JPH01298208A - Polyvinyl alcohol-based synthetic yarn and production thereof - Google Patents

Polyvinyl alcohol-based synthetic yarn and production thereof

Info

Publication number
JPH01298208A
JPH01298208A JP23314288A JP23314288A JPH01298208A JP H01298208 A JPH01298208 A JP H01298208A JP 23314288 A JP23314288 A JP 23314288A JP 23314288 A JP23314288 A JP 23314288A JP H01298208 A JPH01298208 A JP H01298208A
Authority
JP
Japan
Prior art keywords
fibers
spinning
fiber
pva
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23314288A
Other languages
Japanese (ja)
Other versions
JP2653682B2 (en
Inventor
Akio Mizobe
溝辺 昭雄
Tomoo Saeki
佐伯 知男
Shoichi Nishiyama
正一 西山
Isao Sakuragi
桜木 功
Shoji Akiyama
昭次 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Publication of JPH01298208A publication Critical patent/JPH01298208A/en
Application granted granted Critical
Publication of JP2653682B2 publication Critical patent/JP2653682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title yarn having a flat section, a large ratio of length and width of crystal and excellent heat resistance by using an aqueous solution of PVA containing boric acid (borate) as spinning dope, extruding the dope into a coagulating bath with a specific temperature and drawing at a high draw ratio. CONSTITUTION:In using an aqueous solution of PVA containing preferably 0.5-5wt.% boric acid (borate) as a spinning solution as spinning dope, extruding the solution into an alkali coagulating bath containing a salt and spinning, the temperature of the coagulating bath is 55-95 deg.C, preferably 60-80 deg.C and the prepared undrawn yarn is drawn at >=17 times, preferably >=20 times draw ratio to give the aimed yarn having <=65%, preferably <=60% circularity of section, >=2.1, preferably >=2.3 ratio of length and width of crystal, 4,000-20,000 polymerization degree of polymer and >=120 deg.C dissolution temperature of yarn in water.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、偏平な断面を有し、かつ結晶の長さと幅の比
が大きいポリビニルアルコール(以下PVAと略記する
)系繊維と、該繊維を提供する方法、すなわち硼酸また
は硼酸塩を含有するPVA水溶液を脱水能を有する塩類
を含む高温のアルカリ性凝固浴へ湿式紡糸する技術に関
するものである。
Detailed Description of the Invention <Industrial Application Field> The present invention relates to a polyvinyl alcohol (hereinafter abbreviated as PVA) fiber having a flat cross section and a large crystal length-to-width ratio; The present invention relates to a method of wet-spinning a PVA aqueous solution containing boric acid or a borate into a high-temperature alkaline coagulation bath containing salts having dehydrating ability.

〈従来の技術〉 従来よりPVA系繊維は汎用繊維の中で最も高強度、高
弾性であるという特長を生かして、プラスチックスやゴ
ム等の有機成形材料及びセメントや石膏等の水硬性無機
物、その他の各種物質の補強用として用いられている。
<Conventional technology> PVA fibers have traditionally been used for organic molding materials such as plastics and rubber, hydraulic inorganic materials such as cement and gypsum, and others by taking advantage of the characteristics of having the highest strength and high elasticity among general-purpose fibers. It is used for reinforcing various materials.

補強用PVA系繊維に要求される性能は第1に高強度・
高弾性であるといわれている。繊維が充分な強度、弾性
を有していない場合には、得られるfa維補強成形物は
当然のことながら強靭性を有しないことになるー 第2に要求される性能は、補強繊維がマトリックス(上
記プラスチックス、ゴム、セメント、石膏等)との接着
性に優れていることとされている。
The first performance required of reinforcing PVA fibers is high strength and
It is said to have high elasticity. If the fibers do not have sufficient strength and elasticity, the obtained fa fiber reinforced molded product will naturally not have toughness.The second performance required is that the reinforcing fibers are the matrix. It is said to have excellent adhesion to (the above-mentioned plastics, rubber, cement, plaster, etc.).

補強繊維と1トリツクスとの接着が不充分な場合、繊維
補強成形体は外部からの応力に対し、補強繊維の強度、
弾性が充分に利用されず補強効果が得られないまま、ク
ラックや破壊が生ずることになる。この繊維とマトリッ
クスの接着性を向上させるには繊維の表面積を大きくす
ることが有効であり、具体的には依維断面の偏平化、異
形化、細デニール化等の方法がある。従来よりPVA系
繊維の高強度・高弾性化に関して種々の製造方法が提案
され、中には実施されているものもある。
If the adhesion between the reinforcing fibers and the 1 trix is insufficient, the fiber-reinforced molded product will not be able to withstand external stress due to the strength of the reinforcing fibers.
Elasticity is not fully utilized and no reinforcing effect is obtained, leading to cracks and destruction. In order to improve the adhesion between the fibers and the matrix, it is effective to increase the surface area of the fibers, and specific methods include flattening the fiber cross section, making it irregularly shaped, making it finer in denier, etc. Various manufacturing methods have been proposed in the past for increasing the strength and elasticity of PVA fibers, and some of them have already been implemented.

PVA系繊維の製造方法のうち最も代表的な方法は、P
VA水溶液を脱水能を有する塩類を含む常温の凝固浴中
に湿式紡糸1〜、延伸熱処理し、必要に応じてアセター
ル化を行う方法である。この方法で得られるPVA系繊
維は、よく知られているようにスキン、コアの二層構造
を有するまゆ形断面で比較的大きな表面積を有している
ものの、全延伸倍率8倍程度にしか延伸できず強度は約
7ダ/dにすぎず、強度の点から補強用4s維としては
到底満足できるものではない。
The most typical method for producing PVA fibers is P
In this method, a VA aqueous solution is subjected to wet spinning in a coagulation bath at room temperature containing salts having dehydrating ability, then subjected to stretching heat treatment, and acetalization is performed as necessary. As is well known, the PVA fibers obtained by this method have a cocoon-shaped cross section with a two-layered skin and core structure and a relatively large surface area, but they can only be stretched to a total stretching ratio of about 8 times. However, the strength is only about 7 da/d, which is not at all satisfactory as a reinforcing 4S fiber from the strength point of view.

この方法において、より高強度・高弾性のものを得よう
とする試みのうち、最も有効と思われるものは特公昭4
4−14901号公報や、特公昭44−3513号公報
に記載されている方法である。これらの方法は、比較的
高濃度のPVA水溶液を紡糸原液とし、脱水能を有する
塩類からなる65℃以上という高温の凝固浴中に紡糸し
離俗直後急冷することを特徴とするものである。かかる
方法は、スキン、コアのない均質な繊維とすることによ
り高強度化を図ろうとするものであり、全延伸倍率は1
44倍程まで高めることができ、通常の方法より強度は
改善されているものの10//dをわずかに越える程度
であり、かつ断面は円形に近くなっており、まだまだ満
足できるものではない。
Among the attempts to obtain higher strength and higher elasticity using this method, the one that seems to be the most effective was the
This method is described in Japanese Patent Publication No. 4-14901 and Japanese Patent Publication No. 44-3513. These methods are characterized in that a relatively high concentration PVA aqueous solution is used as a spinning stock solution, the fibers are spun in a coagulation bath at a high temperature of 65° C. or higher and made of salts having dehydrating ability, and the fibers are rapidly cooled immediately after separation. This method aims to increase the strength by forming a homogeneous fiber without skin or core, and the total stretching ratio is 1.
The strength can be increased up to 44 times, which is an improvement over the conventional method, but the strength is only slightly over 10//d, and the cross section is nearly circular, which is still not satisfactory.

またより高強度のPVA系繊維を得る方法と17て、特
公昭48−32623号公報や特公昭53−1368号
公報等で提案されている方法がある。これら提案の方法
は、硼酸または硼酸塩を含有するPVA水溶液を紡糸原
液とし、脱水能を有する塩類を含む20〜50℃のアル
カリ性凝固浴へ紡糸することを特徴とするものであるが
、前記特公昭44−3513号公報等に記載の方法より
も更に繊維の均質化がすすみ断面はほぼ円形で表面積が
小さくなっている。さらに前者においては、全延伸倍率
約22倍、強度約17y/dと機械的性質がかなり改善
されているが尚不十分であり、また繊維の表面積が小さ
く、補強用f!&維として満足できるものではない。ま
た後者においては、繊維の結晶の長さが開示されている
が、本発明で主張する結晶の長さ(L)と幅(W)の比
(以後L/Wと略記する)は記載がない。しかし、全延
伸倍率16倍、強度129/dという実施例の数値から
みてL/Wが本発明の繊維よりはるかに小さいことは想
像に難くない。
Furthermore, as a method for obtaining higher strength PVA fibers, there is a method proposed in Japanese Patent Publication No. 48-32623 and Japanese Patent Publication No. 1368-1983. These proposed methods are characterized by using a PVA aqueous solution containing boric acid or a borate as a spinning stock solution, and spinning into an alkaline coagulation bath at 20 to 50°C containing salts having dehydrating ability. The fibers are more homogenized than the method described in Publication No. 44-3513, and the cross section is approximately circular and the surface area is small. Furthermore, in the former case, the mechanical properties are considerably improved, with a total draw ratio of about 22 times and a strength of about 17 y/d, but these are still insufficient.Furthermore, the surface area of the fibers is small, and the reinforcing f! & I am not satisfied with it. In the latter, the length of the fiber crystal is disclosed, but the ratio of crystal length (L) to width (W) (hereinafter abbreviated as L/W) claimed in the present invention is not described. . However, it is not hard to imagine that the L/W is much smaller than the fiber of the present invention from the values of the example, which are a total draw ratio of 16 times and a strength of 129/d.

後述するように補強効果はしてはな(L/Wが大きくな
ってはじめて向上するものであり、さらにこの繊維は断
面が円形で表面積が小さいため補強用繊維と[2ては好
櫨しくない。
As will be explained later, the reinforcing effect is improved only when the L/W ratio increases, and furthermore, this fiber has a circular cross section and a small surface area, so it is not good for reinforcing fibers. .

更に別の方法として特開昭60−126312号公報や
特開昭61−108712号公報等に提案されているよ
うに、PVAをジメチルスルホキシドやグリセリン等の
溶剤に溶解し、乾・湿式または急冷ゲル化紡糸法を行な
い、脱溶剤後高延伸する方法がある。この方法で得られ
る繊維は、その機械的性質は大幅に改善されているが、
非常に均質であるため断面が円形で表面積が小さいため
補強用繊維として好適とはいえない。
As another method, as proposed in JP-A-60-126312 and JP-A-61-108712, PVA is dissolved in a solvent such as dimethyl sulfoxide or glycerin, and then dry/wet or rapidly cooled gel is produced. There is a method in which a conversion spinning method is carried out, followed by high stretching after removing the solvent. Although the fibers obtained by this method have significantly improved mechanical properties,
Since it is very homogeneous, its cross section is circular and its surface area is small, so it cannot be said to be suitable as a reinforcing fiber.

以上のように、従来性なわれてきたPVA系繊維の高強
度・高弾性化の試みは、すべて繊維構造の均質化を指向
するものであって、得られる繊維は機械的性質の点では
改善されているものの、断面形状の点ではほぼ円形であ
り、表面積が小さくなる方向で、補強用繊維に要求され
る2つの性質を同時に滴だすものはなかったのである。
As mentioned above, conventional attempts to increase the strength and elasticity of PVA fibers have all aimed at homogenizing the fiber structure, and the resulting fibers have improved mechanical properties. However, in terms of cross-sectional shape, it is almost circular, and there is no one that exhibits the two properties required of reinforcing fibers at the same time in the direction of decreasing surface area.

一方、表面積を章図的に大きくする手段として、異型ノ
ズルを用いて紡糸し断面を異形化する方法がある。!、
かしこの方法ではPVA系繊維の場合紡糸ドラフトを大
きくする必要があり、従って通常の円形ノズルを用いた
場合よりも大幅に延伸性が低下(7強度が低くなるばか
りか、紡糸性が悪くなシ生産性も低下するので好ましく
ない。
On the other hand, as a means of increasing the surface area diagrammatically, there is a method of spinning using an irregularly shaped nozzle to make the cross section irregularly shaped. ! ,
However, with this method, it is necessary to increase the spinning draft in the case of PVA-based fibers, and therefore the drawability is significantly lower than when using a normal circular nozzle (7) Not only is the strength lower, but also the spinning draft is poor. This is not preferable because it also reduces productivity.

また別の方法として、繊維のデニールを小さくすること
によっても単位廿当りの繊維の表面積を大きくすること
ができるが、細デニール化の方向は紡糸性及び生産性の
低下をきたし、更に得られるは維のマトリックス中での
分散性を悪化させることになり好ましくない、 以上のように従来技術では、高強度・高弾性であり、か
つ大きな表面積を有するPVA系繊維を得ることは不可
能であった。
Alternatively, the surface area of the fiber per unit area can be increased by reducing the denier of the fiber, but the direction of decreasing the denier causes a decrease in spinnability and productivity, and the resulting This is undesirable because it worsens the dispersibility of fibers in the matrix.As described above, it has been impossible to obtain PVA-based fibers that have high strength, high elasticity, and a large surface area using conventional techniques. .

(発明が解決しようとする問題点〉 このような状況下で本発明者等は、補強用繊維に好適な
高強度・高弾性かつ偏平断面で表面積の大きなPVA系
繊維を提供することを目的として鋭意検討を重ねた結果
、本発明に至ったのである、(問題点を解決するための
手段〉 本発明のfa、維は、断面充実度が65−以下であり、
かつ本発明で規定するL/Wが2.1以上であるPVA
系繊維である。
(Problems to be Solved by the Invention) Under these circumstances, the present inventors aimed to provide a PVA-based fiber with high strength, high elasticity, flat cross section, and large surface area, suitable for reinforcing fibers. As a result of intensive studies, we have arrived at the present invention. (Means for solving the problems) The FA and fiber of the present invention have a cross-sectional solidity of 65- or less,
and PVA whose L/W as defined in the present invention is 2.1 or more
It is a type fiber.

本発明者等は、種々のPVA系繊維の補強性能について
検討した結果、補強効果は補強繊維の強度・弾性率より
もなぜかはわからないが繊維のL/Wの方がより密接に
関係し2、充分な補強効果を得るには、L、/Wが2,
1以上、好ま(、<は2.3以上必要であり、かつ断面
充実度が65%以下、打着しくけ60チ以下であること
が不可欠であることを見出したのである。f!!維の結
晶の長さLはその繊維の補強性能及び機械的物性とけあ
まり相関がな(、L/Wとしてはじめて強い相関が現わ
れるのである。
As a result of studying the reinforcing performance of various PVA-based fibers, the present inventors found that the reinforcing effect is more closely related to the L/W of the fiber than to the strength and elastic modulus of the reinforcing fiber, although it is unclear why. , in order to obtain a sufficient reinforcing effect, L, /W should be 2,
It was found that it is essential that 1 or more, preferably (, < is 2.3 or more, and that the cross-sectional solidity is 65% or less and the striking mechanism is 60 inches or less. f!! The length L of the crystal has little correlation with the reinforcing performance and mechanical properties of the fiber (a strong correlation only appears as L/W).

また本発明の繊維を製造する有効な方法は、硼酸または
硼酸塩を含有するPVA水溶液を紡糸原液とし脱水能を
有する塩類を含む55〜95℃のアルカリ性凝固浴に湿
式紡糸[717倍以上の延伸倍率で延伸を行う方法であ
る。
Furthermore, an effective method for producing the fibers of the present invention involves wet spinning using a PVA aqueous solution containing boric acid or a borate as a spinning stock solution, and applying a spinning solution to an alkaline coagulation bath at 55 to 95°C containing salts having dehydrating ability [717 times or more stretching]. This is a method of stretching at different magnifications.

かかる方法の最も大きな特徴は、従来20〜50℃の凝
固浴温度で実施されているのに対し、本発明の方法はこ
れを55〜95℃と高温にした点にあって、これにより
、得られる繊維は失透し、断面が偏平とiるにもかかわ
らず、延伸性が大1遍に向上17、繊維のL/Wが大き
くなり、補強効果が飛i的に向上し更に繊維の機械的性
質も著しく改善されることを見出し九のである。ま九従
来公知の比較的低温の凝固浴を用いた場合、延伸性が著
しく低く必ずしも機械的性質が改善されないという問題
を有していた高重合度のPVAの場合でも、本発明の方
法によれば高度に延伸することが可能となり、PVAの
重合度効果を十分に引出し得て結果としてL/Wが大き
くなり、しかも偏平断面を有するfl[が得られること
も見出(7たのである。
The most significant feature of this method is that, whereas conventional methods are carried out at a coagulation bath temperature of 20 to 50°C, the method of the present invention raises the temperature to a high temperature of 55 to 95°C. Despite the fact that the fibers are devitrified and have a flat cross section, their drawability is greatly improved17, the L/W of the fibers is increased, the reinforcing effect is dramatically improved, and the mechanical properties of the fibers are further improved. We found that the physical properties were also significantly improved. Even in the case of PVA with a high degree of polymerization, which had the problem of extremely low drawability and mechanical properties not necessarily improved when conventionally known relatively low-temperature coagulation baths were used, the method of the present invention can be used. It was also found (7) that it became possible to stretch to a high degree, and that the effect of the degree of polymerization of PVA could be fully brought out, resulting in a large L/W and a fl [7] having a flat cross section.

更に重合度効果として、これらL/Wや断面充実度と関
係する繊維の磯波的性質や補強効果の向上に加えて耐水
性が向上することをも見出した。
Furthermore, as a polymerization degree effect, it has been found that in addition to improving the surficial properties and reinforcing effect of fibers, which are related to L/W and cross-sectional fullness, water resistance is also improved.

すなわち、PVAの重合度を高くすると1耐水性が向上
し、通常工業的に使用される重合度1700程度のPV
Aでは、約115℃にすぎない水中溶解温i 75(x
合1f40000PVAでH約120〜125°Cにそ
して、重合度7000以上では130°C以上にまで向
上するのである。
In other words, increasing the degree of polymerization of PVA improves water resistance.
A has a dissolution temperature in water of only about 115°C i 75(x
When the polymerization degree is 1f40,000 PVA, the H is about 120 to 125°C, and when the degree of polymerization is 7,000 or more, the temperature increases to 130°C or more.

熱論、従来の20〜50℃の温度の凝固浴を用いて紡糸
したのではこの効果も引き出すことはできず、凝固浴温
度を高めて紡糸し、高延伸してはじめて引き出し得るも
のである。
In terms of heat, this effect cannot be brought out by spinning using a conventional coagulation bath at a temperature of 20 to 50°C, and can only be achieved by spinning at a higher coagulation bath temperature and drawing at a high degree.

上述の如く、凝固浴温度を高めることは、糸条の失透及
び断面充実度の低下を伴なうが、延伸性が向上し、繊維
のL/Wを大きくシ、また、重合度効果を引き出して、
L/WK加え、耐水性をも向上させるという効果がある
。その理由についてはよくわからないが、従来の紡糸方
法とは凝固機構が全く異なるものと考えられる。
As mentioned above, increasing the coagulation bath temperature is accompanied by devitrification of the yarn and a decrease in cross-sectional solidity, but it improves the drawability, increases the L/W of the fiber, and reduces the degree of polymerization effect. Pull it out,
In addition to L/WK, it also has the effect of improving water resistance. The reason for this is not well understood, but it is thought that the coagulation mechanism is completely different from that of conventional spinning methods.

以下本発明の繊維の製造方法の1例を詳細に説明する。An example of the method for producing fibers of the present invention will be described in detail below.

用いるPvAの重合度は1500以上、好ましくは20
00以上、更に好ましくは3000以上である。
The degree of polymerization of PvA used is 1500 or more, preferably 20
00 or more, more preferably 3000 or more.

PVAの重合度が1500未満では、繊維軸方向への結
晶成長が不十分でL/Wが2.1以上にならず、機械的
性質も改善されない。
If the degree of polymerization of PVA is less than 1500, crystal growth in the fiber axis direction will be insufficient, L/W will not be 2.1 or more, and mechanical properties will not be improved.

また、L、/W+機誠的性質に加えてより高い耐水性を
求めるならばPVAの重合度を更に高めればよ<、40
00以上更に好ましくは7000以上である。
Also, if you want higher water resistance in addition to L, /W + mechanical properties, you can further increase the degree of polymerization of PVA <, 40
00 or more, more preferably 7000 or more.

紡糸原液は、該PVAの3〜30重t%の濃度の水溶液
で、硼酸または硼酸塩を該PVAに対j70.5〜5重
量%含有するものでhる○PVAの濃度は、その重合度
に応じて適宜調整する必要があるが、濃度が低すぎると
延伸性は良好であっても繊維軸方向へ結晶が成長しに(
(L、/Wが大きくならない、逆に高すぎると延伸性が
低下する。
The spinning stock solution is an aqueous solution of the PVA with a concentration of 3 to 30% by weight, and contains boric acid or borate in an amount of 70.5 to 5% by weight based on the PVA.The concentration of PVA is determined by its degree of polymerization. It is necessary to adjust the concentration accordingly, but if the concentration is too low, even if the stretchability is good, crystals will grow in the fiber axis direction (
(If L and /W do not become large or are too high, the stretchability will decrease.

紡糸原液温度は85〜125℃、好ましくは95〜12
0℃であり、低すぎると延伸性を阻害[2、高すぎると
原液の沸騰をきたす。また紡糸調子を安定化させるため
、酢酸などの有機酸または硝酸等の無機酸を紡糸原液に
適当量添加することもできる。
The temperature of the spinning dope is 85-125°C, preferably 95-12°C.
0°C; if it is too low, the stretchability will be inhibited [2, if it is too high, the stock solution will boil. Further, in order to stabilize the spinning condition, an appropriate amount of an organic acid such as acetic acid or an inorganic acid such as nitric acid may be added to the spinning dope.

凝固浴の温度は55〜95℃、好ましくは60〜80℃
である、55℃以下では繊維の断面があまり偏平となら
ず、また延伸性が低いためL/Wが大きくならない。一
方95℃以上では凝固浴の沸騰及び単像維間で膠着が生
じるため好ましくない0 凝固浴のアルカリ成分としては、水酸化ナトリウム、水
酸化カリウム等の苛性アルカリが用いられ、その濃度は
2〜200f/J、好ましくは5〜50f/lである。
The temperature of the coagulation bath is 55-95°C, preferably 60-80°C
If the temperature is 55° C. or lower, the cross section of the fiber will not become very flat, and the drawability will be low, so the L/W will not become large. On the other hand, temperatures above 95°C are undesirable because the coagulation bath boils and adhesion occurs between single image fibers.As the alkali component of the coagulation bath, caustic alkalis such as sodium hydroxide and potassium hydroxide are used, and the concentration is between 2 and 30°C. 200 f/J, preferably 5 to 50 f/l.

また凝固浴の塩類成分と12ては、硫酸ナトリウム、炭
酸ナトリウム等の脱水能を有する塩が用いられ、濃度は
1009/J〜飽和濃度であり、飽和に近い方が好まし
い。紡糸ノズルは通常の円型ノズルあるいはそれに近い
形状のノズルを用いる。
Further, as the salt component of the coagulation bath, a salt having a dehydrating ability such as sodium sulfate or sodium carbonate is used, and the concentration is 1009/J to saturated concentration, preferably close to saturated concentration. As the spinning nozzle, a normal circular nozzle or a nozzle having a similar shape is used.

紡糸後の繊維はアルカリの中和、湿熱延伸、水洗、乾燥
延伸、熱処理を常法に従って実施すればよい。湿潤状態
での延伸倍率は3倍以上、好ましくは5倍以上である。
The fibers after spinning may be subjected to alkali neutralization, wet heat stretching, water washing, dry stretching, and heat treatment according to conventional methods. The stretching ratio in a wet state is 3 times or more, preferably 5 times or more.

湿、乾を合わせた全延伸倍率は17倍以上、好ましくは
20倍以上となるように延伸を行なう必要がある。全延
伸倍率を大きくする程L/Wが大きくなり、17倍未満
ではL/Wが2.1に達し、ない。
It is necessary to carry out the stretching so that the total stretching ratio of wet and dry stretching is 17 times or more, preferably 20 times or more. The larger the total stretching ratio, the larger the L/W, and when it is less than 17 times, the L/W reaches 2.1 and is not present.

(発明の効果〉 本発明の繊維は、L/Wが大きく優れた機械的性質を有
し、かつ断面充実度が65チ以下というように断面が偏
平で表面積が大きいため、セメント、プラスチックスや
ゴム等の補強用繊維として好寸しく用いられるが、その
優れた機械的性質からし〜でロープやケーブル等の一般
産業資材用途にも用いることができる。
(Effects of the Invention) The fibers of the present invention have excellent mechanical properties with a large L/W ratio, and have a flat cross section with a cross-sectional solidity of 65 inches or less and a large surface area, so they can be used in cement, plastics, etc. It is well suited for use as a reinforcing fiber for rubber and other materials, but due to its excellent mechanical properties, it can also be used for general industrial materials such as ropes and cables.

また、重合度4000以上のPVAから得られた繊維は
、優れた耐水性を有しており、従来耐水性が不足するが
ゆえに実施することができなかったFRCのオートクレ
ーブ養生が可能となるばかりでなく、船舶或いは大願用
ローブ、漁網、消防用ホースなど耐水性を求められる用
途への展開も可能である。
In addition, fibers obtained from PVA with a polymerization degree of 4000 or higher have excellent water resistance, making it possible to autoclave FRC, which was previously impossible due to lack of water resistance. However, it can also be used in applications that require water resistance, such as robes for ships or large-scale prayers, fishing nets, and fire hoses.

以下本発明を実施例により説明する。尚本発明で規定す
る断面充実度(断面の偏平さの度合い。
The present invention will be explained below with reference to Examples. Note that the degree of fullness of the cross section (the degree of flatness of the cross section) is defined in the present invention.

数値の小さい方が偏平であることを示す)、結晶の長さ
と幅の比(L/W)及び機械的性質(乾破断強伸度およ
び初期弾性率)Vi以下の方法で測定されるものである
(lower number indicates flatness), crystal length-to-width ratio (L/W) and mechanical properties (dry breaking strength and elongation and initial elastic modulus) measured by the method below Vi. be.

○ 断面充実度 繊維の断面写真を約100 yjに拡大描写しその断面
積Fを求める。
○ Cross-sectional solidity The cross-sectional photograph of the fiber is enlarged to about 100 yj and its cross-sectional area F is determined.

次に断面中殻も広い幅Bを求め次式により算出した。Next, a wide width B of the cross-sectional middle shell was determined and calculated using the following formula.

尚1本のマルチフィラメントヤーンから任意に取り出j
7た20本の単繊維についてこれを求め、その平均値を
以て該マルチフィラメントヤーンを構成する繊維の断面
充実度と規定する。
In addition, take out arbitrarily from one multifilament yarn.
This is determined for 7 and 20 single fibers, and the average value is defined as the cross-sectional fullness of the fibers constituting the multifilament yarn.

O結晶の長さと幅の比 公知の広角X線回折法により次の条件で測定[た。Length and width ratio of O crystal It was measured by a known wide-angle X-ray diffraction method under the following conditions.

広角Xす (1)理学電機(株)15回転対陰極形X線回折装置(
Type RA D −rA)で40kV、 100m
ACuKα(グラファイトモノクロメータ−)ノンチレ
ーノヨンカウンター使用 (2)  ゴニオメータ− スリット系:DS+/、°、5SV2゜、 R8O,1
5□走査速度:20=%ン分 (3)  試 料 (125■の繊維を長さ2.50、
巾1.5儂に平行に並べたもの)を繊維試料台に取り付
け、透過法にて面指数(020) 、 (100)の回
折曲線を測定し、各曲線の半価幅B(hkl)を得た。
Wide-angle X-ray (1) Rigaku Denki Co., Ltd. 15 rotation anticathode X-ray diffraction device (
Type RA D-rA) 40kV, 100m
ACuKα (graphite monochromator) using non-tyrene counter (2) Goniometer slit system: DS+/,°, 5SV2°, R8O, 1
5□ Scanning speed: 20 = % (3) Sample (125□ fiber with length 2.50,
(lined up in parallel with a width of 1.5 degrees) was attached to a fiber sample stage, and the diffraction curves of plane indices (020) and (100) were measured using the transmission method, and the half-width B (hkl) of each curve was determined. Obtained.

結晶サイズの比(L/W) 上記透過法により得られた面指数(020”l 。Crystal size ratio (L/W) Plane index (020"l) obtained by the above transmission method.

(100)のピークの半価幅B(hkl)の値から5c
herrerの式を用いて各々の結晶サイズを算出した
(100) From the value of the half-width B (hkl) of the peak, 5c
Each crystal size was calculated using Herrer's formula.

D(hkl)=にλ/ Bo (hkl )CO3θ(
hkl)但し K = 0.9 λ =1.5418(入) B o : Janesの方法によるスリットの補正後
の回折曲線の広がり (radian) θ(hkl)ニブラッグ角(deg、)L/W、=D 
(020)、/’D(100) 、!: Lテ求メタ。
D(hkl)=λ/ Bo(hkl)CO3θ(
hkl) However, K = 0.9 λ = 1.5418 (in) B o: Width of diffraction curve after slit correction by Janes' method (radian) θ (hkl) Nibragg angle (deg,) L/W, = D
(020), /'D(100),! : L-te-seeking meta.

0 乾破断強伸度、初期弾性率 (1)  試H・・・・マルチフィラメントヤーン(2
)乾破断強伸度、初期弾性率・・・・・・温度20℃、
相対湿度65%の雰囲気FでJIS−1017に準拠1
7、試長20閏引張り速度10儒/分でインストロン試
験機にて測定、初期弾性率はその伸長〜荷重曲線より求
めた。
0 Dry breaking strength, elongation, initial elastic modulus (1) Trial H...Multifilament yarn (2
) Dry breaking strength and elongation, initial elastic modulus...Temperature 20℃,
Compliant with JIS-1017 in atmosphere F with relative humidity 65%1
7. Measured with an Instron tester at a test length of 20 and a tensile rate of 10 F/min, and the initial elastic modulus was determined from the elongation-load curve.

(3)  測定数・・・・・・10回の測定を行い、そ
の平均値を求めた。
(3) Number of measurements: Measurements were performed 10 times, and the average value was calculated.

O水中溶解温度 マルチフィラメントヤーンから任意に25本の単繊維を
携り出して束ね、一方の端に115009/′dの荷重
をつるす。他端を治具で固定し、荷重のついた方を下に
して、温度計と共に30°Cの水の入ったガラス管に浸
漬する。
Dissolution temperature in O water 25 single fibers were arbitrarily taken out from the multifilament yarn, bundled, and a load of 115009/'d was suspended from one end. Fix the other end with a jig, and immerse it with the loaded side down in a glass tube containing water at 30°C along with a thermometer.

次にガラス管を密閉し1分間に2℃の割合で昇温し、サ
ンプルのfJ!維が溶解して切断する温度を水中溶解温
度と定義する。尚測定のn数は2とシ1、その平均値を
とることとする。
Next, the glass tube was sealed and the temperature was raised at a rate of 2°C per minute to determine the fJ of the sample. The temperature at which fibers melt and break is defined as the water dissolution temperature. Note that the number n of measurements is 2 and 1, and the average value is taken.

実施例1〜3、比較例1.2 重合度3500の完全ケン化PVAを水に9重量%の濃
度に溶解し、これに硼酸をPVAK対して3.5重量%
加え、紡糸原液を得た。次にこの紡糸原液を105℃に
加熱し、水酸化ナトリウム15り/l、硫酸ナトリウム
35(1/jからなる60℃(実施例1)、70℃(実
施例2)、90℃(実施例3)、40℃(比較例1)、
100℃(比較例2)の各温度の凝固浴に、1000ホ
ールの円形ノズルを有する口金を通じて紡糸し、6m/
分の速度で離浴せし、めな。引続き常法に従ってローラ
ー延伸、中和、1.5倍の湿熱延伸、水洗及び乾燥を行
ない、湿潤状態での延伸倍率を6倍としたのち、230
℃で乾熱延伸を実施してボビンに捲き取った。
Examples 1 to 3, Comparative Example 1.2 Completely saponified PVA with a degree of polymerization of 3500 was dissolved in water to a concentration of 9% by weight, and boric acid was added to this at 3.5% by weight based on PVAK.
In addition, a spinning stock solution was obtained. Next, this spinning stock solution was heated to 105°C, and the solution was heated to 60°C (Example 1), 70°C (Example 2), and 90°C (Example 3), 40°C (Comparative Example 1),
Spinning was carried out through a spinneret having a circular nozzle with 1000 holes in a coagulation bath at each temperature of 100°C (Comparative Example 2), and 6 m/min.
Let's take a bath at the speed of a minute, Mena. Subsequently, roller stretching, neutralization, 1.5 times wet heat stretching, water washing and drying were carried out in accordance with conventional methods, and the stretching ratio in the wet state was increased to 6 times, and then 230
Dry heat stretching was carried out at °C and the film was wound onto a bobbin.

凝固浴温度40℃では紡糸原糸は比較的透明で断面充実
度が高かったが、高温にするに従い原糸は激しく失透し
、断面充実度が低下した。得られた愼維の糸質を第1表
に示す。尚ヤーン構成はすべて1800 d 、/ 1
000 fである。
At a coagulation bath temperature of 40° C., the spun yarn was relatively transparent and had a high cross-sectional solidity, but as the temperature increased, the yarn became severely devitrified and the cross-sectional solidity decreased. Table 1 shows the quality of the obtained filaments. All yarn compositions are 1800 d/1
000 f.

第   1   表 このように凝固浴温度を実施例の範凹で高くすることに
より、断面充実度が低下し、比較的高重合度のPVAで
あっても延伸性が飛躍的に向上し、L/Wが大きくかつ
卓越した機械的性質と比較的良好な耐水性を有する繊維
が得られた。またセメントの補強性は、実施例の繊維が
比較例のものよりもはるかに優れていた。
Table 1 As described above, by increasing the coagulation bath temperature beyond the range of the examples, the cross-sectional solidity decreases, and even for PVA with a relatively high degree of polymerization, the stretchability improves dramatically, and L/ A fiber with a large W and excellent mechanical properties and relatively good water resistance was obtained. In addition, the cement reinforcing properties of the fibers of the examples were far superior to those of the comparative examples.

実施例4 重合度1700の完全ケン化PVAを水に14重音チの
濃度で溶解し、これに硼酸をPVAに対し1.5重量%
添加して紡糸原液とした。次にこれを100℃に加熱し
、水酸化ナトリウム30 f/j、硫酸ナトリウム34
0 ?/lからなる80℃の凝固浴に1000ホールの
円形ノズルを有する口金を通じて吐出させ、8m/分の
速度で離俗せしめた。
Example 4 Completely saponified PVA with a degree of polymerization of 1700 was dissolved in water at a concentration of 14%, and boric acid was added in an amount of 1.5% by weight based on the PVA.
This was added to prepare a spinning stock solution. Next, this was heated to 100°C, and sodium hydroxide 30 f/j, sodium sulfate 34
0? The coagulation bath was discharged through a nozzle having a circular nozzle with 1000 holes into a coagulation bath at 80° C./l, and was ablated at a speed of 8 m/min.

引続き常法に従ってローラー延伸、中和、2倍の湿熱延
伸、水洗、乾燥を行ない、湿潤状態での延伸率を7倍と
したのち、225℃で乾熱延伸を実施してボビンに捲取
った。
Subsequently, roller stretching, neutralization, 2x wet heat stretching, water washing, and drying were carried out in accordance with conventional methods to increase the stretching ratio in the wet state to 7 times, followed by dry heat stretching at 225°C and winding onto a bobbin. .

紡糸原糸は激しく失透し、断面充実度は50%と低いも
のであった。そして、延伸倍率は25倍で、L/Wは2
.4と大きく、水中溶解温度は118℃で比較的良好で
あった。このul、維のセメントの補強性は極めて優れ
ていた。
The spun yarn was severely devitrified and its cross-sectional solidity was as low as 50%. The stretching ratio is 25 times, and the L/W is 2.
.. 4, and the water dissolution temperature was 118°C, which was relatively good. The reinforcing properties of this UL and fiber cement were extremely excellent.

比較例3 乾燥までは実施例2と全く同じで、乾熱延伸倍率を減じ
て全延伸倍率を16倍とした。
Comparative Example 3 The process up to drying was exactly the same as in Example 2, but the dry heat stretching ratio was reduced to make the total stretching ratio 16 times.

得られた繊維の断面充実度は36%で実施例2と同じで
あったが、L / W 、水中溶解温度はそれぞれ2,
0.114℃で低いものであり、補強効果も。
The cross-sectional solidity of the obtained fiber was 36%, which was the same as in Example 2, but the L/W and water dissolution temperature were 2 and 3, respectively.
It has a low temperature of 0.114℃ and has a reinforcing effect.

実施例2の繊維に比べ、はるかに劣るものであった。It was far inferior to the fiber of Example 2.

実施例5〜7 重合度4500 (実施例5)%7500(実施例6)
、18000(実施例7)の完全ケン化PVAを水にそ
れぞれ、8.5,7.0.4.5重斂チの濃度で溶解し
、これに硼酸をそれぞれにPVAに対して4M景チ添加
して紡糸原液を調製し1次いで実施例4と同様の方法に
て紡糸し、延伸倍率をそれぞれ25.24.5.22倍
としてボビンに巻取った。得られた繊維の糸質を、後述
する比較例4で得られた繊維の糸質及び前出の実施例及
び比較例の1部と合せて示す。
Examples 5 to 7 Degree of polymerization 4500% (Example 5)% 7500 (Example 6)
, 18,000 (Example 7) were dissolved in water at a concentration of 8.5, 7.0, 4.5 tungsten, respectively, and boric acid was added to the solution at a concentration of 4M tungsten to PVA. The mixture was added to prepare a spinning dope, which was then spun in the same manner as in Example 4, and wound onto a bobbin at a stretching ratio of 25, 24, and 5.22 times, respectively. The quality of the obtained fibers is shown together with the quality of the fibers obtained in Comparative Example 4, which will be described later, and a portion of the above-mentioned Examples and Comparative Examples.

比較例4 実施例6において、凝固浴温度を35℃とした以外はこ
れと同様の処理を施し、乾熱延伸において破断寸前まで
延伸した。このflL維の糸質も第2表に示す。
Comparative Example 4 The same treatment as in Example 6 was performed except that the coagulation bath temperature was 35° C., and the film was stretched to the verge of breakage in dry heat stretching. The quality of the flL fibers is also shown in Table 2.

この表より本発明の方法が、断面充実度を低下させ、L
/Wそして水中溶解温度にまで及ぶ重合度効果を引き出
すのに極めて有効であることは明らかである。
This table shows that the method of the present invention reduces the cross-sectional solidity and L
/W, and it is clear that it is extremely effective in bringing out the degree of polymerization effect that extends to the dissolution temperature in water.

また、実施例5〜7の繊維は、驚異的なセメントの補強
性を示し、PVAの重合度が高くなる程、耐オートクレ
ーブ性が良好であった。
Furthermore, the fibers of Examples 5 to 7 showed amazing cement reinforcing properties, and the higher the degree of PVA polymerization, the better the autoclave resistance.

比較例5 実施例1〜3で用いたのと同じPVAを10重i%の濃
度でジメチルスルホキシドに溶解して紡糸原液とし、こ
れを70℃に加熱し、50ホールの円形ノズルから10
℃のメタノール凝固浴に乾・湿式紡糸した。ノズル表面
を凝固浴液面との距離は15■であった。得られた紡糸
原糸は、脱溶媒しつつ6倍の湿延伸を行い乾燥させた。
Comparative Example 5 The same PVA used in Examples 1 to 3 was dissolved in dimethyl sulfoxide at a concentration of 10 wt.
Dry and wet spinning was performed in a methanol coagulation bath at ℃. The distance between the nozzle surface and the coagulation bath liquid level was 15 square meters. The obtained spun yarn was wet-stretched 6 times while removing the solvent and dried.

次いで240℃で乾熱延伸を実施し全延伸倍率を24倍
とした。
Next, dry heat stretching was carried out at 240° C. to give a total stretching ratio of 24 times.

得られた繊維の断面充実度は92%と非常に高くほぼ円
形に近いものであった。またL/Wは2.6と犬きく機
緘的性質の優れたものであった。
The cross-sectional fullness of the obtained fiber was very high, 92%, and was almost circular. Also, the L/W was 2.6, which showed excellent mechanical properties.

この繊維のセメントの補強性を調べたところ、実施例1
〜3の繊維よりもかなり劣るものであった。また、セメ
ントの破断面を電子顕微鏡で観察したところ、実施例1
〜3の断面充実度の低い偏平な断面を有する繊維を補強
用に用いた場合はとんど抜けが生じていないのに対し、
この円形断面を有する繊維を用いた場合多くの抜けが生
じていることが認められた。
When the cement reinforcing properties of this fiber were investigated, Example 1
It was considerably inferior to the fibers of No. 3 to 3. In addition, when the fractured surface of the cement was observed with an electron microscope, it was found that Example 1
When fibers with a flat cross section with low cross-sectional solidity of ~3 were used for reinforcement, there was almost no shedding;
It was observed that many dropouts occurred when fibers having this circular cross section were used.

特許出願人  株式会社 り ラ しPatent applicant: RiRashi Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)断面充実度が65%以下でありかつ、結晶の長さ
と幅の比が2.1以上であることを特徴とするポリビニ
ルアルコール系合成繊維。
(1) A polyvinyl alcohol-based synthetic fiber having a cross-sectional solidity of 65% or less and a crystal length-to-width ratio of 2.1 or more.
(2)繊維を構成するポリマーの重合度が4000〜2
0000であり、かつ繊維の水中溶解温度が120℃以
上である請求項1に記載の繊維。
(2) The degree of polymerization of the polymer constituting the fiber is 4000-2
0000, and the fiber has a dissolution temperature in water of 120°C or higher.
(3)硼酸または硼酸塩を含有するポリビニルアルコー
ル水溶液を紡糸原液とし、塩類を含むアルカリ性凝固浴
中へ押出して紡糸するに際し、凝固浴温度を55〜95
℃とし、得られた紡糸原糸を17倍以上の延伸倍率で延
伸することを特徴とするポリビニルアルコール系合成繊
維の製造方法。
(3) When spinning a polyvinyl alcohol aqueous solution containing boric acid or a borate as a spinning stock solution and extruding it into an alkaline coagulation bath containing salts, the coagulation bath temperature is 55 to 95.
A method for producing polyvinyl alcohol-based synthetic fibers, which comprises stretching the obtained spun yarn at a stretching ratio of 17 times or more.
JP63233142A 1987-10-22 1988-09-16 Polyvinyl alcohol-based synthetic fiber and method for producing the same Expired - Fee Related JP2653682B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP26792987 1987-10-22
JP63-29383 1988-02-11
JP62-267929 1988-02-11
JP2938388 1988-02-11

Publications (2)

Publication Number Publication Date
JPH01298208A true JPH01298208A (en) 1989-12-01
JP2653682B2 JP2653682B2 (en) 1997-09-17

Family

ID=26367575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233142A Expired - Fee Related JP2653682B2 (en) 1987-10-22 1988-09-16 Polyvinyl alcohol-based synthetic fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP2653682B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163310A (en) * 1990-10-18 1992-06-08 Kuraray Co Ltd Production of polyvinyl alcohol-based synthetic fiber
KR100940478B1 (en) * 2003-03-10 2010-02-04 가부시키가이샤 구라레 Polyvinyl alcohol binder fibers, and paper and nonwoven fabric comprising them

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167011A (en) * 1985-01-10 1986-07-28 Kuraray Co Ltd Ultrafine fiber of polyvinyl alcohol and production thereof
JPS6285013A (en) * 1985-10-03 1987-04-18 Kuraray Co Ltd High-tenacity and high-modulus pva fiber and production thereof
JPS62149910A (en) * 1985-12-18 1987-07-03 Unitika Ltd Production of polyvinyl alcohol fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61167011A (en) * 1985-01-10 1986-07-28 Kuraray Co Ltd Ultrafine fiber of polyvinyl alcohol and production thereof
JPS6285013A (en) * 1985-10-03 1987-04-18 Kuraray Co Ltd High-tenacity and high-modulus pva fiber and production thereof
JPS62149910A (en) * 1985-12-18 1987-07-03 Unitika Ltd Production of polyvinyl alcohol fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04163310A (en) * 1990-10-18 1992-06-08 Kuraray Co Ltd Production of polyvinyl alcohol-based synthetic fiber
KR100940478B1 (en) * 2003-03-10 2010-02-04 가부시키가이샤 구라레 Polyvinyl alcohol binder fibers, and paper and nonwoven fabric comprising them

Also Published As

Publication number Publication date
JP2653682B2 (en) 1997-09-17

Similar Documents

Publication Publication Date Title
US4698194A (en) Process for producing ultra-high-tenacity polyvinyl alcohol fiber
WO2002072931A1 (en) Method for producing fiber and film of silk and silk-like material
JPS60162805A (en) High-tenacity polyvinyl alcohol based ultrafine fiber and production thereof
US4917836A (en) Process for producing high-strength, high-modulus carbon fibers
JP4228009B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
JP2588579B2 (en) Polyvinyl alcohol fiber excellent in hot water resistance and method for producing the same
JPH01298208A (en) Polyvinyl alcohol-based synthetic yarn and production thereof
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
JP4446991B2 (en) Method for producing acrylonitrile-based precursor fiber for carbon fiber
JP2013174033A (en) Anti-pill acrylic fiber having v-shaped cross section and method for producing the same
JP2007321267A (en) Method for producing polyacrylonitrile-based fiber and carbon fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JPH10280228A (en) Production of spinning dope and production of fiber
JPH04343710A (en) Production of aromatic polyetherketone monofilament
JPH02300308A (en) Polyvinyl alcohol fiber and production thereof
JP2656339B2 (en) High strength polyvinyl alcohol fiber
KR100627171B1 (en) Method for preparing high-tenacity polyvinyl alchol fiber and product manufactured thereby
JPS61160414A (en) Extremely thin yarn of high-strength polyvinyl alcohol type and production thereof
JPH0625909A (en) Production of high-strength polyvinyl alchol-based fiber
JPS6028512A (en) Poly(p-phenylene terephthalamide) yarn and its preparation
JP2000136431A (en) Polyvinyl alcohol-based fiber and its production
JPH0415286B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees