、20〜40%を△、40
チ以上のもの×とした。
Crack resistance A board left to air dry for one month has a width of 4. Ocm s
-Cut it to a length of ±30 crn, and make a perpendicular cut of ICrn from both sides, leaving a width of 2 crn in the center. Then, drill two holes on each side so that the span is 28, and tighten them with 5mm bolts and nuts to a thickness of 3mm.
fixed to a stainless steel plate. Leave this as it is 2
After being immersed in water at 0°C for 1 day and night, it was air-dried at room temperature for 1 day and night. Furthermore, it was dried in a hot air dryer at 40℃ for 1 day and night, and further dried at 100"C.
Put it in a dryer for 2 hours and observe the rate of cracking during that time. A crack width of 0.05℃m or more is considered a crack, and the total number of test pieces in the vertical and horizontal directions is
It is expressed as a percentage of the number of occurrences. No cracks at all ◎, less than 20% ○, 20-40% △, 40
Those that are more than or equal to Q are marked as ×.

難燃性 JISA−1321の「建築物の内装材料及び工法の難
燃性試験方法Jに依り基材試験及び表面試験を行い、判
定した。
Flame retardancy JISA-1321: ``Flame retardancy test method J for building interior materials and construction methods'' was used to conduct base material tests and surface tests.

(6)結果 表−6にまとめた。(6) Results It is summarized in Table-6.

実施例−13は、本発明のPVA系極細繊維とセメント
よりなるセメント板であるが、参考例−1の従来の石綿
セメント板とほぼ同等の抄造性、製品物性を有すること
がわかるが、さらに本発明のそれぞれの添加剤を加える
ことによシ、抄造性、製品物性が一層向上し、従来の石
綿tメント板よシすぐれたものも得ることが出来る。
Example-13 is a cement board made of the PVA-based ultrafine fibers of the present invention and cement, and it can be seen that it has almost the same formability and product physical properties as the conventional asbestos cement board of Reference Example-1, but By adding each of the additives of the present invention, paper forming properties and product physical properties are further improved, and products superior to conventional asbestos t-ment boards can be obtained.

パルプ(実施例−14)、ベントナイト(実施例−15
)の添加によJ、PVA繊維の分散性、抄造固形分(主
としてセメント)の捕捉性、バット水位、層間剥離性、
型つけ性、表面平滑性が改善された。さらに分散性向上
の結果のためか曲げ強度も向上した。
Pulp (Example-14), Bentonite (Example-15)
), the dispersibility of PVA fibers, the capture of solids (mainly cement) in papermaking, the vat water level, the delamination properties,
Improved moldability and surface smoothness. Furthermore, the bending strength was also improved, probably as a result of improved dispersibility.

マイカ(実施例−16)の添加により、PVA繊維の分
散性、バット水位の改善により、均一な製品が得られて
表面平滑性が向上した。さらに特徴的なことは、難燃性
試験のうち特に表面試験に有効であるとと即ち加熱時の
亀裂防止に効果的なことである。
The addition of mica (Example 16) improved the dispersibility of PVA fibers and the vat water level, resulting in a uniform product and improved surface smoothness. A further characteristic feature is that it is particularly effective in surface tests among flame retardant tests, that is, it is effective in preventing cracks during heating.

実施例−17の無機人造繊維ロックウールは、単独での
効果は小さく、無機成形材又はパルプとの併用効果によ
り、抄造性、製品物性の改善が出来る。
The inorganic man-made fiber rock wool of Example 17 has a small effect alone, but can improve paper formability and product properties by combining it with an inorganic molding material or pulp.

水酸化アルばニウムは、難燃性試験のうち基材試験に有
効である。実施例−18は、有機成分が多いために燃焼
時の発熱量が多く、基材試験に不合格であるが、水酸化
アルミニウムを添加した実施例−19は発熱が押えられ
、合格となる。
Albanium hydroxide is effective for base material testing among flame retardant tests. Example-18 has a large amount of organic components and therefore generates a large amount of heat during combustion, and fails the base material test, but Example-19, in which aluminum hydroxide is added, suppresses heat generation and passes the test.

実施例−20は石綿セメント板と同等又はそれ以上の抄
造性、製品物性を有する配合例である。
Example 20 is a formulation example having paper formability and product physical properties equivalent to or better than asbestos cement board.

E1本発明の効果および用途 本発明の繊維は、極細で強度が高く、耐水性の優れた扁
平なるPVA繊維でめり、かつ安価に製造できるために
その用途は広く、セメント等の水硬性物質の補強、プラ
スチックの補強、湿式不織布(例えば高緊度紙、地合の
すぐれた薄葉紙等の抄紙が可能であり、それぞれの特性
を生かした高性能フィルターファックス原紙、銀行券、
証券等の用途)、乾式不織布、高強力、柔軟性を生かし
た一般的な産業資材用途、医療用途等への展開も可能で
ある。
E1 Effects and Applications of the Present Invention The fiber of the present invention is a flat PVA fiber that is ultra-fine, has high strength, and has excellent water resistance.It can be manufactured at low cost and has a wide range of uses, and can be used in hydraulic materials such as cement. It is possible to make paper such as paper reinforcement, plastic reinforcement, and wet nonwoven fabrics (e.g., high-tension paper, thin paper with excellent texture, etc.), and it is possible to make high-performance filters that take advantage of the characteristics of each paper, fax base paper, bank notes,
It can also be used in applications such as dry-laid nonwoven fabrics, general industrial material applications that take advantage of its high strength and flexibility, and medical applications.

さらにか\る極細繊維を無機質水硬性物質の抄造分野へ
用いると、湿式抄造製品における石綿代替の問題は解決
でれ、無石綿で石綿使用時と同じ設備によって高能率生
産が可能となり、性能的にも石綿含有抄造製品と同等又
はそれ以上のものを得ることが出来るようになった。
Furthermore, if such ultrafine fibers are used in the field of papermaking for inorganic hydraulic materials, the problem of replacing asbestos in wet papermaking products can be solved, and high-efficiency production can be achieved without asbestos using the same equipment used when using asbestos. It has become possible to obtain paper products that are equivalent to or better than asbestos-containing paper products.

本発明によって得られるか\る無石綿水硬性無機質抄造
製品は、従来からの石綿含有製品の代替として利用でき
るのは当然であるが、石綿を含有しないということでそ
の用途は更に拡がることが期待できる。
It goes without saying that the asbestos-free hydraulic inorganic paper product obtained by the present invention can be used as a substitute for conventional asbestos-containing products, but it is expected that its use will further expand as it does not contain asbestos. can.

用途例の一部を述べるならば、石綿を含有しない波形板
、シングル等の屋根材及び建築物や船舶などに用いられ
る平板、パーライト板、サイディング材、カーテンウオ
ール、耐火間仕切壁、外装パネル等の内外装材2あるい
は無石綿管等がある。
Some examples of applications include corrugated boards that do not contain asbestos, roofing materials such as shingles, flat boards used in buildings and ships, perlite boards, siding materials, curtain walls, fireproof partition walls, exterior panels, etc. There are interior and exterior materials 2 or asbestos-free pipes.

Claims (1)

【特許請求の範囲】 1、単繊維が0.05〜0.5デニールで、引張り強度
9.0g/デニール以上、水中軟化点105℃以上、単
繊維の断面充実度が70%以下であるポリビニルアルコ
ール系極細繊維。 2、平均重合度1,200〜3,000のポリビニルア
ルコールを、そのポリビニルアルコールに対して0.5
〜5重量%の硼酸又は硼酸塩と溶解後の液のpHが5以
下となるような酸を加えた水を用いて加熱溶解し濃度8
〜14重量%の水溶液を調製し、この水溶液を紡糸原液
として直径0.02〜0.04mmの丸孔口金よりバス
ドラフト10〜−60%の範囲内でアルカリ性高濃度塩
類水溶液よりなる浴中へ吐出させ、その後10倍以上の
延伸を行なうことを特徴とするポリビニルアルコール系
極細繊維の製造方法。
[Claims] 1. Polyvinyl whose single fibers have a denier of 0.05 to 0.5, a tensile strength of 9.0 g/denier or more, a softening point in water of 105°C or more, and a cross-sectional solidity of the single fibers of 70% or less. Alcohol-based microfiber. 2. Polyvinyl alcohol with an average degree of polymerization of 1,200 to 3,000, with a ratio of 0.5 to the polyvinyl alcohol
To a concentration of 8, dissolve by heating using water containing ~5% by weight of boric acid or a boric acid salt and an acid such that the pH of the solution after dissolution is 5 or less.
An aqueous solution of ~14% by weight is prepared, and this aqueous solution is used as a spinning dope through a round hole nozzle with a diameter of 0.02 to 0.04 mm into a bath consisting of an alkaline high concentration salt aqueous solution within a bath draft range of 10 to -60%. A method for producing polyvinyl alcohol-based ultrafine fibers, which comprises discharging and then stretching 10 times or more.
JP296585A 1985-01-10 1985-01-10 Ultrafine fiber of polyvinyl alcohol and production thereof Granted JPS61167011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP296585A JPS61167011A (en) 1985-01-10 1985-01-10 Ultrafine fiber of polyvinyl alcohol and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP296585A JPS61167011A (en) 1985-01-10 1985-01-10 Ultrafine fiber of polyvinyl alcohol and production thereof

Publications (2)

Publication Number Publication Date
JPS61167011A true JPS61167011A (en) 1986-07-28
JPH0450403B2 JPH0450403B2 (en) 1992-08-14

Family

ID=11544077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP296585A Granted JPS61167011A (en) 1985-01-10 1985-01-10 Ultrafine fiber of polyvinyl alcohol and production thereof

Country Status (1)

Country Link
JP (1) JPS61167011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313068A2 (en) * 1987-10-22 1989-04-26 Kuraray Co., Ltd. Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles
JPH01298208A (en) * 1987-10-22 1989-12-01 Kuraray Co Ltd Polyvinyl alcohol-based synthetic yarn and production thereof
JPH04126818A (en) * 1990-09-11 1992-04-27 Kuraray Co Ltd Polyvinyl alcohol-based binder fiber and production thereof
CN100415957C (en) * 2005-11-18 2008-09-03 西北大学 Micro peart necklace shaped polymer fiber and its preparation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0313068A2 (en) * 1987-10-22 1989-04-26 Kuraray Co., Ltd. Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles
JPH01298208A (en) * 1987-10-22 1989-12-01 Kuraray Co Ltd Polyvinyl alcohol-based synthetic yarn and production thereof
EP0313068B1 (en) * 1987-10-22 1995-08-02 Kuraray Co., Ltd. Polyvinyl alcohol-based synthetic fibers having a slender cross-sectional configuration and their use for reinforcing shaped articles
JPH04126818A (en) * 1990-09-11 1992-04-27 Kuraray Co Ltd Polyvinyl alcohol-based binder fiber and production thereof
CN100415957C (en) * 2005-11-18 2008-09-03 西北大学 Micro peart necklace shaped polymer fiber and its preparation method

Also Published As

Publication number Publication date
JPH0450403B2 (en) 1992-08-14

Similar Documents

Publication Publication Date Title
FI105912B (en) Fiber-reinforced moldings
US10538457B2 (en) Blended fibers in an engineered cementitious composite
JPH0329737B2 (en)
JPH0225857B2 (en)
JP2835806B2 (en) Reinforced polypropylene fiber and fiber reinforced cement molding
JPS61167011A (en) Ultrafine fiber of polyvinyl alcohol and production thereof
US8461233B2 (en) Fiber for fiber cement and resulting product
EP0047158B2 (en) A process for the manufacture of fibre reinforced shaped articles
JPS61163150A (en) Hydraulic inorganic paper product and manufacture
JPS6126544A (en) Hydraulic inorganic papering product and manufacture
JPS6232144B2 (en)
JPS6131337A (en) Hydraulic inorganic papering product and manufacture
JPS6296354A (en) Hydraulic inorganic papered product and manufacture
US20230271881A1 (en) Layered formed sheet and method for manufacturing the same
JPH0580424B2 (en)
JPS62149908A (en) Acrylic fibrilated fiber of high performance
JPS60161362A (en) Fiber reinforced hydraulic inorganic paper product and manufacture
JPH07286401A (en) Hydraulic setting inorganic papermaking product
JPH0216257B2 (en)
JPS616167A (en) Hydraulic inorganic papered product and manufacture
JPS6021836A (en) Hydraulic inorganic board and manufacture
JPH0225856B2 (en)
JP3227234B2 (en) Hydraulic inorganic molded products
JPH0444636B2 (en)
JPS61197480A (en) Hydraulic lightweight inorganic papered products and manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees