JPH0364526A - Production of sulfur-containing acrylic flameproof yarn - Google Patents

Production of sulfur-containing acrylic flameproof yarn

Info

Publication number
JPH0364526A
JPH0364526A JP20097689A JP20097689A JPH0364526A JP H0364526 A JPH0364526 A JP H0364526A JP 20097689 A JP20097689 A JP 20097689A JP 20097689 A JP20097689 A JP 20097689A JP H0364526 A JPH0364526 A JP H0364526A
Authority
JP
Japan
Prior art keywords
sulfur
flame
fiber
fibers
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20097689A
Other languages
Japanese (ja)
Inventor
Takashi Takada
高田 貴
Takeo Matsunase
武雄 松名瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP20097689A priority Critical patent/JPH0364526A/en
Publication of JPH0364526A publication Critical patent/JPH0364526A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To uniformly carry out reaction in obtaining flameproof yarn heating and sulfurizing yarn bundle of acrylic fiber in a sulfur-containing atmosphere, by replacing oxygen in the yarn bundle with water, etc., through immersion of the yarn bundle in water at an inlet part of heating furnace. CONSTITUTION:Yarn bundle 1 of acrylic fiber (preferably one having >=10g/d tensile strength, >=180g/d modulus in tension and >=2.2g/d knot strength) which is obtained by subjecting acrylonitrile (preferably one having high degree of polymerization of 2.0-5.0 intrinsic viscosity) to melt spinning and drawing is immersed in water at an inlet part 2, brought into contact with steam 3, heated by a furnace 4, sulfurized with a high-temperature sulfur-containing gas (preferably mixed gas of sulfur dioxide and steam at 230-400 deg.C) and preferably brought into contact with steam 3 at an outlet part 6 to give sulfur-containing acrylic flame-retardant yarn suitable for cement reinforcing material, etc., having high tensile strength, excellent alkali resistance, heat resistance and flame retardance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、引張強度が高く、耐アルカリ性、耐熱性およ
び耐炎性に優れた硫黄含有アクリル系耐炎化繊維の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a sulfur-containing acrylic flame-resistant fiber that has high tensile strength and excellent alkali resistance, heat resistance, and flame resistance.

[従来の技術] 従来、消防服、炉前服、溶接火花防護シートなどの保護
具、ガスケット、グランドバッキングなどのシール材料
、断熱材、バッグフィルターによって代表される濾材、
ブレーキ、クラッチなどの摩擦材および電気絶縁材料な
どの耐熱性と耐炎性が要求される製品には、石綿が広く
使用されてきた。
[Prior Art] Conventionally, protective equipment such as firefighting suits, furnace vests, and welding spark protection sheets, sealing materials such as gaskets and ground backings, insulation materials, and filter media represented by bag filters,
Asbestos has been widely used in products that require heat resistance and flame resistance, such as friction materials such as brakes and clutches, and electrical insulation materials.

更に、石綿は高温での耐アルカリ性にも優れ、アスベス
トセメント板および硅酸カルシウム板などのように、1
80℃の水蒸気中でオートクレーブ養生される石灰質や
硅酸質からなる高性能な水硬性無機製品にも大量に使用
されている。
Furthermore, asbestos has excellent alkali resistance at high temperatures, and asbestos cement boards and calcium silicate boards, etc.
It is also used in large quantities in high-performance hydraulic inorganic products made of calcareous or silica materials that are autoclaved in steam at 80°C.

しかしながら、石綿のほとんどを輸入に依存しているわ
が国では、石綿の輸入価格によって製品の製造コストが
大きく変動するという問題の他に、近年に至って該石綿
はその粉塵が作業者の健康を著しく阻害することが判明
し、米国、欧州の一部の国などにおいては法的に使用が
規制されるに至り、この石綿に代わる繊維素材の開発が
我が国を含めて世界的規模で研究検討されている。
However, in Japan, which relies on imports for most of its asbestos, in addition to the problem that the manufacturing cost of products fluctuates greatly depending on the import price of asbestos, in recent years the asbestos dust has seriously harmed the health of workers. As a result, its use has been legally regulated in the United States and some European countries, and the development of textile materials to replace asbestos is being researched and considered on a global scale, including in Japan. .

これまでにこの石綿に代替する繊維素材として、例えば
ガラス、ロックウール、炭素繊維、フェノール繊維、ス
チール繊維、アラミド繊維及び耐炎化繊維など各種の繊
維が提案され、これらの代替繊維の中で、比重が小さく
、柔軟で、難燃性に優れ、かつ炭素繊維に比較して安価
な耐炎化繊維、即ち、アクリル系耐炎化繊維が最も注目
されている。
Various fibers have been proposed to replace asbestos, such as glass, rock wool, carbon fiber, phenol fiber, steel fiber, aramid fiber, and flame-resistant fiber. Flame-resistant fibers that are small in size, flexible, have excellent flame retardancy, and are cheaper than carbon fibers, ie, acrylic flame-resistant fibers, are attracting the most attention.

しかし、アクリル系繊維を高温の空気中で加熱、酸化す
ることによって製造される耐炎化繊維は、繊維の内部に
比較して繊維の表皮部の酸化の程度が杆めて大きい不均
一な酸化構造を有している。
However, flame-resistant fibers produced by heating and oxidizing acrylic fibers in high-temperature air have a non-uniform oxidation structure in which the degree of oxidation on the surface of the fibers is generally greater than on the inside of the fibers. have.

このために、機械的強度、特に引張強度および結節強度
が小さく、かつ靭性(タフネス)が低く、紡績または編
織が困難である。
For this reason, mechanical strength, particularly tensile strength and knot strength, is low and toughness is low, making spinning or knitting difficult.

また、仮に紡編織しえたとしても、得られた製品の耐摩
耗性および耐熱性が悪く、たとえば150℃以上の高温
下で長時間使用すると、その強度が低下し、実用性能を
失うなどといった問題があった。
Furthermore, even if spinning, knitting, and weaving were possible, the resulting product would have poor abrasion resistance and heat resistance, and if used for a long time at high temperatures of 150°C or higher, its strength would decrease and practical performance would be lost. was there.

更に、上記アクリル系繊維を空気中で加熱、酸化した耐
炎化繊維は、高温での耐アルカリ性に著しく劣るため、
180℃の水蒸気中で、オートクレーブ養生される水硬
性無機製品の補強材には全く使用できない。
Furthermore, flame-resistant fibers obtained by heating and oxidizing the above-mentioned acrylic fibers in the air have significantly poor alkali resistance at high temperatures.
It cannot be used at all as a reinforcing material for hydraulic inorganic products that are autoclaved in steam at 180°C.

そこで、本発明者らは先に高強度のアクリル系繊維を二
酸化硫黄のような硫黄含有雰囲気中で加熱、硫化するこ
とによって得られる引張強度が高く、靭性(タフネス)
に優れ、かつ高温での耐アルカリ性、耐熱性、耐炎性お
よび耐薬品性にも優れた硫黄含有アクリル系耐炎化繊維
を提案じた。
Therefore, the present inventors first heated and sulfurized high-strength acrylic fibers in a sulfur-containing atmosphere such as sulfur dioxide, thereby achieving high tensile strength and toughness.
We proposed a sulfur-containing acrylic flame-resistant fiber that has excellent alkali resistance, heat resistance, flame resistance, and chemical resistance at high temperatures.

また、特公ff?147−24967号公報には、炭素
繊維を連続的に得る特殊な方法として、アクリル系繊維
を亜硫酸ガス雰囲気中で熱処理して耐炎化する際に、熱
処理室内の圧力を大気圧より若干低く保つことによって
出入口部からの上記亜硫酸ガスの漏れを防止する方法が
開示されている。
Also, special public ff? Publication No. 147-24967 describes a special method for continuously obtaining carbon fibers that involves keeping the pressure in the heat treatment chamber slightly lower than atmospheric pressure when heat treating acrylic fibers in a sulfur dioxide gas atmosphere to make them flame resistant. discloses a method for preventing the leakage of sulfur dioxide gas from an inlet/outlet portion.

[発明が解決しようとする課題] ところで、炭素繊維は一般に、アクリル系繊維を耐炎化
工程で空気のような酸化性雰囲気中で加熱、酸化した後
、次いで高温の非酸化性雰囲気中で炭化して製造される
。そのため、前記公知例に記載されているように耐炎化
工程で硫黄含有ガスに酸素または空気が混入しても炭素
繊維を得る上ではなんら障害にならない。
[Problems to be Solved by the Invention] Carbon fibers are generally produced by heating and oxidizing acrylic fibers in an oxidizing atmosphere such as air in a flame-retardant process, and then carbonizing them in a high-temperature non-oxidizing atmosphere. Manufactured by Therefore, even if oxygen or air is mixed into the sulfur-containing gas during the flameproofing process as described in the above-mentioned known example, there is no problem in obtaining carbon fibers.

しかしながら、アクリル系繊維を耐炎化工程のみを経た
耐炎化繊維として使用する場合、先述のようにアクリル
系繊維を空気中で加熱、酸化すると耐炎化繊維の性能が
著しく低下するので耐炎化工程での空気すなわち酸素の
混入はできるだけ少なくすることが望まれる。
However, when using acrylic fibers as flame-retardant fibers that have undergone only a flame-retardant process, heating and oxidizing the acrylic fibers in the air will significantly reduce the performance of the flame-retardant fibers, so It is desirable to minimize the amount of air, ie, oxygen, mixed in.

本発明の目的は、引張強度が高く、高温での耐アルカリ
性、耐熱性および耐炎性に優れた硫黄含有アクリル系耐
炎化繊維(以下、単に耐炎化繊維と略す)の製造方法を
提供するにある。
An object of the present invention is to provide a method for producing sulfur-containing acrylic flame-resistant fibers (hereinafter simply referred to as flame-resistant fibers) that have high tensile strength and excellent alkali resistance, heat resistance, and flame resistance at high temperatures. .

本発明者らは、かかる目的を達成するべく鋭意検討を進
めた結果、アクリル系繊維からなる繊維束を硫黄含有雰
囲気中で連続的に加熱、硫化して得られる硫黄含有アク
リル系耐炎化繊維の製造において、該繊維束内に随伴す
る空気、即ち酸素を硫黄含有雰囲気中に流入するのを極
力抑えることによって硫黄含有ガスとアクリル系繊維と
の硫化反応を促進させ得る見通しを得て本発明を完成す
るに至った。
As a result of intensive studies to achieve this objective, the present inventors have discovered that sulfur-containing acrylic flame-resistant fibers obtained by continuously heating and sulfurizing fiber bundles made of acrylic fibers in a sulfur-containing atmosphere. The present invention was developed based on the prospect that the sulfurization reaction between the sulfur-containing gas and the acrylic fibers could be promoted by suppressing as much as possible the flow of air, that is, oxygen, accompanying the fiber bundle into the sulfur-containing atmosphere during production. It was completed.

[課題を解決するための手段] 本発明は、次の構成を有する。[Means to solve the problem] The present invention has the following configuration.

(1)アクリル系繊維からなる繊維束を硫黄含有雰囲気
中で連続的に加熱、硫化して耐炎化繊維を得るに際し、
加熱炉の少なくとも入口部において該繊維束を水に浸漬
または水蒸気中に接触させることを特徴とする硫黄含有
アクリル系耐炎化繊維の製造方法。
(1) When obtaining flame-resistant fibers by continuously heating and sulfurizing fiber bundles made of acrylic fibers in a sulfur-containing atmosphere,
A method for producing sulfur-containing acrylic flame-resistant fibers, which comprises immersing the fiber bundle in water or bringing it into contact with steam at least at the entrance of a heating furnace.

(2)硫黄含有雰囲気が、二酸化硫黄、硫黄ガス、二硫
化炭素、硫化水素、硫化カルボニルから選ばれた少なく
とも1種の硫黄含有ガスである(1)に記載の硫黄含有
アクリル系耐炎化繊維の製造方法。
(2) The sulfur-containing acrylic flame-resistant fiber according to (1), wherein the sulfur-containing atmosphere is at least one sulfur-containing gas selected from sulfur dioxide, sulfur gas, carbon disulfide, hydrogen sulfide, and carbonyl sulfide. Production method.

(3)硫黄含有雰囲気が、硫黄含有ガスと不活性ガスと
の混合ガスである(1)または(2)に記載の硫黄含有
アクリル系耐炎化繊維の製造方法。
(3) The method for producing a sulfur-containing acrylic flame-resistant fiber according to (1) or (2), wherein the sulfur-containing atmosphere is a mixed gas of a sulfur-containing gas and an inert gas.

(4)不活性ガスが、窒素、アルゴン、ヘリウム、二酸
化炭素、水蒸気から選ばれた少なくとも1種である(3
)に記載の硫黄含有アクリル系耐炎化繊維の製造方法。
(4) The inert gas is at least one selected from nitrogen, argon, helium, carbon dioxide, and water vapor (3
) The method for producing a sulfur-containing acrylic flame-resistant fiber.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いる硫黄含有雰囲気とは、二酸化硫黄、硫黄
ガス、二硫化炭素、硫化水素及び硫化カルボニル等の単
独あるいはそれらの混合ガスからなる硫黄含有ガスある
いは上記硫黄含有ガスと不活性ガスとの混合ガスであっ
て、特に二酸化硫黄はアクリル系繊維に対する反応性に
優れ、かつ繊維断面に均一に硫化することができるので
好ましく用いられる。
The sulfur-containing atmosphere used in the present invention refers to a sulfur-containing gas consisting of sulfur dioxide, sulfur gas, carbon disulfide, hydrogen sulfide, carbonyl sulfide, etc. alone or a mixture thereof, or a mixture of the above sulfur-containing gas and an inert gas. Among gases, sulfur dioxide is particularly preferably used because it has excellent reactivity with acrylic fibers and can uniformly sulfurize the cross section of the fibers.

また不活性ガスとしてはアクリル系繊維と化学反応を起
こさないガスであって、例えば窒素、アルゴン、ヘリウ
ム、二酸化炭素、水蒸気などの71゜独あるいはそれら
の混合ガスを例示することができる。
The inert gas is a gas that does not cause a chemical reaction with the acrylic fibers, such as nitrogen, argon, helium, carbon dioxide, water vapor, or a mixture thereof.

ところで、アクリル系繊維からなる繊維束は水に浸漬ま
たは水蒸気中に接触され次工程の加熱炉に導入されるの
であるが、この時加熱炉内には」ユ記繊維束に随伴して
水蒸気が流入する。
By the way, fiber bundles made of acrylic fibers are immersed in water or brought into contact with steam and then introduced into the heating furnace for the next process.At this time, water vapor is present in the heating furnace accompanying the fiber bundles. Inflow.

従って、前記硫黄含有雰囲気としては硫黄含有ガスと水
蒸気との混合ガスが望ましい。さらに、このように不活
性ガスとして水蒸気を用いると、アクリル系繊維と硫黄
含有ガスとの硫化反応終了後の廃ガスから硫黄含有ガス
を回収する際、水蒸気は水として分離後、水に溶解した
硫黄含有ガスを分溜によって容易に回収できる。その上
回収設備を小型化でき、回収コストの低減に極めて有利
である。
Therefore, the sulfur-containing atmosphere is preferably a mixed gas of sulfur-containing gas and water vapor. Furthermore, when water vapor is used as an inert gas in this way, when recovering sulfur-containing gas from the waste gas after the sulfurization reaction between acrylic fibers and sulfur-containing gas, the water vapor is separated as water and then dissolved in the water. Sulfur-containing gas can be easily recovered by fractional distillation. Moreover, the collection equipment can be downsized, which is extremely advantageous in reducing collection costs.

ここで上記硫黄含有混合ガスにおける硫黄含有ガスの含
有量は、3モル%以上、好ましくは5モル%以上である
。硫黄含有ガスの含有量が3モル%未満であるとアクリ
ル系繊維と硫黄含有ガスとの硫化反応よりも熱劣化が先
行するため高性能な耐炎化繊維は得られない。
Here, the content of the sulfur-containing gas in the sulfur-containing mixed gas is 3 mol% or more, preferably 5 mol% or more. If the content of the sulfur-containing gas is less than 3 mol%, thermal deterioration precedes the sulfurization reaction between the acrylic fiber and the sulfur-containing gas, making it impossible to obtain high-performance flame-resistant fibers.

また、硫黄含有雰囲気中に含まれる酸素含有量は、1−
モル%以下好ましくは0.5モル%以下、更に好ましく
は0.1モル%以下である。
In addition, the oxygen content contained in the sulfur-containing atmosphere is 1-
It is preferably 0.5 mol% or less, more preferably 0.1 mol% or less.

酸素含有量が1モル%より多くなるとアクリル系繊維と
硫黄含有ガスとの硫化反応よりも、酸素どの反応が先行
し、分子鎖の切断や、繊維断面に不均一な酸化構造を与
えたり、硫黄結合を含んだ環化構造及び架橋構造が形成
されるのを阻害したすして、高性能な耐炎化繊維を得る
ことができなくなる。
When the oxygen content exceeds 1 mol%, the sulfurization reaction between the acrylic fiber and the sulfur-containing gas is preceded by an oxygen reaction, which may cause molecular chain scission, give a non-uniform oxidation structure to the fiber cross section, or cause sulfur Unless the formation of a cyclized structure and a crosslinked structure containing bonds is inhibited, it becomes impossible to obtain a high-performance flame-resistant fiber.

つぎに、本発明に用いられるアクリル系繊維は特に限定
されるものではないが、引張強度が高く、靭性(タフネ
ス)に優れた耐炎化繊維を得るために、アクリル系繊維
としても高強度高弾性率であることか望ましい。例えば
重合度が極限粘度で少なくとも1. 5、好ましくは2
. 0〜560の高重合度アクリロニトリル(以下AN
と略す)系ポリマを使用し、引張強度が少なくとも7g
/d。
Next, the acrylic fibers used in the present invention are not particularly limited, but in order to obtain flame-resistant fibers with high tensile strength and excellent toughness, acrylic fibers are also used with high strength and high elasticity. It is desirable that the rate is high. For example, the degree of polymerization is at least 1. 5, preferably 2
.. Acrylonitrile with a high polymerization degree of 0 to 560 (hereinafter referred to as AN
) type polymer with a tensile strength of at least 7g
/d.

好ましくは9g/d以上、更に好ましくは10g/d以
上のアクリル系繊維を形成させることが望ましい。
It is desirable to form acrylic fibers preferably at least 9 g/d, more preferably at least 10 g/d.

ここでアクリル系繊維の製造に用いられるΔN系ポリマ
としては、AN単独または少なくとも90モル%のAN
と10モル%以下の該ANに対して共重合性を有するモ
ノマ、例えばアクリル酸、メタクリル酸、イタコン酸な
どのカルボン酸及びそれらの低級アルキルエステル類、
ヒドロキシメチルアクリレート、ヒドロキシエチルアク
リレート、ヒドロキシメチルメタアクリレ−1・などの
カルボン酸の水酸基を含有するヒドロキシアルキルアク
リレート、アクリルアミド、メタクリルアミド、α−ク
ロルアクリロニトリル、ヒドロキシエチルアクリル酸、
アリルスルホン酸、メタクリルスルホン酸などの共重合
モノマを例示することができるが、これらの共重合モノ
マのうち硫化反応が速く、酸素による酸化劣化が少なく
、強度の高0 い耐炎化繊維が得られるアクリルアミド類が特に望まし
い。
Here, the ΔN polymer used in the production of acrylic fibers includes AN alone or at least 90 mol% of AN.
and 10 mol% or less of a monomer copolymerizable with the AN, such as carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, and lower alkyl esters thereof;
Hydroxyalkyl acrylate containing a carboxylic acid hydroxyl group such as hydroxymethyl acrylate, hydroxyethyl acrylate, hydroxymethyl methacrylate-1, acrylamide, methacrylamide, α-chloroacrylonitrile, hydroxyethyl acrylic acid,
Copolymerized monomers such as allylsulfonic acid and methacrylsulfonic acid can be exemplified, but among these copolymerized monomers, sulfurization reaction is fast, oxidative deterioration due to oxygen is small, and flame-resistant fibers with high strength can be obtained. Acrylamides are particularly preferred.

これらのAN系ポリマはジメチルスルホキシド(DMS
O) 、ジメチルホルムアミド(DMF)、ジメチルア
セトアミド(DMAc)などの有機溶剤、塩化カルシウ
ム、塩化亜鉛、ロダンソーダなどの無機塩濃厚水溶液、
硝酸などの無機系溶剤に溶解して、溶液粘度が2000
ポイズ以上、好ましくは3000〜1ooooボイズ、
ポリマ濃度が5〜20%の紡糸原液を作成する。
These AN-based polymers are dimethyl sulfoxide (DMS
O), organic solvents such as dimethylformamide (DMF) and dimethylacetamide (DMAc), concentrated aqueous solutions of inorganic salts such as calcium chloride, zinc chloride, and rhodan soda;
When dissolved in an inorganic solvent such as nitric acid, the solution viscosity is 2000.
Poise or more, preferably 3000 to 1000 boise,
A spinning dope having a polymer concentration of 5 to 20% is prepared.

かくして得られた前記高重合度AN系ポリマの溶剤溶液
(紡糸原液)から、できる限り高強度高弾性率で、内外
構造差の少ない緻密な繊維を製造するためには、この高
重合度AN系ポリマの紡糸原液を紡糸口金を通して一旦
空気などの不活性雰囲気中に吐出した後、吐出された該
紡糸原液を凝固洛中に導いて凝固を完結させる、いわゆ
る乾湿式紡糸法を採用し、高度に延伸することが望まし
い。
In order to produce dense fibers with as high strength and high modulus as possible and with little difference in internal and external structures from the solvent solution (spinning stock solution) of the high polymerization degree AN polymer thus obtained, it is necessary to use this high polymerization degree AN polymer. A so-called dry-wet spinning method is adopted, in which the polymer spinning solution is once discharged into an inert atmosphere such as air through a spinneret, and then the discharged spinning solution is introduced into a coagulation chamber to complete coagulation. It is desirable to do so.

この乾湿式紡糸の具体的条件としては、紡糸原1 液を紡糸口金面と凝固浴液面との距離が1〜20m m
 、好ましくは3〜lQmmの範囲内に設定された該紡
糸口金面と凝固浴液面とで形成される微小空間に吐出し
た後、凝固浴へ導いて凝固させ、次いで得られた繊維糸
条を常法により、水洗、脱溶媒、1次延伸、乾燥・緻密
化、2次延伸、熱処理などの後処理工程を経由せしめて
延伸繊維糸条とする。この乾湿式紡糸によって得られる
繊維糸条は、延伸性が極めて優れているが、好ましくは
2次延伸方法として、150〜270℃の乾熱下に少な
くとも1.1倍、好ましくは1.5倍以上延伸し、全有
効延伸倍率が少なくとも10倍、好ましくは12倍以上
になるように延伸し、その繊度を0.5〜7デニール(
d)、好ましくは1〜5dの範囲内とするのがよい。
The specific conditions for this wet-dry spinning are such that the distance between the spinneret surface and the coagulation bath liquid level is 1 to 20 mm.
After the spinneret is discharged into a microspace formed by the spinneret surface and the coagulation bath liquid level, which is preferably set within a range of 3 to 1Q mm, it is introduced into a coagulation bath and coagulated, and then the obtained fiber thread is By conventional methods, the fibers are subjected to post-processing steps such as water washing, solvent removal, primary stretching, drying/densification, secondary stretching, and heat treatment to form drawn fiber threads. The fiber yarn obtained by this dry-wet spinning has extremely excellent drawability, but preferably the secondary drawing method is at least 1.1 times, preferably 1.5 times, under dry heat at 150 to 270°C. or more, the total effective stretching ratio is at least 10 times, preferably 12 times or more, and the fineness is 0.5 to 7 deniers (
d), preferably within the range of 1 to 5d.

この繊度が0.5dよりも小さいと、得られる耐炎化繊
維の紡績性が低下し、耐摩耗性の良好な繊維製品を得る
ことが難しくなるし、7dよりも大きいと、硫化処理時
に繊維断面における硫化が不均一になるため好ましくな
い。
If the fineness is smaller than 0.5d, the spinnability of the resulting flame-resistant fiber will be reduced, making it difficult to obtain textile products with good abrasion resistance.If the fineness is larger than 7d, the fiber cross section will This is not preferable because the sulfurization becomes uneven.

2 かくして得られる繊維は、通常引張強度が7g/d以上
、引張弾性率が130g/d以上の機械的物性を有する
が、より好ましくは特に極限粘度2.5以上の高重合度
AN系ポリマからなる引張強度が10g/d以上、引張
弾性率が180g/d以上、結節強度2.2g/d以上
の機械的物性を有する繊維を使用するのがよい。
2 The fiber thus obtained usually has mechanical properties such as a tensile strength of 7 g/d or more and a tensile modulus of 130 g/d or more, but is more preferably made of a highly polymerized AN-based polymer with an intrinsic viscosity of 2.5 or more. It is preferable to use fibers having mechanical properties such as a tensile strength of 10 g/d or more, a tensile modulus of 180 g/d or more, and a knot strength of 2.2 g/d or more.

次に、本発明のアクリル系繊維からなる繊維束を連続的
に加熱、硫化する方法を第1図を用いて説明する。
Next, a method of continuously heating and sulfurizing a fiber bundle made of acrylic fibers according to the present invention will be explained with reference to FIG.

第1図において、アクリル系繊維からなる繊維束1は矢
印A方向に進行する。繊維束1は入口部2において水蒸
気3中に接触される。ここで、繊維束1に随伴していた
空気は水蒸気3によって置換される。ついで繊維束1は
加熱炉4に導入され、加熱された硫黄含有ガス5によっ
て硫化された後、出口部6で再び水蒸気3に接触され巻
取られる。
In FIG. 1, a fiber bundle 1 made of acrylic fibers advances in the direction of arrow A. The fiber bundle 1 is brought into contact with water vapor 3 at the inlet 2 . Here, the air accompanying the fiber bundle 1 is replaced by water vapor 3. The fiber bundle 1 is then introduced into a heating furnace 4 and sulfided by heated sulfur-containing gas 5, and then brought into contact with steam 3 again at an outlet section 6 and wound up.

この時、繊維束1に随伴していた硫黄含有ガスは出口部
6内の水蒸気3によって置換される。
At this time, the sulfur-containing gas accompanying the fiber bundle 1 is replaced by the water vapor 3 in the outlet section 6.

なお繊維束1の水蒸気中の接触は、入口部と出3 0部の両方を例示したが、加熱炉の入口部のみでもよく
、この場合、出口部は不活性ガスなどでシールしてもよ
い。
Although the fiber bundle 1 is brought into contact with water vapor at both the inlet and the outlet 30, contact may be made only at the inlet of the heating furnace, and in this case, the outlet may be sealed with an inert gas or the like. .

要は、繊維束に随伴する空気、即ち酸素を加熱炉の入口
部で水または水蒸気と置換されることによって、硫黄含
有雰囲気中で連続的に加熱、硫化され、酸素による酸化
劣化が少なく硫黄含有ガスによる反応がスムーズに繊維
断面に均一に進行すればよいのである。
The key point is that the air accompanying the fiber bundle, that is, oxygen, is replaced with water or steam at the inlet of the heating furnace, so that the fiber bundle is continuously heated and sulfurized in a sulfur-containing atmosphere, resulting in less oxidative deterioration due to oxygen and sulfur-containing fibers. All that is required is for the gas reaction to proceed smoothly and uniformly across the fiber cross section.

また、上記硫黄含有雰囲気中の硫黄含有ガスの温度は2
30〜400℃であって、その硫化工程の加熱は一定温
度条件下でもよいし、昇温下でもよく、またアクリル系
繊維束は緊張、定長、弛緩のいずれの条件でもよい。−
例として、第一段加熱を230〜280℃の温度範囲に
保たれた加熱炉中で行い、第2段加熱を280〜400
℃の温度範囲内で、かつ段階的に昇温条件が設定された
加熱炉中で硫化を完結させる方法を挙げることができる
Furthermore, the temperature of the sulfur-containing gas in the sulfur-containing atmosphere is 2
The heating temperature in the sulfurization process may be from 30 to 400°C, and may be at a constant temperature or at an elevated temperature, and the acrylic fiber bundle may be under tension, constant length, or relaxed. −
As an example, the first stage heating is performed in a heating furnace maintained at a temperature range of 230 to 280 °C, and the second stage heating is performed at a temperature range of 280 to 400 °C.
A method of completing the sulfurization in a heating furnace within a temperature range of 0.degree. C. and in which temperature raising conditions are set in stages can be mentioned.

かくして得られる本発明の耐炎化繊維は、硫黄4 含有量が少なくとも0. 5重量%、好ましくは1〜2
0重量%であり、引張強度が3.5g/d以上、好まし
くは4.0g/d以上、更に好ましくは5.0g/d以
」二である。
The thus obtained flame-resistant fiber of the present invention has a sulfur content of at least 0. 5% by weight, preferably 1-2
0% by weight, and the tensile strength is 3.5 g/d or more, preferably 4.0 g/d or more, more preferably 5.0 g/d or more.

本発明によって得られる硫黄含有アクリル系耐炎化繊維
は、オートクレーブ養生セメント補強材、摩擦材、グラ
ンドバッキング、ガスケット等のシール材、消防服、溶
接火花防護シートなど石綿代替繊維として広く使用する
ことができ、この工業的意義は極めて大きい。
The sulfur-containing acrylic flame-resistant fiber obtained by the present invention can be widely used as an asbestos substitute fiber, such as autoclave curing cement reinforcing materials, friction materials, ground backing, sealing materials such as gaskets, firefighting suits, and welding spark protection sheets. , this industrial significance is extremely large.

以下、実施例により本発明の効果をさらに具体的に説明
する。
Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.

[実施例] なお、本発明において、引張強度および極限粘度は次の
測定法により測定した値である。
[Example] In the present invention, tensile strength and intrinsic viscosity are values measured by the following measuring method.

(1)引張強度: J I 5−L−1069に規定さ
れている測定法に準じて測定した。
(1) Tensile strength: Measured according to the measuring method specified in J I 5-L-1069.

(2)極限粘度:75mgの乾燥AN重合体をフラスコ
にいれ、0.1Nのチオシアン酸ソーダを含有するDM
F25mgを加えて、完全に溶解す5 る。得られたポリマ溶液をオストワルド粘度計を用いて
20℃で比粘度を測定し、次式にしたがって極限粘度を
算出する。
(2) Intrinsic viscosity: 75 mg of dry AN polymer was placed in a flask, and DM containing 0.1N sodium thiocyanate was added.
Add 25 mg of F and dissolve completely. The specific viscosity of the obtained polymer solution was measured at 20° C. using an Ostwald viscometer, and the intrinsic viscosity was calculated according to the following formula.

極限粘度 [1+1.32X   >、1 ) −1]10.19
8実施例1 アクリルアミド2モル%、A、 N 98モル%をDM
SO中で溶液重合し、極限粘度約3.0のAN系重合体
を作成した。得られたAN系重合体溶液を紡糸原液とし
、乾湿式紡糸を行った。凝固浴としては、15℃、55
%DMSO水溶液を使用した。また、紡糸口金と凝固浴
液面との距離は5mmに設定し、凝固浴液面から集束ガ
イドまでの距離は400mmとした。
Intrinsic viscosity [1+1.32X >, 1 ) -1] 10.19
8 Example 1 2 mol% acrylamide, 98 mol% A, N in DM
Solution polymerization was carried out in SO to produce an AN polymer having an intrinsic viscosity of about 3.0. The obtained AN-based polymer solution was used as a spinning stock solution, and wet-dry spinning was performed. As a coagulation bath, 15°C, 55°C
% DMSO aqueous solution was used. Further, the distance between the spinneret and the coagulation bath liquid level was set to 5 mm, and the distance from the coagulation bath liquid level to the focusing guide was 400 mm.

得られた未延伸繊維糸条は、熱水浴中で5倍に延伸した
のち、油剤を付与し、11−0℃で乾燥緻密化した。
The obtained undrawn fiber yarn was drawn 5 times in a hot water bath, then an oil agent was applied thereto, and it was dried and densified at 11-0°C.

ついで、180℃の乾熱チューブ中最高延伸倍率の85
%で二次延伸し、単繊維の繊度約2デニール、引張強度
的14g/dおよびフィラメント」−6 数6000のアクリル系繊維束を得た。
Then, in a dry heat tube at 180°C, the highest stretching ratio was 85.
% to obtain an acrylic fiber bundle with a single fiber fineness of about 2 deniers, a tensile strength of 14 g/d, and a filament size of several 6,000.

この繊維束を水蒸気で充満したパイプ中へ供給して繊維
束中の空気を水蒸気に置換した後、二酸化硫黄20%と
水蒸気80%からなる硫黄含有混合ガス中で280℃、
30分間加熱、硫化した。゛この時、硫黄含有雰囲気中
の酸素含有量は0.06%であった。
This fiber bundle was fed into a pipe filled with water vapor to replace the air in the fiber bundle with water vapor, and then heated at 280°C in a sulfur-containing mixed gas consisting of 20% sulfur dioxide and 80% water vapor.
It was heated and sulfurized for 30 minutes.゛At this time, the oxygen content in the sulfur-containing atmosphere was 0.06%.

得られた耐炎化繊維の硫黄含有量は2.5重量%、引張
強度は10g/dであった。この結果本発明では、酸素
による劣化が少なく、二酸化硫黄との反応がスムーズに
進むため、引張強度の高い耐炎化繊維が得られた。
The obtained flame-resistant fiber had a sulfur content of 2.5% by weight and a tensile strength of 10 g/d. As a result, in the present invention, flame-resistant fibers with high tensile strength were obtained because there was little deterioration due to oxygen and the reaction with sulfur dioxide proceeded smoothly.

C発明の効果] 本発明は、アクリル系繊維からなる繊維束を水に浸漬ま
たは水蒸気中に接触して、該繊維束に随伴する空気、即
ち酸素を水または水蒸気と置換した後、硫黄含有雰囲気
中で連続的に加熱、硫化するので、酸素による酸化劣化
が少なく硫黄含有ガスによる反応がスムーズに繊維断面
に均一に進行する。
C Effect of the invention] The present invention provides a method for immersing a fiber bundle made of acrylic fibers in water or contacting it in water vapor to replace the air, that is, oxygen accompanying the fiber bundle, with water or water vapor, and then removing the fiber bundle from a sulfur-containing atmosphere. Since the fiber is continuously heated and sulfurized inside, there is little oxidative deterioration caused by oxygen, and the reaction caused by the sulfur-containing gas proceeds smoothly and uniformly across the cross section of the fiber.

そのため得られる耐炎化繊維は、引張強度が高い上に、
高温での耐アルカリ性、耐熱性および耐炎性などに優れ
ている。
Therefore, the flame-resistant fibers obtained not only have high tensile strength but also
Excellent alkali resistance, heat resistance, and flame resistance at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1因は本発明に係るアクリル系繊紺:からなる繊維束
を連続的に加熱、硫化する一実施態様例を示す説明図で
ある 1ニアクリル系繊維からなる繊維束 2:入口部 3:水蒸気 4:加熱炉 5:硫黄含有ガス 6:出口部
The first factor is an explanatory diagram showing an example of an embodiment in which a fiber bundle made of acrylic fibers according to the present invention is continuously heated and sulfurized. 4: Heating furnace 5: Sulfur-containing gas 6: Outlet part

Claims (4)

【特許請求の範囲】[Claims] (1)アクリル系繊維からなる繊維束を硫黄含有雰囲気
中で連続的に加熱、硫化して耐炎化繊維を得るに際し、
加熱炉の少なくとも入口部において該繊維束を水に浸漬
または水蒸気中に接触させることを特徴とする硫黄含有
アクリル系耐炎化繊維の製造方法。
(1) When obtaining flame-resistant fibers by continuously heating and sulfurizing fiber bundles made of acrylic fibers in a sulfur-containing atmosphere,
A method for producing sulfur-containing acrylic flame-resistant fibers, which comprises immersing the fiber bundle in water or bringing it into contact with steam at least at the entrance of a heating furnace.
(2)硫黄含有雰囲気が、二酸化硫黄、硫黄ガス、二硫
化炭素、硫化水素、硫化カルボニルから選ばれた少なく
とも1種の硫黄含有ガスである請求項(1)に記載の硫
黄含有アクリル系耐炎化繊維の製造方法。
(2) The sulfur-containing acrylic flame-retardant according to claim 1, wherein the sulfur-containing atmosphere is at least one sulfur-containing gas selected from sulfur dioxide, sulfur gas, carbon disulfide, hydrogen sulfide, and carbonyl sulfide. Fiber manufacturing method.
(3)硫黄含有雰囲気が、硫黄含有ガスと不活性ガスと
の混合ガスである請求項(1)または(2)に記載の硫
黄含有アクリル系耐炎化繊維の製造方法。
(3) The method for producing a sulfur-containing acrylic flame-resistant fiber according to claim 1 or 2, wherein the sulfur-containing atmosphere is a mixed gas of a sulfur-containing gas and an inert gas.
(4)不活性ガスが、窒素、アルゴン、ヘリウム、二酸
化炭素、水蒸気から選ばれた少なくとも1種である請求
項(3)に記載の硫黄含有アクリル系耐炎化繊維の製造
方法。
(4) The method for producing a sulfur-containing acrylic flame-resistant fiber according to claim (3), wherein the inert gas is at least one selected from nitrogen, argon, helium, carbon dioxide, and water vapor.
JP20097689A 1989-08-02 1989-08-02 Production of sulfur-containing acrylic flameproof yarn Pending JPH0364526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20097689A JPH0364526A (en) 1989-08-02 1989-08-02 Production of sulfur-containing acrylic flameproof yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20097689A JPH0364526A (en) 1989-08-02 1989-08-02 Production of sulfur-containing acrylic flameproof yarn

Publications (1)

Publication Number Publication Date
JPH0364526A true JPH0364526A (en) 1991-03-19

Family

ID=16433446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20097689A Pending JPH0364526A (en) 1989-08-02 1989-08-02 Production of sulfur-containing acrylic flameproof yarn

Country Status (1)

Country Link
JP (1) JPH0364526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070742A (en) * 2005-09-05 2007-03-22 Toray Ind Inc Method and machine for producing carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070742A (en) * 2005-09-05 2007-03-22 Toray Ind Inc Method and machine for producing carbon fiber
JP4677862B2 (en) * 2005-09-05 2011-04-27 東レ株式会社 Carbon fiber manufacturing method and apparatus

Similar Documents

Publication Publication Date Title
CA1095206A (en) Process for producing carbon fibers
JPH0364526A (en) Production of sulfur-containing acrylic flameproof yarn
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JPS6197477A (en) Raw yarn for producing carbon fiber
JPH0711086B2 (en) High-strength, high-modulus acrylic fiber manufacturing method
US4869856A (en) Method for producing carbon fibers from acrylonitrile fiber strands
JP3514780B2 (en) Method for producing carbon fiber
JPH01266224A (en) Production of sulfur-containing preoxidized acrylic fiber
JPH0233324A (en) Production of sulfur-containing acrylic flame-resistant fiber
JPH0226923A (en) Production of fire-resistant yarn of sulfur-containing acrylic base
JPH01306620A (en) Production of sulfur-containing acrylic inflammable fiber
JPH0618566Y2 (en) ▲ Ro ▼
EP0153809B1 (en) A process for preparing acrylonitrile-based filaments for carbon fibres free of agglutination
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JPS5920004B2 (en) Carbon fiber manufacturing method
JPS6350528A (en) Sulfur-containing acrylic flame-retardant fiber having excellent toughness
JPS6233824A (en) Acrylic flameproofed fiber having improved abrasion resistance
JP2015071722A (en) Acrylonitrile-based copolymer, carbon fiber precursor acrylonitrile-based fiber, carbon fiber, and manufacturing method of carbon fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
JP3033960B2 (en) Novel carbon fiber production method using pre-drawing
JP2007332498A (en) Method for producing carbon fiber bundle
US5502090A (en) High tenacity and high toughness acrylic sulfide fibers, a process for production thereof, and composite materials prepared by using it
KR870000534B1 (en) Carbon fiber and it's making method
JPH0454240Y2 (en)