JPH0580424B2 - - Google Patents

Info

Publication number
JPH0580424B2
JPH0580424B2 JP21973485A JP21973485A JPH0580424B2 JP H0580424 B2 JPH0580424 B2 JP H0580424B2 JP 21973485 A JP21973485 A JP 21973485A JP 21973485 A JP21973485 A JP 21973485A JP H0580424 B2 JPH0580424 B2 JP H0580424B2
Authority
JP
Japan
Prior art keywords
fibers
cement
producing
added
paper product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21973485A
Other languages
Japanese (ja)
Other versions
JPS6278136A (en
Inventor
Tsuneo Genma
Akio Mizobe
Masaki Okazaki
Sotaro Itaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP21973485A priority Critical patent/JPS6278136A/en
Publication of JPS6278136A publication Critical patent/JPS6278136A/en
Publication of JPH0580424B2 publication Critical patent/JPH0580424B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

A 発明の技術分野 本発明は、石綿及びパルプ類を全く使用せず、
極細繊度の有機合成繊維と無機分散剤及び高分子
凝集剤を用いる性能の優れた水硬性無機質抄造製
品(以下抄造製品と略記)の製造方法に関するも
のである。 B 従来技術とその問題点 抄造製品は、石綿スレート板の如く石綿を含有
しているが、石綿はかかる製品の抄造性及び物性
を経済的に確保するうえで重要な役割を有する。
しかし近年石綿による健康障害が明確となり、石
綿を全く使用しない抄造製品が強く求められ、そ
の製造技術の開発が盛んにおこなわれている。 抄造製品製造法の典型的な例はハツチエツク法
であり、かかる方法における石綿の役割は上述の
如くセメント粒子捕捉等の抄造性を付与すること
及び曲げ、引張り強度、その他の補強不燃性
(JIS表面試験)等の物性を付与することである。
抄造製品における石綿代替は石綿が優れた特性を
有するので、非常な困難を伴い、一種の物質で代
替することは不可能であることが当業界では常識
となつている。従つて抄造性付与と物性付与には
かなり異つた物性が要求されるので、それぞれ別
の物質で石綿の代替をはかる提案がほとんどであ
る。物性付与即ち補強という観点からは、ポリビ
ニルアルコール系繊維、ポルアクリロニトリル系
繊維、アラミド繊維等の有機合成繊維や耐アルカ
リガラス繊維等の無機繊維が用いられ、なかでも
特にポリビニルアルコール系繊維が優れた補強効
果を有すので注目され、石綿代替としてかなりの
量が使用されている。一方、抄造性付与における
石綿代替という観点からは大多数が天然パルプを
使用するという提案である。しかしながらかかる
パルプを用いた抄造製品はパルプ自体の劣化、吸
水性あるいは可燃性のために耐久性、寸法安定
性、凍結融解安定性、不燃性の問題を有してお
り、かかる問題を出来るだけ小さくするために、
パルスの使用量を減少する提案がいくつかなされ
ている。 例えば特開昭60−5049号公報に記載された発明
はパルスの叩解度をかなり上げてセメント粒子を
捕捉し、水性が悪くなるというマイナス面をバ
ージンパルプを少量混合することで解決しようと
するものであり、さらにセピオライト、ベントナ
イトのような膨潤性のある無機フイラー等を用い
て、パルスとの相互作用によりセメント粒子捕捉
効果を上げるという技術も伴せて提案している。 本発明者等も、パルス及び助剤について種々検
討したが、安定に抄造製品を抄造するには3%程
度のパルスは必要不可欠であるという結論に到達
した。かかる量のパルプの存在は既述の如きパル
プの悪影響を排除できる程度のものではない。従
つて別の観点からパルプを全く使用しない抄造製
品を得る研究を重ねた結果、特願昭59−18063号
として出願の発明に到つた。 即ち繊度0.5デニール以下の特定の物性を有す
る極細ピニロンを用いた抄造製品及びその抄造法
であつて、かかるビニロンと凝集剤の組合せによ
り驚くべきことに全くパルプを使用せずとも安定
に抄造が出来るうえに極細ピニオンのすぐれた補
強効果により物性もほぼ満足すべきものが得られ
るという従来の常識を打ち破つた画期的な技術で
ある。しかしながその後の検討を進めているうち
に、極細ビニロンの分散性が充分でなく、得られ
た抄造製品は商品としては問題のあることが判明
した。即ち極細ピニロンは繊維が細いために、通
常デニール(2デニール付近)の繊維に比し同じ
アスペクト比でも繊維本数が圧倒的に多く、従つ
て繊維同志が凝集しやすく、セメント等の他の固
形分と分離しがちとなる。その結果、抄像に際し
繊維がフリースの表面(裏面)に集まりやすくな
つてフリース層間の剥離や表面の毛羽立による外
観不良、補強性の低下等の問題を惹起することに
なる。 本発明者等はかかる問題点を解決すべく鋭意研
究の結果本発明に到達したものである。 C 発明の目的 本発明は、石綿及びパルスを全く使用せずし
て、極細繊維を用いた抄造法において、該極細繊
維の分散性を向上させ、均一な抄造スラリーを得
ることによつて、外観品位が良好で、層間剥離の
ない性能のすぐれた無石綿無パルス抄造製品を提
供しようとするものである。 D 発明の構成 本発明はセメント等の水硬性物質と、繊度が
0.05〜0.5デニール、アスペクト比(繊維長lと
その直径dの比l/d)200〜1500である有機合
成繊維0.1〜5%(以下抄造固型分に対する重量
で示す)、及び0.01〜5%の無機分散剤によりな
る均一なスラリーに高分子凝集剤を添加しつつ抄
造する抄造製品の製造方法である。 本発明の第一の要件は極細有機繊維の分散性を
向上させたセメント等他の固分と均一混合させた
抄造スラリーを得るために特定の無機分散剤を使
用することである。本発明の無機分散剤とはセピ
オライト、アタパルジヤイト、パリゴルスカイ
ト、ナトリウムベントナイト(以下セピオライト
等と略記)であり、これらの内の1種又は2種以
上の組合せで使用する。該無機分散剤の添加量は
0.01〜5%が好ましい。0.01%未満では極細繊維
の分散効果がなく、また5%を越えるとスラリー
の粘性が高くなりすぎ丸網上の水や、フリース
の脱水性が低下しメーキングロールでの水割れ現
象を呈し抄造性が悪化する。さらにプレスがかか
りにくくなり製品の嵩比重が低下し、補強効果の
低下、吸水率増大に伴う寸法変化の増大、凍結融
解による安定性低下等の問題を引起こし、加えて
経済的にも不利となる。1%を越えると無機分散
剤の分散効果はほとんど変わないので、無機分散
添加のマイナス面、経済性を考慮すると、0.1〜
1%がより好適な範囲である。なお無機分散剤
は、あらかじめコロイド状に分散、離解したもの
を使用する方が分散効果により大きく寄与する。 本発明の第2の要件は極細強度の有機合成繊維
を使用することにある。かかる極細繊維はセメン
ト等の固形分を捕捉すると共に水硬性硬化体の補
強の役目をなすものである。繊度が0.05〜0.5デ
ニールであることが必須条件である。0.05デニー
ル未満では水硬性物質等の捕捉性はよいが本発明
の無機分散剤を用いても分散が不充分であり、ま
た繊維自体の製造も経済的に出来ない等の理由に
より好ましくない。また0.5デニールを越えると
水硬性物質等の固形分捕捉性が低下し、安定な抄
造が出来なくなる。分散性、補強性の兼合いから
アスペクト比は200〜1500が適当であり、繊維の
添加量は0.1〜5%、より好ましくは0.5〜3%で
ある。 繊維の機械的物性としては補強効果の点より強
度、ヤング率がそれぞれデニールあたり5g以
上、90g以上が必要であり、それ以下では補強効
果が乏しい。極細有機合成繊維としては既述の特
性を満足すれば基本的には何でもよいが、ポリビ
ニルアルコール系繊維、ポリアクリロニトリル系
繊維が接着性の面から好適であり、また単独使用
でもよいし2種以上の組合せでもかまわない。 第3の要件は高分子凝集剤を用いることであ
る。高分子凝集剤はセメント等の固形分の捕捉性
を高めるうえで欠くことのできない必須成分であ
る。種類としては市販のものでもよく、特にアニ
オン系の高分子凝集剤が好適である。添加量は抄
造固形分に対して5〜500ppmがよく、より好ま
しくは50〜200ppmである。5ppm未満では固形分
の凝集作用に乏しく、500ppmを越えると凝集し
すぎて水性があまりにも良く、抄造槽でのヘツ
ド差がとれず均一なシートが形成されないし、フ
エト汚れを起こしたり、又経済性の面からも好ま
しくない。水硬性物質としては普通ポルトランド
セメント、高炉セメント、シリカセメント、アル
ミナセメント等のセメントを用いることが出来
る。さらに半水石こう、2水石こうとスラグある
いはこれ等とセメントとの混合使用も可能であ
る。 その他の添加剤として抄造製品の工程通過性、
成形性や性能の改善あるいはコストダウンを目的
とした物質を併用することも可能である。 例えば層間剥離防止、メーキングローラーへの
溶形性、表面平滑性能等の付与を目的として、直
径又は繊維長が1×10-2〜1×10-4mmの微細無機
物を併用することが出来る。かゝる物質の代表例
に重質タンカル、軽質タンカル等の天然または合
成の炭酸塩、カオリン、クレー、シリカフエーム
(シリカフラワー)、タルク、フライアツシユ等や
繊維状のワラストナイトがある。直径又は繊維長
が上記範囲を越える場合は粉砕して用いればよ
く、また添加量は1〜20%が好ましい。本発明の
セピオライト等は1%以上の範囲においてはかゝ
る物質と同様な効果を有しており、従つてかゝる
範囲においては上記物質でセピオライト等を置き
換えることも可能である。その他、軽量化剤(例
えば発泡パーライト、シラスバルーン、発泡剤)、
膨張剤、金マイカ、白マイカ、蛇紋石、珪砂等を
添加することが出来る。また繊維質としてロツク
ウール、スラグウール、セラミツクウール、ガラ
ス繊維粉末を、補強成分として0.5デニール以上
のポリビニルアルコール系繊維、ポリアクリルニ
トリル系繊維、カーボン繊維、スチール繊維、ア
ラミド繊維、ポリアクリレート繊維、ポリプロピ
レン繊維、ポリエチレン繊維等の1種又は2種以
上の組合せで併用可能である。さらに合成パル
プ、天然パルプ等も使用してもかまわないが、天
然パルプは本発明の目的からして出来るだけ使用
しない方が好ましい。 本発明の抄造方法は、従来の一般的な抄造方法
に従つて行われるものであつて、極細有機合成繊
維と無機分散剤をパルパー等の通常のミキサーで
混合分散した後セメントを投入し、10〜30%程度
の抄造スラリーとする。該スラリーを高分子凝集
剤及び割水を添加しつつ、丸網又は長網上に抄き
上げた後は常法によつて所定の抄造製品となすも
のである。 高分子凝集剤は、抄造槽の直前で添加すること
が好ましく、凝集剤を添加した後は生成した凝集
体が破壊するような強力な機械的撹拌を与えるの
は好ましくない。 無機分散剤は好ましくは有機合成繊維、セメン
トと共に混合、撹拌することにであり、最も均一
なスラリーが得られ、該スラリーに凝集剤を添加
することにより、均一な凝集体となつて、抄き上
げられる。同時に添加、混合、撹拌が出来ない場
合は、少くとも凝集剤を添加する以前に添加しな
ければならない。凝集剤添加後では本来の分散効
果を発揮し得ない。 本発明は極細有機繊維を水硬性物質中に無機分
散剤にて均一に分散せしめ、凝集剤により凝集し
た均一な凝集体を極細有機繊維の過作用により
金網上に抄き上げることを特徴とする石綿、パル
プいづれも含有しない性能のすぐれた抄造製品を
提供するものであつて、本発明のポイントはセピ
オライト等の無機分散剤を使用することにある
が、セピオライト等が抄造製品に使用されること
自体は公知である。例えば特解昭60−5049号に記
載の発明ではセピオライトが1〜10%使用されて
いるが、本発明と目的、構成が全く異るものであ
る。該公開特許の発明は技術の如く、セメント捕
捉性の役割を担うパルプをそのマイナス効果を減
少させるために出来るだけ少なくしようという試
みであつて、パルプとセピオライトとの相互作用
によりセメント捕捉性を上げようとするものであ
る。即ちパルプの存在においてはじめてセピオラ
イトの添加意義あるものである。本発明は特願昭
59−18063号の発明で示す如く、パルプの存在な
しで凝集剤との組合せにおいて充分なセメント粒
子等の捕捉効果を有するものであつて、セピオラ
イトは極細有機合成繊維を用いるに限りにおいて
は何らセメント捕捉性の向上には寄与しない。 一方極細有機繊維にパルプを併用するとパルプ
が極細繊維の分散効果に寄与し、セピオライトの
添加効果は全くみられない。即ちセピオライトの
添加効果は、極細有機合成繊維を使用する場合で
あつて、しかもパルプを使用しない時に限つて発
現し、その効果は分散性の向上のみである。従つ
て特願昭60−5049号の発明とは全く異なるもので
ある。また特開昭60−21836号公報にもセピオラ
イトの記載があるが、この公開特許の発明では補
強繊維の繊度を15デニール以下としているが、実
施例からみても常識的なデニールと考えるのが妥
当であつて、少なくとも0.5デニール以下という
極細繊維に特にセピオライトが効果的であるとい
う示唆はなく、加えてロツクウール等の繊維長の
短かい無機繊維と併用することが重要な要件とな
つている。即ちセピオライト等とロツクウール等
の相乗作用により、セメント粒子等の捕捉性が向
上し、又繊維質の分散が向上すのである。従つて
本発明とは明らかに異るものである。なお本発明
の構成成分量を示す%は、特に断らない限り重量
%を示すものである。 以下実施例をもつて説明する。 実施例1、比較例1、参考例1 極細合成繊維を固形分に対して2%となるよう
に採取して水中で撹拌分散し、第1表に記載を無
機分散剤及びポルトランドセメントを添加し約3
分間混合撹拌して全固形分濃度20g/のスラリ
ーとした。用いた極細合成繊維はPVA繊維で繊
度0.20dr(drはデニールの略)、引張り強度14.3
g/dr、ヤングモジユラス320g/dr、繊維長3
mm、アスペクト比640のものである。また無機分
散剤はあらかじめ充分に分散、離解したものを使
用した。 該スラリーを1000mlメスシリンダーにとり、ア
ニオン系高分子凝集剤(三洋化成社製サンフロツ
クAK−100P)の1.0g/水溶液を添加撹拌し
て分散状態を観察した。この時の凝集剤の固形分
に対する添加率は150ppmとした。分散状態の判
定はPVA繊維とマトリツクス成分が均一な状態
で凝集した場合を○、特に良好なものを◎とし、
大部分のPVA繊維は浮遊し大部分のセメント粒
子が凝集沈澱し繊維と分離している場合を×と
し、その中間を△とした。
A Technical field of the invention The present invention does not use asbestos or pulp at all,
The present invention relates to a method for producing hydraulic inorganic paper products (hereinafter abbreviated as paper products) with excellent performance using ultra-fine organic synthetic fibers, an inorganic dispersant, and a polymer flocculant. B. Prior art and its problems Paper-made products, such as asbestos slate boards, contain asbestos, and asbestos plays an important role in economically ensuring the paper-making properties and physical properties of such products.
However, in recent years, the health problems caused by asbestos have become clear, and there is a strong demand for paper products that do not use asbestos at all, and the development of manufacturing technology is actively underway. A typical example of a method for producing paper products is the hatch-check method, and the role of asbestos in this method is to provide paper-making properties such as trapping cement particles, as well as to provide bending, tensile strength, and other reinforcement noncombustibility (JIS surface It is to provide physical properties such as tests).
Replacing asbestos in paper products is extremely difficult because asbestos has excellent properties, and it is common knowledge in the industry that it is impossible to replace it with a single substance. Therefore, since significantly different physical properties are required for imparting paper formability and imparting physical properties, most proposals have been made to replace asbestos with different substances. From the perspective of imparting physical properties, that is, reinforcement, organic synthetic fibers such as polyvinyl alcohol fibers, polyacrylonitrile fibers, and aramid fibers, and inorganic fibers such as alkali-resistant glass fibers are used, and among them, polyvinyl alcohol fibers are particularly effective for reinforcement. It has attracted attention because of its effectiveness, and a considerable amount is used as an asbestos substitute. On the other hand, from the viewpoint of replacing asbestos in imparting paperability, the majority of proposals are to use natural pulp. However, paper products using such pulp have problems with durability, dimensional stability, freeze-thaw stability, and nonflammability due to deterioration, water absorption, or flammability of the pulp itself, and these problems can be minimized as much as possible. In order to
Several proposals have been made to reduce the amount of pulses used. For example, the invention described in Japanese Patent Application Laid-Open No. 60-5049 attempts to solve the negative problem of poor water quality by increasing the beating degree of the pulse considerably to capture cement particles, and by mixing a small amount of virgin pulp. In addition, we are also proposing a technology that uses swellable inorganic fillers such as sepiolite and bentonite to increase the cement particle trapping effect through interaction with pulses. The present inventors have also conducted various studies on pulses and auxiliary agents, and have reached the conclusion that a pulse of approximately 3% is indispensable in order to stably produce paper products. The presence of such amount of pulp is not sufficient to eliminate the harmful effects of pulp as described above. Therefore, as a result of repeated research to obtain a paper-made product that does not use pulp at all from a different perspective, the invention was filed as Japanese Patent Application No. 18063-1983. In other words, it is a paper-made product using ultra-fine Pinilon having specific physical properties with a fineness of 0.5 denier or less, and a paper-making method thereof, and the combination of such Pinilon and a flocculant surprisingly allows stable paper-making without using any pulp at all. Moreover, the excellent reinforcing effect of the ultra-fine pinion allows almost satisfactory physical properties to be obtained, which is an epoch-making technology that breaks conventional wisdom. However, as further studies progressed, it was discovered that the dispersibility of ultra-fine vinylon was insufficient, and the resulting paper product had problems as a commercial product. In other words, because the fibers of ultra-fine pinylon are thin, the number of fibers in the ultra-fine pinylon is overwhelmingly larger than that of normal denier (around 2 denier) fibers even with the same aspect ratio. and tend to separate. As a result, fibers tend to gather on the surface (back side) of the fleece during papermaking, causing problems such as peeling between the fleece layers, poor appearance due to fuzz on the surface, and reduced reinforcing properties. The present inventors have arrived at the present invention as a result of intensive research to solve such problems. C. Purpose of the Invention The present invention improves the appearance by improving the dispersibility of ultrafine fibers and obtaining uniform papermaking slurry in a papermaking method using ultrafine fibers without using any asbestos or pulses. The purpose is to provide an asbestos-free, pulse-free paper product with good quality and excellent performance without delamination. D. Structure of the invention The present invention uses a hydraulic substance such as cement and
Organic synthetic fibers having a denier of 0.05 to 0.5 and an aspect ratio (ratio of fiber length l to its diameter d, l/d) of 200 to 1500 (hereinafter expressed as weight based on the solid content of the paper), and 0.01 to 5% This is a method for producing a paper product by adding a polymer flocculant to a uniform slurry made of an inorganic dispersant. The first requirement of the present invention is to use a specific inorganic dispersant in order to obtain a papermaking slurry in which ultrafine organic fibers are uniformly mixed with other solids such as cement in which the dispersibility of ultrafine organic fibers is improved. The inorganic dispersants of the present invention are sepiolite, attapulgite, palygorskite, and sodium bentonite (hereinafter abbreviated as sepiolite, etc.), and one type or a combination of two or more of these is used. The amount of the inorganic dispersant added is
0.01-5% is preferred. If it is less than 0.01%, there will be no dispersion effect for ultrafine fibers, and if it exceeds 5%, the viscosity of the slurry will become too high, resulting in poor dehydration of water on the round screen and of fleece, resulting in water cracking on the making roll, which will reduce paper-forming properties. becomes worse. Furthermore, it becomes difficult to press and the bulk specific gravity of the product decreases, causing problems such as a decrease in reinforcing effect, an increase in dimensional changes due to increased water absorption, and a decrease in stability due to freezing and thawing.In addition, it is economically disadvantageous. Become. If the amount exceeds 1%, the dispersing effect of the inorganic dispersant will hardly change, so considering the negative aspects of adding inorganic dispersants and economic efficiency, it is recommended to
1% is a more preferred range. Note that using an inorganic dispersant that has been previously dispersed and disaggregated in a colloidal form contributes more to the dispersion effect. The second requirement of the present invention is to use ultrafine strength organic synthetic fibers. Such ultrafine fibers capture solid content such as cement and serve to reinforce the hydraulic hardening body. It is essential that the fineness is 0.05 to 0.5 denier. If the denier is less than 0.05 denier, the ability to trap hydraulic substances and the like is good, but the dispersion is insufficient even when the inorganic dispersant of the present invention is used, and the fiber itself cannot be manufactured economically, which is not preferable. Moreover, if it exceeds 0.5 denier, the ability to capture solids such as hydraulic substances will decrease, making stable papermaking impossible. In view of both dispersibility and reinforcing properties, the aspect ratio is suitably 200 to 1500, and the amount of fiber added is 0.1 to 5%, more preferably 0.5 to 3%. Regarding the mechanical properties of the fibers, in terms of reinforcing effect, strength and Young's modulus need to be 5 g or more per denier and 90 g or more per denier, respectively, and if they are less than that, the reinforcing effect is poor. Basically, any ultra-fine organic synthetic fiber may be used as long as it satisfies the characteristics described above, but polyvinyl alcohol fibers and polyacrylonitrile fibers are preferred from the viewpoint of adhesiveness, and they may be used alone or in combination of two or more. A combination of these may also be used. The third requirement is to use a polymer flocculant. A polymer flocculant is an essential component indispensable for improving the ability to capture solids such as cement. Commercially available types may be used, and anionic polymer flocculants are particularly suitable. The amount added is preferably 5 to 500 ppm, more preferably 50 to 200 ppm, based on the solid content of papermaking. If it is less than 5 ppm, the solid content will have poor agglomeration effect, and if it exceeds 500 ppm, it will coagulate too much and the aqueous property will be too good, and the difference in head in the paper making tank will not be taken care of, making it impossible to form a uniform sheet, causing fetish stains, and causing economic problems. It is also undesirable from a sexual perspective. As the hydraulic material, cements such as ordinary Portland cement, blast furnace cement, silica cement, and alumina cement can be used. Furthermore, it is also possible to use hemihydrate gypsum, dihydrate gypsum and slag, or a mixture of these and cement. Other additives include process passability of paper-made products,
It is also possible to use substances for the purpose of improving moldability and performance or reducing costs. For example, a fine inorganic material having a diameter or fiber length of 1 x 10 -2 to 1 x 10 -4 mm can be used in combination for the purpose of preventing delamination, dissolving into the making roller, and imparting surface smoothness. Typical examples of such substances include natural or synthetic carbonates such as heavy tankal and light tankal, kaolin, clay, silica flour, talc, fly ash, and fibrous wollastonite. If the diameter or fiber length exceeds the above range, it may be used after pulverizing, and the amount added is preferably 1 to 20%. The sepiolite, etc. of the present invention has the same effect as such substances in the range of 1% or more, and therefore, in such a range, it is also possible to replace sepiolite, etc. with the above substances. Other lightweighting agents (e.g. expanded perlite, shirasu balloons, foaming agents),
Expanding agents, gold mica, white mica, serpentine, silica sand, etc. can be added. In addition, the fibers include rock wool, slag wool, ceramic wool, and glass fiber powder, and the reinforcing components include polyvinyl alcohol fibers of 0.5 denier or more, polyacrylonitrile fibers, carbon fibers, steel fibers, aramid fibers, polyacrylate fibers, and polypropylene fibers. , polyethylene fibers, etc., or a combination of two or more thereof can be used together. Furthermore, synthetic pulp, natural pulp, etc. may also be used, but from the viewpoint of the purpose of the present invention, it is preferable to avoid using natural pulp as much as possible. The paper-making method of the present invention is carried out according to the conventional general paper-making method, in which ultrafine organic synthetic fibers and an inorganic dispersant are mixed and dispersed in a normal mixer such as a pulper, and then cement is added. Make a papermaking slurry of ~30%. After adding a polymer flocculant and water to the slurry and forming it onto a round screen or fourdrinier, a predetermined paper product is formed by a conventional method. The polymer flocculant is preferably added immediately before the papermaking tank, and after the flocculant is added, it is not preferable to apply strong mechanical stirring that would destroy the formed aggregates. The inorganic dispersant is preferably mixed and stirred with the organic synthetic fibers and cement to obtain the most uniform slurry, and by adding a coagulant to the slurry, it becomes a uniform aggregate, which is suitable for papermaking. It can be raised. If it is not possible to add, mix, and stir at the same time, it must be added at least before adding the flocculant. After adding the flocculant, the original dispersion effect cannot be achieved. The present invention is characterized in that ultrafine organic fibers are uniformly dispersed in a hydraulic substance using an inorganic dispersant, and the uniform aggregates flocculated by the flocculant are drawn onto a wire mesh by the overaction of the ultrafine organic fibers. The purpose of the present invention is to provide a paper-made product with excellent performance that does not contain either asbestos or pulp, and the key point of the present invention is to use an inorganic dispersant such as sepiolite. itself is publicly known. For example, in the invention described in Japanese Patent Publication No. 60-5049, 1 to 10% sepiolite is used, but the purpose and structure are completely different from those of the present invention. The invention of the published patent is an attempt to reduce the amount of pulp, which plays a role in cement trapping, as much as possible in order to reduce its negative effects, as is the case with technology. This is what we are trying to do. That is, the addition of sepiolite only becomes meaningful in the presence of pulp. The present invention was originally filed by patent application
As shown in the invention of No. 59-18063, sepiolite has a sufficient effect of capturing cement particles etc. in combination with a flocculant without the presence of pulp, and as long as ultrafine organic synthetic fibers are used, sepiolite does not have any cement particles. It does not contribute to improving catchability. On the other hand, when pulp is used in combination with ultrafine organic fibers, the pulp contributes to the dispersion effect of the ultrafine fibers, and no effect of sepiolite is observed at all. That is, the effect of adding sepiolite is manifested only when ultrafine organic synthetic fibers are used and pulp is not used, and the effect is only to improve dispersibility. Therefore, this invention is completely different from the invention of Japanese Patent Application No. 1983-5049. Sepiolite is also described in JP-A No. 60-21836, but in the invention of this published patent, the fineness of the reinforcing fibers is 15 denier or less, but it is reasonable to consider it to be a common denier considering the examples. However, there is no suggestion that sepiolite is particularly effective for ultrafine fibers of at least 0.5 denier or less, and in addition, it is an important requirement to use it in combination with short-length inorganic fibers such as rock wool. That is, the synergistic effect of sepiolite and rock wool improves the ability to capture cement particles, etc., and improves the dispersion of fibers. Therefore, it is clearly different from the present invention. Note that % indicating the amount of a component in the present invention indicates weight % unless otherwise specified. This will be explained below using examples. Example 1, Comparative Example 1, Reference Example 1 Ultrafine synthetic fibers were collected at a concentration of 2% based on the solid content, stirred and dispersed in water, and an inorganic dispersant and Portland cement as listed in Table 1 were added. Approximately 3
The mixture was mixed and stirred for a minute to form a slurry with a total solid concentration of 20 g/min. The ultra-fine synthetic fiber used is PVA fiber with a fineness of 0.20 dr (DR is an abbreviation for denier) and a tensile strength of 14.3.
g/dr, Young modulus 320g/dr, fiber length 3
mm, aspect ratio 640. Further, the inorganic dispersant used was one that had been sufficiently dispersed and disintegrated in advance. The slurry was placed in a 1000 ml graduated cylinder, and 1.0 g/aqueous solution of an anionic polymer flocculant (Sunfloc AK-100P manufactured by Sanyo Chemical Co., Ltd.) was added and stirred, and the state of dispersion was observed. At this time, the addition rate of the flocculant to the solid content was 150 ppm. The dispersion state is evaluated as ○ if the PVA fibers and matrix components are uniformly aggregated, and ◎ if it is particularly good.
The case where most of the PVA fibers were floating and most of the cement particles were coagulated and precipitated and separated from the fibers was marked as ×, and the case in between was marked as △.

【表】 セメント;小野田セメント社製 普通ポルトラ
ンドセメント
実施例1はいずれもPVA繊維とセメントと無
機分散剤を混合した状態で凝集剤を添加して凝集
沈澱した。テストNo.1、2、3、4は添加量を変
更した場合で0.5%付近が最も分散性はよく、そ
の次に0.3%であつた。その他は本発明の範囲内
では差がない。比較例1のNo.7、10、11は何れも
凝集剤を添加すると大部分のPVA繊維はマトリ
ツクス成分と一緒に凝集せず浮遊した。なおしば
らく静置すると沈降する。外観は上澄層の次に繊
維の沈澱層、その下にマトリツクス成分層に分離
した。テストNo.8、9は無機分散剤の少い場合と
多い場合であるが、両者とも満足すべき結果は得
られなかつた。参考例1は石綿を添加した場合で
ある。少量添加でな分散効果が劣つた。 実施例2、比較例2 丸網湿式抄造試験機(ハチエツク式)にて固形
分としてPVA系繊維2%、シリカフラワー5%、
無機分散剤として表−2の記載物、残部を普通ポ
ルトランドセメントの組成でパルパーにて調整し
てスラリー濃度10%とし、白水で希釈しながら抄
きあげた。なお抄造に際し固形分に対して
100ppmの高分子凝集剤を使用した。 (i) 使用原料の説明 PVA系繊維;0.20dr、引張り強度14.8g/dr、
ヤングモジユラス310g/dr、繊維長3mmに
切断したもの セピオライト;Atta200(ユニオン化成社) ナトリウムベントナイト;筑前5号(品川窯材
社製) シリカフラワー;SFパウダー(日本重化学社
製平均粒径0.36μ) 凝集剤;サンフロツクAK−100(三洋化成社
製) (ii) 配合組成;表−2にまとめた (iii) スレート板の製造方法 スラツシヤー付パルパーに白水を入れ所定量
のシリカフラワーならびに無機分散剤を投入し
撹拌後PVA系繊維を添加し最後に普通ポルト
ランドセメントを加えて約3分間撹拌後チエス
トへ移送し抄造用スラリーとする。かかるスラ
リーを1.0g/に溶解した凝集剤を100ppm抄
造槽前のミキシングボツクスに添加し必要量の
白水を添加混合して抄造槽(バツト)へ導入
し、60メツシユの丸網にて抄きあげ、メーキン
グロールに巻き取り、切断後の生板を75Kg/cm2
で加圧成形した。養生は50℃で24時間の養生
後、室温で4週間気中養生し6mm厚さのスレー
ト板を得た。 (iv) 評価方法 分散状態;抄き上げたセンメントフリースの表
面及び裏面のPVA繊維の分散状態を観察し
た。繊維が多数フリー表面に毛羽立つ場合を
判定×とし、セメントシート中に均一に分散
して表面に偏在しない場合を◎とした。その
間を2ランクにわけて、○、△とした。 抄造歩留り;セメント及び無機分散剤等の抄造
スラリー中の固形分の捕捉率である。 抄造歩留り(%) =(1−丸網排水中の固形分濃度)/バツト内固型分
濃度)×100 として求めた。 層間剥離;メーキングロール後の生板を手で層
間を剥離させることにより定性的に判断し
た。層間が不明確で剥離し難い状態を○、簡
単に剥離する状態を×、その中間を△とし
た。 かさ比重;JIS A 5418に準拠し、試験片をか
きまぜ機付空気乾燥器に入れ、105±5℃で
24時間乾燥後と重量の体積から求めた。 曲げ強度;JIS A 1408「建築ボード類の曲げ
試験法」により測定し、抄造方向(タテ方
向)とその直角方向(ヨコ方向)の平均値で
示した。
[Table] Cement: Ordinary Portland cement manufactured by Onoda Cement Co., Ltd. In each case, in Example 1, PVA fibers, cement, and an inorganic dispersant were mixed, and a coagulant was added to cause coagulation and precipitation. In Test Nos. 1, 2, 3, and 4, when the amount added was changed, the dispersibility was best at around 0.5%, followed by 0.3%. There is no other difference within the scope of the present invention. In all of Nos. 7, 10, and 11 of Comparative Example 1, most of the PVA fibers did not coagulate together with the matrix component and floated when a coagulant was added. It will settle if left standing for a while. The appearance was that the supernatant layer was followed by a fiber precipitate layer, and below that was a matrix component layer. Test Nos. 8 and 9 were conducted with a small amount of inorganic dispersant and with a large amount of inorganic dispersant, but satisfactory results were not obtained in either case. Reference example 1 is a case where asbestos was added. Even when added in small amounts, the dispersion effect was poor. Example 2, Comparative Example 2 PVA fiber 2%, silica flour 5%,
The ingredients listed in Table 2 as an inorganic dispersant and the remainder were adjusted with a pulper to a slurry concentration of 10% using a composition of ordinary Portland cement, and the slurry was prepared while diluting with white water. In addition, when making paper, the solid content
100 ppm of polymer flocculant was used. (i) Description of raw materials used PVA fiber; 0.20 dr, tensile strength 14.8 g/dr,
Young modulus 310 g/dr, cut into fiber length 3 mm Sepiolite; Atta200 (Union Kasei Co., Ltd.) Sodium bentonite; Chikuzen No. 5 (manufactured by Shinagawa Kazai Co., Ltd.) Silica flour; SF powder (manufactured by Nippon Heavy Chemical Co., Ltd. average particle size 0.36 μ) Agglomeration Agent: Sunfrotsuku AK-100 (manufactured by Sanyo Kasei Co., Ltd.) (ii) Compound composition: summarized in Table 2 (iii) Manufacturing method for slate board Pour white water into a pulper with a slushier and add the specified amount of silica flour and inorganic dispersant. After stirring, PVA fibers are added, and finally, ordinary Portland cement is added, and after stirring for about 3 minutes, the mixture is transferred to Chiest and used as a slurry for papermaking. A flocculant prepared by dissolving 1.0 g of this slurry at 100 ppm was added to a mixing box in front of the papermaking tank, and the necessary amount of white water was added and mixed, introduced into the papermaking tank (vat), and then papered using a 60-mesh circular screen. , rolled up on a making roll and cut the raw board to a weight of 75Kg/cm 2
Pressure molded. After curing at 50°C for 24 hours, it was air-cured at room temperature for 4 weeks to obtain a 6 mm thick slate board. (iv) Evaluation method Dispersion state: The dispersion state of PVA fibers on the front and back surfaces of the made-up cement fleece was observed. The case where a large number of fibers were fuzzed on the free surface was evaluated as ×, and the case where the fibers were uniformly dispersed in the cement sheet and not unevenly distributed on the surface was evaluated as ◎. The results were divided into two ranks: ○ and △. Papermaking yield: It is the capture rate of solid content in papermaking slurry such as cement and inorganic dispersant. The papermaking yield (%) was determined as follows: (1 - solid content concentration in round screen wastewater)/solid content concentration in vat) x 100. Delamination: Qualitative judgment was made by manually peeling off the layers of the raw board after being rolled. A state in which the interlayers were unclear and it was difficult to peel off was rated as ○, a state in which the layers were easily peeled off was rated as ×, and a state in between was rated as △. Bulk specific gravity: According to JIS A 5418, the test piece was placed in an air dryer with a stirrer and heated at 105±5℃.
It was determined from the weight and volume after 24 hours of drying. Bending strength: Measured according to JIS A 1408 "Bending test method for architectural boards," and expressed as the average value in the papermaking direction (vertical direction) and the direction perpendicular to it (horizontal direction).

【表】 実施例2は何れも良好な抄造性とスレート板物
性が得られた。テストNo.14〜17は良好な分散状態
を示した。比較例2のテストNo.18はミルコンSS
(セピオライト)の添加率は本発明の特許請求の
範囲を越えて添加した場合である。分散状態と層
間剥離は問題ないが抄造時の水性が不良でプレ
ス成型後の水分率が高く製品のかさ比重は低下し
た。したがつて曲げ強度も劣つた。テストNo.19は
無機分散材を使用しない場合である。分散状態が
悪く、層曲剥離が発生し、曲げ強度が低くなつ
た。また表面に絡みあつた繊維が多く見られ外観
が劣つた。
[Table] In all of Example 2, good paper formability and slate plate physical properties were obtained. Test Nos. 14 to 17 showed good dispersion. Test No. 18 of Comparative Example 2 is Milcon SS
The addition rate of (sepiolite) is the case where it is added beyond the scope of the claims of the present invention. Although there were no problems with the dispersion state and delamination, the water content during paper making was poor, the moisture content after press molding was high, and the bulk specific gravity of the product was low. Therefore, the bending strength was also poor. Test No. 19 is the case where no inorganic dispersion material is used. The dispersion state was poor, delamination occurred, and the bending strength decreased. In addition, many fibers were seen entangled on the surface and the appearance was poor.

Claims (1)

【特許請求の範囲】 1 セメント等水硬性物質に、繊度が0.05〜0.5
デニールで、そのアスペクト比(繊維の長さとそ
の直径の比)が200〜1500の有機合成繊維を0.1〜
5%(以下、抄造固型分に対する重量%で示す)、
無機分散剤を0.01〜5%を加えたスラリーにアニ
オン系高分子凝集剤を抄造槽以前の工程で5〜
500ppm添加することを特徴とする水硬性無機質
抄造製品の製造方法。 2 無機分散剤の添加量が0.1〜1%である特許
請求の範囲第1項記載の水硬性無機質抄造製品の
製造方法。 3 有機合成繊維がポリビニルアルコール系合成
繊維、ポリアクリロニトリル系合成繊維である特
許請求の範囲第1または2項記載の水硬性無機質
抄造製品の製造方法。 4 有機合成繊維の引張り強度がデニール当り5
g以上、ヤングモジユラスがデニール当り90g以
上である特許請求の範囲第1〜3項のいずれかに
記載の水硬性無機質抄造製品の製造方法。 5 無機分散剤がセピオライト、アタパルジヤイ
ト、パリゴルスカイト、ナトリウムベントナイト
から選ばれた1種又は2種以上の組合せよりなる
特許請求の範囲第1〜4項のいずれかに記載の水
硬性無機質抄造製品の製造方法。
[Claims] 1. Hydraulic substances such as cement have a fineness of 0.05 to 0.5.
Organic synthetic fibers with a denier and aspect ratio (ratio of fiber length to diameter) of 200 to 1500 from 0.1 to
5% (hereinafter expressed as weight % based on the papermaking solid content),
An anionic polymer flocculant is added to the slurry containing 0.01 to 5% of an inorganic dispersant in the process before the papermaking tank.
A method for producing a hydraulic inorganic paper product characterized by adding 500 ppm. 2. The method for producing a hydraulic inorganic paper product according to claim 1, wherein the amount of the inorganic dispersant added is 0.1 to 1%. 3. The method for producing a hydraulic inorganic paper product according to claim 1 or 2, wherein the organic synthetic fiber is a polyvinyl alcohol-based synthetic fiber or a polyacrylonitrile-based synthetic fiber. 4 Tensile strength of organic synthetic fiber is 5 per denier
The method for producing a hydraulic inorganic paper product according to any one of claims 1 to 3, wherein the young modulus is 90 g or more per denier. 5. The method for producing a hydraulic inorganic paper product according to any one of claims 1 to 4, wherein the inorganic dispersant is one or a combination of two or more selected from sepiolite, attapulgite, palygorskite, and sodium bentonite. .
JP21973485A 1985-10-01 1985-10-01 Manufacture of hydraulic inorganic paper product Granted JPS6278136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21973485A JPS6278136A (en) 1985-10-01 1985-10-01 Manufacture of hydraulic inorganic paper product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21973485A JPS6278136A (en) 1985-10-01 1985-10-01 Manufacture of hydraulic inorganic paper product

Publications (2)

Publication Number Publication Date
JPS6278136A JPS6278136A (en) 1987-04-10
JPH0580424B2 true JPH0580424B2 (en) 1993-11-09

Family

ID=16740144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21973485A Granted JPS6278136A (en) 1985-10-01 1985-10-01 Manufacture of hydraulic inorganic paper product

Country Status (1)

Country Link
JP (1) JPS6278136A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355145A (en) * 1986-08-26 1988-03-09 松下電工株式会社 Fiber cement slurry composition
JPH0657298B2 (en) * 1987-02-19 1994-08-03 小野田セメント株式会社 Complex desiccant
JPS6424054A (en) * 1987-07-16 1989-01-26 Kubota Ltd Production of fiber reinforced inorganic product
JP2514462B2 (en) * 1990-10-22 1996-07-10 株式会社クボタ Cement board manufacturing method
JP2002293602A (en) * 2001-03-30 2002-10-09 Kuraray Co Ltd Papermaking process of hydraulic material

Also Published As

Publication number Publication date
JPS6278136A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
JP4107478B2 (en) Inorganic papermaking board using reinforcing pulp and method for producing the same
EP0047158B1 (en) A process for the manufacture of fibre reinforced shaped articles
JPH0580424B2 (en)
JPH0580425B2 (en)
JPH0669901B2 (en) Hydraulic inorganic papermaking product and method for producing the same
IE45447B1 (en) Improvements relating to asbestos-free fibre reinforced cementitious products
JPH07286401A (en) Hydraulic setting inorganic papermaking product
JPS6021836A (en) Hydraulic inorganic board and manufacture
JPS6131337A (en) Hydraulic inorganic papering product and manufacture
JPH0216257B2 (en)
JPH0733273B2 (en) Fiber-reinforced cement cured product
JP2721563B2 (en) Hydraulic molding composition
JPH0717427B2 (en) Hydraulic inorganic papermaking product and method for producing the same
JPH0444636B2 (en)
JP4667998B2 (en) Non-asbestos hydraulic paperboard
JP2514462B2 (en) Cement board manufacturing method
JPS61167011A (en) Ultrafine fiber of polyvinyl alcohol and production thereof
JPS60161362A (en) Fiber reinforced hydraulic inorganic paper product and manufacture
JPS61163150A (en) Hydraulic inorganic paper product and manufacture
JP2002293602A (en) Papermaking process of hydraulic material
JPH08295551A (en) Cement-base inorganic board
JPH0123427B2 (en)
GB2045306A (en) Boards and Sheets
JPH0444637B2 (en)
JP2003267768A (en) Hydraulic board formed by wet process for building wall material and building wall using it