JPS6233824A - Acrylic flameproofed fiber having improved abrasion resistance - Google Patents

Acrylic flameproofed fiber having improved abrasion resistance

Info

Publication number
JPS6233824A
JPS6233824A JP17049785A JP17049785A JPS6233824A JP S6233824 A JPS6233824 A JP S6233824A JP 17049785 A JP17049785 A JP 17049785A JP 17049785 A JP17049785 A JP 17049785A JP S6233824 A JPS6233824 A JP S6233824A
Authority
JP
Japan
Prior art keywords
fibers
acrylic
fiber
strength
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17049785A
Other languages
Japanese (ja)
Inventor
Takashi Takada
高田 貴
Tsuyoshi Igarashi
五十嵐 強
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17049785A priority Critical patent/JPS6233824A/en
Publication of JPS6233824A publication Critical patent/JPS6233824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:The titled fibers, consisting of oxidized fibers having a specific value of tensile strength and fiber knot strength and a given value or above of limit oxygen index, having improved heat resistance and flame resistance and further usefulness as asbestos substitute fibers and rich in practicality. CONSTITUTION:Acrylic flameproofed fibers obtained by oxidizing ultrahigh- strength fibers having 1.5-4.5g/denier tensile strength and >=1g fiber knot strength in an oxidizing atmosphere, e.g. air, while heating and converting the fibers into oxidized fibers having >=35 limit oxygen index (LOI). The above- mentioned acrylic flameproofed fibers are preferably oxidized fibers prepared from acrylic fibers having >=10g/denier tensile strength and >=2.2g/denier knot strength and obtained by dry-jet and wet spinning as a precursor.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱性、耐炎性に優れ、しかもその機械的強
度、特に耐摩耗性において、従来のアクリル系酸化繊維
の水準を大きく凌駕するアクリル系耐炎化繊維に関する
[Detailed Description of the Invention] (Industrial Application Field) The present invention has excellent heat resistance and flame resistance, and its mechanical strength, especially abrasion resistance, greatly exceeds that of conventional acrylic oxidized fibers. Regarding acrylic flame resistant fibers.

(従来の技術) 従来、消防服、炉前服、溶接火花防止シートなどの保護
具、ガスケット、グランドパツキンなどのシール材料、
断熱材、バッグフィルターによって代表される濾材、ブ
レーキ、クラッチなどの摩擦材および電気絶縁材料など
の耐熱性と耐炎性を要求される用途には、石綿が広く使
用されている。
(Conventional technology) Conventionally, protective equipment such as firefighting suits, furnace vests, welding spark prevention sheets, sealing materials such as gaskets and gland packings,
Asbestos is widely used in applications that require heat resistance and flame resistance, such as heat insulation materials, filter media such as bag filters, friction materials such as brakes and clutches, and electrical insulation materials.

しかしながら、この石綿は、そのほとんどを輸入に頼っ
ているために、価格の変動によって製造コストが変動す
るだけでなく、近年石綿はその粉塵が作業者の健康を大
きく阻害することが明白となり、この石綿に代る素材に
対する要望が強く、かかる代替繊維として、たとえばガ
ラス、ロックウール、炭素繊維、フェノール系繊維、ス
チール繊維、アラミド繊維および耐炎化または酸化繊維
など多くの繊維が提案されるに至っている。
However, most of this asbestos is imported, so not only does the manufacturing cost fluctuate due to price fluctuations, but in recent years it has become clear that asbestos dust can seriously impede the health of workers. There is a strong demand for materials to replace asbestos, and many fibers have been proposed as such alternative fibers, such as glass, rock wool, carbon fibers, phenolic fibers, steel fibers, aramid fibers, and flame-resistant or oxidized fibers. .

これらの石綿代替繊維の中で、アクリル系耐炎化繊維、
すなわち炭素繊維の製造における中間製品として得られ
る酸化繊維は、比重が小さく、しなやかで難燃性に侵れ
、炭素繊維に比較すると製造コス1へか大幅に安価であ
るために、最も注目される石綿代替繊維の一つである。
Among these asbestos alternative fibers, acrylic flame-resistant fibers,
In other words, oxidized fiber obtained as an intermediate product in the production of carbon fiber is attracting the most attention because it has a low specific gravity, is flexible, has flame retardant properties, and is significantly cheaper to manufacture than carbon fiber. It is one of the asbestos alternative fibers.

しかしながら、従来のアクリル系耐炎化繊維は、その機
械的強度、特に単繊維結節強力が小さいために、通常の
繊維のごとく、紡績したり、紡編織することが困難であ
り、かつ得られた布帛の耐摩耗性が悪く、実用性能に欠
けると言われてきた。
However, because conventional flame-resistant acrylic fibers have low mechanical strength, especially single fiber knot strength, they are difficult to spin, knit and weave like ordinary fibers, and the resulting fabrics It has been said that this material has poor wear resistance and lacks practical performance.

この欠点を改良したアクリル系耐炎性繊維として、持聞
昭59−76927号公報には、プリカーサのアクリル
系繊維を八日「eおよびP化合物を少量混合した水溶液
で処理した後、空気中で加熱、酸化することによって1
9られる限界酸素指数(IOI)が45以上で、高伸度
の繊維状活性炭製造用酸化繊維が提案されている。
As an acrylic flame-resistant fiber that has improved this drawback, Jibun Sho 59-76927 discloses that precursor acrylic fibers were treated with an aqueous solution containing a small amount of e and P compounds, heated in air. , by oxidizing 1
Oxidized fibers for producing fibrous activated carbon with a critical oxygen index (IOI) of 45 or more and high elongation have been proposed.

しかしながら、このアクリル系耐炎化繊維は、伸度が大
きく柔軟ではあるが、結節強度が不充分であり、耐摩耗
性の点では、従来のアクリル系耐炎化繊維からなる布帛
となんら変るものでtよなかった。
However, although this flame-resistant acrylic fiber has high elongation and is flexible, it has insufficient knot strength, and in terms of abrasion resistance, it is no different from fabrics made of conventional flame-resistant acrylic fibers. It didn't work.

(発明が解決しようとする問題点) 本発明の目的は、上記アクリル系耐炎化繊維の耐摩耗性
を大きく改良し、一般的に慣用されている紡編織技術に
よって容易に15帛を形成でき、かつ石綿代替繊維とし
ての有用性を備えた実用性に富むアクリル系耐炎化繊維
を提供するにおる。
(Problems to be Solved by the Invention) The purpose of the present invention is to greatly improve the abrasion resistance of the above-mentioned flame-resistant acrylic fibers, and to easily form 15 pieces using commonly used spinning, knitting and weaving techniques. The present invention also provides a highly practical acrylic flame-resistant fiber that is useful as an asbestos substitute fiber.

(問題点を解決するための手段) このような本発明の目的は、上記特許請求の範囲に記載
した発明、すなわち 1.5〜4.5g/dの引張強度と少なくとも1Qの単
Idi維結節強力を有する限界酸素指数(LOI)が3
5以上である酸化繊維からなるアクリル系耐炎化繊維 によって達成することができる。
(Means for Solving the Problems) The object of the present invention is to achieve the invention described in the above claims, that is, a tensile strength of 1.5 to 4.5 g/d and a single Idi fiber nodule of at least 1Q. Strong limiting oxygen index (LOI) of 3
This can be achieved by using acrylic flame-resistant fibers made of oxidized fibers with an oxidation rate of 5 or more.

本発明のアクリル系耐炎化繊維の特徴は、該アクリル系
耐炎化繊維が、1.5〜4.5C1/dの引張強度と1
0以上の単繊維結節強力を有するにある。すなわち、従
来のアクリル系耐炎化繊維は、引張強度としては、比較
的優れたものが知られているが、結節強力が低く、この
ような単繊維結節強力の低いアクリル系耐炎化繊維は、
糸状物およびイb帛に転換する際に、たとえば紡績およ
び紡編職の過程で風綿が発生し、良好な糸状物および布
帛を形成することができないばかりでなく、使用中にイ
5帛から、繊維が摩耗、脱落するなど耐久性に欠けるた
め、実際上実用性に欠けるのが普通でおった。
The flame-resistant acrylic fiber of the present invention is characterized by having a tensile strength of 1.5 to 4.5 C1/d and a tensile strength of 1.5 to 4.5 C1/d.
It has a single fiber knot strength of 0 or more. In other words, conventional flame-resistant acrylic fibers are known to have relatively high tensile strength, but have low knot strength.
When converting into thread-like products and textiles, for example, fluff is generated in the process of spinning and knitting, which not only makes it impossible to form good thread-like products and textiles, but also prevents the formation of good thread-like products and textiles. However, the fibers tend to wear out and fall off, resulting in a lack of durability, making them generally impractical.

本発明の特徴は、この従来のアクリル系耐炎化繊維の最
大の欠点であった単繊維結節強力を大巾に改良すること
によって、アクリル系耐炎化繊維とじの耐摩耗性を改良
すると共に、その単繊維結節強力が少なくとも1gとい
う値を有する場合には、前記の耐炎化繊維からなる紡績
糸および布帛の製造過程における風綿の発生などのトラ
ブルを防止し、得られる布帛の機械的物性を顕著に改良
することができることを見出した点にある。 ここで、
少なくとも1gの単繊維結節強力を有するアクリル系耐
炎化繊維は、従来公知のアクリル系耐炎化繊維の製造法
によっては、1gられるものではなく、以下に詳述する
方法を適用してはじめて得ることができる。
The feature of the present invention is to improve the abrasion resistance of the acrylic flame-resistant fiber binding by greatly improving the single fiber knot strength, which was the biggest drawback of the conventional flame-resistant acrylic fiber. When the single fiber knot strength has a value of at least 1 g, troubles such as the occurrence of fluff during the manufacturing process of spun yarns and fabrics made of the above-mentioned flame-resistant fibers can be prevented, and the mechanical properties of the resulting fabrics can be significantly improved. The point is that we have found that it can be improved. here,
Acrylic flame-resistant fibers having a single fiber knot strength of at least 1 g cannot be obtained by conventional methods for producing flame-resistant acrylic fibers, but can only be obtained by applying the method detailed below. can.

ずなわら、本発明に規定するアクリル系耐炎化繊維は、
前駆体繊維、すなわち、プレカーサとして、その重合度
が極限粘度で少なくとも2.5、好ましくは3.0以上
の高分子量のアクリロニ1〜リル系重合体を使用し、こ
のポリマ溶液を紡糸原液として乾・湿式紡糸することに
よって得られる繊維、特に、引張強度が少なくとも10
Q/d、結節強度が2.i/d以上の超高強度繊維を使
用し、この超高強度繊維を空気などの酸化性雰囲気中で
加熱、酸化し、限界酸素指数(LOI)が35以上のア
クリル系耐炎化繊維に転換することによってはじめて)
qることができる。
However, the acrylic flame-resistant fiber specified in the present invention is
A high molecular weight acryloni-1-lyl polymer having an intrinsic viscosity of at least 2.5, preferably 3.0 or more is used as a precursor fiber, that is, a precursor, and this polymer solution is dried as a spinning dope. Fibers obtained by wet spinning, especially those with a tensile strength of at least 10
Q/d, nodule strength is 2. Using ultra-high strength fibers of I/D or higher, the ultra-high strength fibers are heated and oxidized in an oxidizing atmosphere such as air to convert them into acrylic flame-resistant fibers with a limiting oxygen index (LOI) of 35 or higher. for the first time)
I can do it.

ここで乾・湿式紡糸とは、通常の紡糸原液を紡糸口金を
通して直接凝固浴中に吐出し、吐出糸条を該凝固浴中で
凝固せしめる紡糸法ではなく、紡糸口金から吐出された
該紡糸原液を一旦、空気や窒素、ヘリュウム、アルゴン
などの不活性雰囲気で満された微小空間に導ぎ、この空
間を走行させた後、凝固浴中に導入して吐出糸条を凝固
せしめる方法であり、このような方法を適用することに
よってのみ、前記憶限粘度が2.5以上という高手合度
ポリマから引張強度が100/d以上で、結節強度が2
.20/d以上の超高強度アクリル系繊維を得ることが
できる。そして、このような超高強度アクリル系繊維を
アクリル系耐炎化繊維原料、すなわちプレカーりとして
使用し、このプレカーサを限界酸素指数(LOI)が3
5以上のアクリル系耐炎化繊維に転換すると、引張強度
のみならず、単繊維結節強力がjq以上、好ましくは1
.50以上の従来のアク1ノル系耐炎化繊維に比較して
極めて単繊維結節強力の大きいアクリル系耐炎化繊維と
することができるのでおる。
Here, dry/wet spinning is not a spinning method in which a normal spinning dope is directly discharged through a spinneret into a coagulation bath and the discharged yarn is coagulated in the coagulation bath, but the spinning dope is discharged from the spinneret. This is a method in which the yarn is first introduced into a microscopic space filled with an inert atmosphere such as air, nitrogen, helium, or argon, and after traveling through this space, the discharged yarn is introduced into a coagulation bath and coagulated. Only by applying such a method can a high-strength polymer with a prememory limit viscosity of 2.5 or more be produced with a tensile strength of 100/d or more and a knot strength of 2.
.. Ultra-high strength acrylic fibers with a strength of 20/d or more can be obtained. Then, such ultra-high-strength acrylic fibers are used as acrylic flame-resistant fiber raw materials, that is, precursors, and the precursors have a limiting oxygen index (LOI) of 3.
When converted to an acrylic flame-resistant fiber with a rating of 5 or more, not only the tensile strength but also the single fiber knot strength increases by jq or more, preferably 1
.. This makes it possible to produce an acrylic flame-resistant fiber with extremely high single fiber knot strength compared to conventional ac-1-nor flame-resistant fibers of 50 or higher.

この単繊維結節強力が1g以上でおるということは、該
アクリル系耐炎化繊維を耐炎性紡績糸や耐炎化布帛に加
工する上で、極めて重要であって、単繊維結節強力が1
gよりも小さいと、如何に引張強度が大ぎくても、また
伸度が高くても、紡績糸や布帛、たとえば織物や編物又
は不織布に加工する際に、風綿の発生などの1〜ラブル
を生じ、良好な紡績糸や布帛を)qることができないし
、かつ得られた紡績糸や布帛は耐摩耗性が小さく、実質
的に実用性能を満足しないのでおる。
It is extremely important that the single fiber knot strength is 1 g or more when processing the acrylic flame-resistant fiber into flame-resistant spun yarn or flame-resistant fabric.
If it is smaller than g, no matter how high the tensile strength or elongation is, when processing into spun yarn or fabric, such as woven fabric, knitted fabric, or non-woven fabric, problems such as generation of fluff may occur. It is not possible to produce good quality spun yarns and fabrics, and the resulting spun yarns and fabrics have low abrasion resistance and do not substantially satisfy practical performance.

また、本発明において、アクリル系耐炎化繊維の限界酸
素指数(LOI)は、35以上好ましくは、45〜70
の範囲であることが望ましく、この限界vL索積指数L
OI)が35よりも小さくなると、アクリル系耐炎化R
維の耐熱性または耐炎性が損われるし、また余りに大き
すぎると、柔軟性や耐屈曲性が低下するために好ましく
ない。
Further, in the present invention, the limiting oxygen index (LOI) of the acrylic flame-resistant fiber is 35 or more, preferably 45 to 70.
It is desirable that the range is within the range of this limit vL index L
OI) becomes smaller than 35, acrylic flame resistance R
The heat resistance or flame resistance of the fiber will be impaired, and if it is too large, the flexibility and bending resistance will decrease, which is not preferable.

以下、本発明のアクリル系耐炎化繊維の製造法の具体的
態様について説明する。
Hereinafter, specific embodiments of the method for producing flame-resistant acrylic fibers of the present invention will be described.

まず、本発明のアクリル系耐炎化繊維の製造に使用され
るプレカーリ−としては、アクリロニトリル(以下、A
Nという)単独ポリマおよび/または該ANを主成分と
し、該ΔNに対して共重合性を有するビニル系化合物と
の共重合体からなるアクリル系繊維が用いられる。
First, acrylonitrile (hereinafter referred to as A
An acrylic fiber consisting of a single polymer (referred to as N) and/or a copolymer containing the AN as a main component and a vinyl compound having copolymerizability with the ΔN is used.

ここでANに対して共重合性を有するビニル系化合物と
しては、特に限定されるものではないが、たとえば、ア
クリル酸、メタクリル酸、イタコン酸などのジカルボン
酸およびメチルアクリレート、メチルメタクリレートな
どのような低級アルキルエステル、ハイドロキシエヂル
アクリレー1〜、ハイドロキシメタクリレートのような
カルボン酸の水M!含有エステル、α−クロルアクリロ
ニトリル、ヒドロキシエチルアクリル酸、アリルスルホ
ン酸、メタクリルスルホン酸などを例示することができ
る。
Here, the vinyl compound having copolymerizability with AN is not particularly limited, but includes, for example, dicarboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, and methyl acrylate and methyl methacrylate. Water of carboxylic acid such as lower alkyl ester, hydroxyedyl acrylate 1~, hydroxymethacrylate M! Examples include esters containing α-chloroacrylonitrile, hydroxyethyl acrylic acid, allylsulfonic acid, and methacrylsulfonic acid.

また、該AN系ポリマから得られるアクリル系繊維の機
械的強度を大きくするために、該ΔN系ポリマの極限粘
度は、少なくとも2.5、好ましくは3.0〜5.0の
範囲でおることが望ましい。
Further, in order to increase the mechanical strength of the acrylic fiber obtained from the AN-based polymer, the intrinsic viscosity of the ΔN-based polymer should be at least 2.5, preferably in the range of 3.0 to 5.0. is desirable.

この極限粘度は、次の如くして測定される値である。This intrinsic viscosity is a value measured as follows.

75mClの乾燥したポリマをフラスコに入れ、0.1
Nのチオシアン酸ソーダを含有するジメチルホルムアミ
ド(DMF>25m1を加えて、完全に溶解する。得ら
れたポリマ溶液をオストワルド粘度計を用いて20’C
で比粘度を測定し、次式により極限粘度を節用する。
Add 75 mCl of dry polymer to the flask and add 0.1
Add dimethylformamide (DMF>25 ml containing N sodium thiocyanate and dissolve completely. The resulting polymer solution was heated at 20'C using an Ostwald viscometer.
Measure the specific viscosity and use the following formula to save the intrinsic viscosity.

極限粘度− 上記AN系ポリマは、その溶剤、たとえばジメチルスル
ホキシド(DMSO> 、ジメチルホルムアミド(DM
F)、ジメチルアセタミド(DMAC)などの有機溶剤
、塩化力ルシュウム、塩化亜鉛、ロダンソーダなどの無
R濃厚溶液および硝酸などの無機系溶剤、好ましくはD
MSOなどの有機溶剤に溶解され、溶液粘度が少なくと
も2.000ボイス、好ましくは3,000〜10,0
00ボイズ、ポリマQ度が5〜20%の紡糸原液とされ
る。
Intrinsic viscosity - The above AN-based polymer is
F), organic solvents such as dimethyl acetamide (DMAC), R-free concentrated solutions such as lucium chloride, zinc chloride, rhodan soda, and inorganic solvents such as nitric acid, preferably D
Dissolved in an organic solvent such as MSO, with a solution viscosity of at least 2.000 Bois, preferably from 3.000 to 10.0
The spinning stock solution has 00 voids and a polymer Q degree of 5 to 20%.

jqられだ紡糸原液は、前記の屹・湿式紡糸法によって
紡糸されるが、この場合に紡糸口金面と凝固浴の液面と
の間の距離は、紡糸原液の溶媒の種類、粘度、ポリマ濃
度などにより相違するが、通常1〜20mm、好ましく
は3〜1Qmmの範囲に設定される。
jq The raw spinning solution is spun by the above-mentioned wet spinning method. In this case, the distance between the spinneret surface and the liquid level of the coagulation bath depends on the type of solvent, viscosity, and polymer concentration of the spinning solution. It is usually set in the range of 1 to 20 mm, preferably 3 to 1 Qmm, although it varies depending on the factors.

凝固浴としては、該ポリマの溶剤と共通する溶剤水溶液
が使用され、この凝固浴で凝固を完結せしめた俊、繊維
糸条は熱水中で水洗、脱溶媒しながら、2〜10倍に一
次延伸される。−次延伸した後、該水膨潤繊維糸条を加
熱雰囲気中で乾燥緻密化し、次いで150〜270’C
の温度範囲の乾熱下で少なくとも1.1倍、好ましくは
1.5倍以上に二次延伸し、全延伸倍率が少なくとも1
0倍、好ましくは12倍以上の延伸繊維糸条とされる。
As the coagulation bath, an aqueous solution of the same solvent as the solvent of the polymer is used, and the fiber threads that have been coagulated in this coagulation bath are washed in hot water and desolvated, while the primary concentration is increased 2 to 10 times. Stretched. - After the next drawing, the water-swollen fiber yarn is dried and densified in a heated atmosphere, and then heated to 150-270'C
secondary stretching to at least 1.1 times, preferably 1.5 times or more under dry heat in a temperature range of
The fiber yarn is drawn 0 times, preferably 12 times or more.

このようにして得られるアクリル系繊維プレカーリ−は
、X線結晶配向度が93%以上という高い結晶配向度を
示し、引張強度が少なくとも10C]/d、引張弾性率
が180g/d以上、結節強度が2.2Ω/d以上の緻
密で、表面欠陥のない平滑な、すなわち、静摩擦係数が
少なくとも0.3以上という超高強度繊維であり、従来
のアクリル系繊維にはみられない物性と構造的特徴を有
する。
The acrylic fiber precurly obtained in this way exhibits a high degree of crystal orientation with an X-ray crystal orientation of 93% or more, a tensile strength of at least 10 C]/d, a tensile modulus of at least 180 g/d, and a knot strength. It is an ultra-high strength fiber that is dense with a coefficient of 2.2Ω/d or more and smooth without surface defects, that is, with a coefficient of static friction of at least 0.3, and has physical properties and structural properties not found in conventional acrylic fibers. Has characteristics.

この静摩擦係数が0.3以上という構造的特徴は、本発
明のアクリル系耐炎化繊維が前記の屹・湿式紡糸によっ
て1gられたアクリル系繊維をプレカー4ノとして使用
したことによるもので必り、従来のアクリル系耐炎化繊
維に比較して緻密で平滑性に冨んでいることを示す。
This structural feature that the coefficient of static friction is 0.3 or more is due to the fact that the acrylic flame-resistant fiber of the present invention uses 1 g of acrylic fiber obtained by the above-mentioned wet spinning as a precursor. It is denser and smoother than conventional acrylic flame-resistant fibers.

また、1gれるアクリル系繊維プレカーサの単繊維繊度
は、0.5〜7デニール(d)、好ましくは1〜5dの
範囲であることが望ましい。すなわち、単繊維繊度が0
.56よりも小さいと、得られる耐炎化繊維の紡績性が
低下し、耐摩耗性の良好なアクリル系耐炎化布帛を1す
ることか困難になるし、他方、7dよりも大きくなると
、酸化処理時の繊維断面方向における酸化の不均一化が
著しくなり、単繊維結節強力の低下を招くので好ましく
ない、。
Further, it is desirable that the single fiber fineness of 1 g of the acrylic fiber precursor is in the range of 0.5 to 7 denier (d), preferably 1 to 5 d. In other words, the single fiber fineness is 0.
.. If it is smaller than 56, the spinnability of the resulting flame-resistant fiber will decrease and it will be difficult to make an acrylic flame-resistant fabric with good abrasion resistance. This is undesirable because oxidation becomes significantly uneven in the cross-sectional direction of the fibers, resulting in a decrease in single fiber knot strength.

そして、このような優れた物性と特徴ある構造を有する
アクリル系繊維プレカーサは、酸化性雰囲気中で加熱、
酸化されるが、酸化性雰囲気としては、200〜350
’Cの温度範囲内の空気またはSO2などの酸化性ガス
、好ましくは302ガス中で酸化される。
The acrylic fiber precursor, which has such excellent physical properties and unique structure, can be heated in an oxidizing atmosphere.
Although it is oxidized, the oxidizing atmosphere is 200 to 350
Oxidized in air or an oxidizing gas such as SO2, preferably 302 gas, within the temperature range of 'C.

この酸化工程において、酸化温度は、一定温度でもよい
し、昇温下でもよいが、該プレカーサは、緊張または弛
緩下に限界酸素指数(LOI)が35以上、好ましくは
45〜70の範囲になるように加熱、酸化するのがよい
In this oxidation step, the oxidation temperature may be constant or elevated, but the precursor has a limiting oxygen index (LOI) of 35 or more, preferably in the range of 45 to 70, under tension or relaxation. It is best to heat and oxidize.

ざらに具体的には、酸化第1炉の雰囲気温度を200〜
240℃の温度に設定し、酸化を開始し、250〜35
0℃の温度範囲の段階的に昇温する酸化炉で酸化するの
がよい。
More specifically, the atmospheric temperature of the first oxidation furnace is set to 200~200℃.
Set the temperature to 240℃ and start oxidation, 250-35℃
Oxidation is preferably carried out in an oxidation furnace in which the temperature is raised stepwise in the temperature range of 0°C.

上記単繊維繊度が大きいために、均一な酸化が難しく、
酸化に長時間を要する場合は、前記アクリル系繊維プレ
カーサまたはLOIが21〜35、好ましくは23〜3
0の予備的に酸化処理した繊維に、脱水酸化促進能を有
する化合物、たとえば」L硼酸アンモン、硼砂、オルソ
燐酸、縮合燐酸、燐酸アンモン、塩化アルミニュウム、
臭化アンモン、塩化亜鉛、硫酸アンモン、スルファミン
酸アンモン、スルファミン酸グアニジン、燐酸グアニジ
ン、燐酸グアニル尿素などを約5重量%以上付着させ、
しかる後酸化雰囲気中で加熱酸化するのがよい。
Due to the large fineness of the single fibers mentioned above, uniform oxidation is difficult.
When oxidation requires a long time, the acrylic fiber precursor or LOI is 21 to 35, preferably 23 to 3.
A compound having the ability to promote dehydration oxidation, such as L ammonium borate, borax, orthophosphoric acid, condensed phosphoric acid, ammonium phosphate, aluminum chloride,
Attaching about 5% by weight or more of ammonium bromide, zinc chloride, ammonium sulfate, ammonium sulfamate, guanidine sulfamate, guanidine phosphate, guanylurea phosphate, etc.
After that, it is preferable to oxidize by heating in an oxidizing atmosphere.

本発明において、限界酸素指数(LOI>は、J Is
−に−7201に規定されている測定法に準じて測定さ
れる値でおり、ざらに具体的には、次の通りでおる。
In the present invention, the limiting oxygen index (LOI) is J Is
It is a value measured according to the measurement method specified in -7201, and more specifically, it is as follows.

測定試料的1gを直径約1mmの針金(支持体)に巻き
付け、直径が約4mmの紐状にしてタテ15Qmmの枠
に固定する。次いでこれを燃焼筒内にセットし、その中
に酸素と窒素の混合ガスを11.41/min、の流速
で約30秒間流した後、試料の上端に点火し、試料が3
分間以上燃焼し続けるかまたは着火した後50mm以上
の燃焼長ざまで燃え続けるのに必要な最低の酸素流量(
△〉と、その時の窒素流ff1(B)とを決定する。そ
の混合ガスの総流量に対する酸素流mの割合がLOIで
あり、次式により示される。
Wrap 1 g of the sample to be measured around a wire (support) with a diameter of about 1 mm, form a string with a diameter of about 4 mm, and fix it to a frame with a length of 15 Q mm. Next, this was set in a combustion cylinder, and after flowing a mixed gas of oxygen and nitrogen into it at a flow rate of 11.41/min for about 30 seconds, the upper end of the sample was ignited, and the sample was heated to 3.
The minimum oxygen flow rate (
Δ> and the nitrogen flow ff1(B) at that time are determined. The ratio of the oxygen flow m to the total flow rate of the mixed gas is the LOI, which is expressed by the following equation.

LOI= [A/ (△+B)]X100以下、実施例
により本発明の効果を具体的に説明する。
LOI=[A/(Δ+B)]X100 Below, the effects of the present invention will be specifically explained with reference to Examples.

実施例1〜5、比較例1〜4 AN97.5%、アクリル酸メチル2.5%をDMSO
中で溶液重合し第1表に示す極限粘度[η]の異なるA
N系ポリマを作成した。得られたポリマ溶液をその溶液
粘度が3000ボイス(45°C)になるようにポリマ
濃度を調整し、紡糸原液を作成した。
Examples 1 to 5, Comparative Examples 1 to 4 AN97.5%, methyl acrylate 2.5% in DMSO
A with different intrinsic viscosities [η] shown in Table 1.
An N-based polymer was created. The polymer concentration of the obtained polymer solution was adjusted so that the solution viscosity was 3000 voices (45° C.) to prepare a spinning dope.

これらの紡糸原液を用いて、それぞれ湿式および乾・湿
式紡糸を行った。凝固浴としては、いずれの方法におい
ても20°Cの55%DMSO水溶液を使用した。また
、乾・湿式紡糸の場合の紡糸口金と凝固液面との間の距
離は5mmに設定し、凝固液面から集束ガイドまでの距
離は400mmとした。
Using these spinning stock solutions, wet spinning and dry/wet spinning were performed, respectively. As a coagulation bath, a 55% DMSO aqueous solution at 20°C was used in all methods. Further, in the case of dry/wet spinning, the distance between the spinneret and the coagulating liquid level was set to 5 mm, and the distance from the coagulating liquid level to the focusing guide was 400 mm.

得られた未延伸繊維糸条は熱水中で5倍に延伸した後、
水洗し、油剤を付与し、130’Cで乾燥、緻密化した
。乾燥、緻密化した繊維は、180〜200 ’Cの乾
熱チューブ中で最高延伸倍率の90%で二次延伸し、単
繊維繊度がいずれも約2. Od、第1表に示す繊維物
性を有するアクリル系繊第  1  表 第2表 維プレカーサを1gだ。
The obtained undrawn fiber yarn was drawn 5 times in hot water, and then
It was washed with water, applied with an oil agent, dried at 130'C, and densified. The dried and densified fibers were subjected to secondary drawing at a maximum drawing ratio of 90% in a dry heat tube at 180 to 200'C, and the single fiber fineness was approximately 2. Od, 1 g of acrylic fiber precursor having the fiber properties shown in Table 1.

第1表に示したアクリル系繊維プレカーサをそれぞれ2
40’Cの空気中で弛緩状態下に加熱、酸化した。1g
られたアクリル系耐炎化繊維のLOI、単繊維の単繊維
結節強力およびアクリル系耐炎化繊維にそれぞれクリン
プを付与し、102mmにカットしてモデル紡績機を用
いてテストした紡績性を第2表に示した。
2 each of the acrylic fiber precursors shown in Table 1
It was heated and oxidized under a relaxed state in air at 40'C. 1g
Table 2 shows the LOI of the flame-retardant acrylic fiber, the single fiber knot strength of the single fiber, and the spinnability of the acrylic flame-retardant fiber, which was crimped and cut into 102 mm pieces and tested using a model spinning machine. Indicated.

実施例6 比較例3の単繊維結節強力が2.6CI、 I OIが
25のアクリル系耐炎化繊維を燐酸グアニジン水溶液中
に浸漬した俊乾燥し、該燐酸グアニジンを10重量%付
着させた。この燐酸グアニジン含有アクリル系耐炎化繊
維は、47のLOI、3゜4 c+/dの引張強度およ
び2.4gの単繊維結節強力を有しており、優れた耐炎
性と紡績性を示した。
Example 6 The acrylic flame-resistant fiber of Comparative Example 3 having a single fiber knot strength of 2.6 CI and an IOI of 25 was immersed in an aqueous solution of guanidine phosphate and quickly dried to adhere 10% by weight of the guanidine phosphate. This flame-resistant acrylic fiber containing guanidine phosphate had an LOI of 47, a tensile strength of 3°4 c+/d, and a single fiber knot strength of 2.4 g, and exhibited excellent flame resistance and spinnability.

Claims (2)

【特許請求の範囲】[Claims] (1)1.5〜4.5g/dの引張強度と少なくとも1
gの結節強力(単繊維)を有する限界酸素指数(LOI
)が35以上である酸化繊維からなる耐摩耗性に優れた
アクリル系耐炎化繊維。
(1) Tensile strength of 1.5 to 4.5 g/d and at least 1
The limiting oxygen index (LOI) with a knot strength (monofilament) of g
) is 35 or more, an acrylic flame-resistant fiber with excellent abrasion resistance.
(2)特許請求の範囲第1項において、アクリル系耐炎
化繊維が乾・湿式紡糸によつて得られた少なくとも10
g/dの引張強度および2.2g/d以上の結節強度を
有するアクリロニトリル系繊維を前駆体とする酸化繊維
である耐摩耗性に優れたアクリル系耐炎化繊維。
(2) In claim 1, at least 10 acrylic flame-resistant fibers are obtained by dry/wet spinning.
An acrylic flame-resistant fiber with excellent abrasion resistance, which is an oxidized fiber whose precursor is an acrylonitrile fiber having a tensile strength of 2.2 g/d and a knot strength of 2.2 g/d or more.
JP17049785A 1985-08-01 1985-08-01 Acrylic flameproofed fiber having improved abrasion resistance Pending JPS6233824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17049785A JPS6233824A (en) 1985-08-01 1985-08-01 Acrylic flameproofed fiber having improved abrasion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17049785A JPS6233824A (en) 1985-08-01 1985-08-01 Acrylic flameproofed fiber having improved abrasion resistance

Publications (1)

Publication Number Publication Date
JPS6233824A true JPS6233824A (en) 1987-02-13

Family

ID=15906056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17049785A Pending JPS6233824A (en) 1985-08-01 1985-08-01 Acrylic flameproofed fiber having improved abrasion resistance

Country Status (1)

Country Link
JP (1) JPS6233824A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477618A (en) * 1987-09-16 1989-03-23 Nikkiso Co Ltd Dry and wet spinning for acrylonitrile polymer
JP2002194650A (en) * 2000-12-19 2002-07-10 Toho Tenax Co Ltd Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976927A (en) * 1982-10-20 1984-05-02 Toho Rayon Co Ltd Acrylonitrile-based flameproof fiber
JPS59199809A (en) * 1983-04-20 1984-11-13 Japan Exlan Co Ltd Polyacrylonitrile yarn having high strength and its preparation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976927A (en) * 1982-10-20 1984-05-02 Toho Rayon Co Ltd Acrylonitrile-based flameproof fiber
JPS59199809A (en) * 1983-04-20 1984-11-13 Japan Exlan Co Ltd Polyacrylonitrile yarn having high strength and its preparation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6477618A (en) * 1987-09-16 1989-03-23 Nikkiso Co Ltd Dry and wet spinning for acrylonitrile polymer
JP2002194650A (en) * 2000-12-19 2002-07-10 Toho Tenax Co Ltd Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet
JP4582905B2 (en) * 2000-12-19 2010-11-17 東邦テナックス株式会社 Oxidized fiber sheet, compressed oxidized fiber sheet, method for producing them, and method for producing carbon fiber sheet

Similar Documents

Publication Publication Date Title
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JPS6197477A (en) Raw yarn for producing carbon fiber
JPS59228069A (en) Acrylonitrile fiber
JPS6233824A (en) Acrylic flameproofed fiber having improved abrasion resistance
JPS6021905A (en) Acrylic fiber having high strength and elastic modulus and its manufacture
US4237108A (en) Process for producing carbon fabric
US4237109A (en) Process for producing carbon fabric
JP2017137602A (en) Manufacturing method of polyacrylonitrile fiber bundle
JP2002220726A (en) Method for producing carbon fiber precursor
JP2875667B2 (en) Method of stretching acrylic yarn for carbon fiber precursor in bath
JPH0618566Y2 (en) ▲ Ro ▼
JPH0718052B2 (en) Manufacturing method of high strength acrylic fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPH06101129A (en) Acrylic spun yarn
JP2555826B2 (en) Acrylic yarn manufacturing method for carbon fiber precursor
JPH09255227A (en) Carbon fiber precursor acrylic fiber package and winding method for carbon fiber precursor acrylic fiber
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle
JPH0226923A (en) Production of fire-resistant yarn of sulfur-containing acrylic base
JPS6350528A (en) Sulfur-containing acrylic flame-retardant fiber having excellent toughness
JPS6059116A (en) Acrylic fiber as precursor for carbon fiber
JPS58214518A (en) Acrylic precursor yarn bundle
JPH01266224A (en) Production of sulfur-containing preoxidized acrylic fiber
JPS62276023A (en) Production of flame-resistant fiber
JPH0364526A (en) Production of sulfur-containing acrylic flameproof yarn
JPH04240220A (en) Precursor for carbon fiber