JPH0233324A - Production of sulfur-containing acrylic flame-resistant fiber - Google Patents

Production of sulfur-containing acrylic flame-resistant fiber

Info

Publication number
JPH0233324A
JPH0233324A JP1086789A JP1086789A JPH0233324A JP H0233324 A JPH0233324 A JP H0233324A JP 1086789 A JP1086789 A JP 1086789A JP 1086789 A JP1086789 A JP 1086789A JP H0233324 A JPH0233324 A JP H0233324A
Authority
JP
Japan
Prior art keywords
sulfur
flame
gas
fiber
acrylic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1086789A
Other languages
Japanese (ja)
Inventor
Toshihiro Chikugi
筑木 稔博
Takashi Takada
高田 貴
Takeo Matsunase
武雄 松名瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPH0233324A publication Critical patent/JPH0233324A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber with high tensile strength excellent in alkali, heat and flame resistances and useful as an asbestos substitute fiber by heating and sulfurating an acrylic fiber in a mixture gas composed of gaseous sulfur and an inert gas. CONSTITUTION:(A) An acrylic fiber is heated and sulfurated in (B) a sulfur- containing mixture gas composed of (i) >=3mol% sulfur-containing gas and (ii) <=97mol% inert gas to produce the objective fiber. In addition the component (i) is preferably sulfur dioxide in an amount of 5-50wt.% and component (ii) is preferably steam and/or nitrogen in an amount of 95-50wt.%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、引張強度が高く耐アルカリ性、耐熱性及び耐
炎性に優れた硫黄含有アクリル系耐炎化繊維の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a sulfur-containing acrylic flame-resistant fiber that has high tensile strength and excellent alkali resistance, heat resistance, and flame resistance.

[従来の技術] 従来、消防服、炉前服、溶接火花防護シートなどの保護
具、ガスケット、グランドバッキングなどのシール材料
、断熱材、バッグフィルターによって代表される濾材、
ブレーキ、クラッチなどの摩擦材および電気絶縁材料な
どの耐熱性と耐炎性を要求される製品には、石綿が広く
使用されてきた。
[Prior Art] Conventionally, protective equipment such as firefighting suits, furnace vests, and welding spark protection sheets, sealing materials such as gaskets and ground backings, insulation materials, and filter media represented by bag filters,
Asbestos has been widely used in products that require heat resistance and flame resistance, such as friction materials such as brakes and clutches, and electrical insulation materials.

更に、石綿は高温での耐アルカリ性にも優れ、アスベス
トセメント板および硅酸カルシウム板などのように、1
80℃の水蒸気中でオートクレーブ養生される石灰質や
硅酸質からなる高性能な水硬性無機製品にも大量に使用
されている。
Furthermore, asbestos has excellent alkali resistance at high temperatures, and asbestos cement boards and calcium silicate boards, etc.
It is also used in large quantities in high-performance hydraulic inorganic products made of calcareous or silica materials that are autoclaved in steam at 80°C.

しかしながら、石綿のほとんどを輸入に依存しているわ
が国では、石綿の輸入価格によって製品の製造コストが
大きく変動するという問題のほかに、近年に至って該石
綿はその粉塵が作業者の健康を著しく阻害することが判
明し、米国、欧州の一部の国などにおいては法的に使用
が規制されるに至り、この石綿に代わる繊維素材の開発
が我が国を含めて世界的規模で研究検討されている。
However, in Japan, which relies on imports for most of its asbestos, in addition to the problem that product manufacturing costs fluctuate greatly depending on the import price of asbestos, in recent years, asbestos dust has become a serious health hazard for workers. As a result, its use has been legally regulated in the United States and some European countries, and the development of textile materials to replace asbestos is being researched and considered on a global scale, including in Japan. .

これまでにこの石綿に代替する繊維素材として、例えば
ガラス、ロックウール、炭素繊維、フェノール繊維、ス
チール繊維、アラミド繊維及び耐炎化繊維など各種の繊
維が提案され、これらの代替繊維の中で、比重が小さく
、柔軟で、難燃性に優れ、かつ炭素繊維に比較して製造
コストが安いアクリル系繊維をプレカーサとして得られ
るアクリル系耐炎化繊維が最も注目されている。
Various fibers have been proposed to replace asbestos, such as glass, rock wool, carbon fiber, phenol fiber, steel fiber, aramid fiber, and flame-resistant fiber. Acrylic flame-resistant fibers, which are obtained by using acrylic fibers as precursors, are attracting the most attention because they have small fibers, are flexible, have excellent flame retardancy, and are cheaper to manufacture than carbon fibers.

しかし、アクリル系繊維を高温の空気中で加熱、酸化す
ることによって製造される上記の耐炎化繊維は、繊維の
内部に比較して繊維の表皮部の酸化の程度が極めて大き
い不均一な酸化構造を有しているために、機械的強度、
特に引張強度および結節強度が小さく、かつ靭性(タフ
ネス)が低く、紡績または編織が困難であり、仮に紡編
織しえたとしても、得られた製品の耐摩耗性および耐熱
性が悪く、たとえば150℃以上の高温下で長時間使用
すると、その強度が低下し、実用性能を失うなどといっ
た問題があった。
However, the above-mentioned flame-resistant fibers, which are manufactured by heating and oxidizing acrylic fibers in high-temperature air, have a non-uniform oxidation structure in which the surface area of the fibers is oxidized to a much greater degree than the inside of the fibers. In order to have mechanical strength,
In particular, the tensile strength and knot strength are low, and the toughness is low, making spinning or knitting difficult. Even if spinning or weaving is possible, the resulting product has poor abrasion resistance and heat resistance, such as When used for a long time at higher temperatures, the strength decreases and practical performance is lost.

更に、上記アクリル系繊維を空気中で加熱酸化した耐炎
化繊維は、高温での耐アルカリ性に著しく劣るため、1
80℃の水蒸気中で、オートクレーブ養生される水硬性
無機製品の補強材には全く使用できない。
Furthermore, the flame-resistant fiber obtained by heating and oxidizing the above-mentioned acrylic fiber in the air has significantly poor alkali resistance at high temperatures.
It cannot be used at all as a reinforcing material for hydraulic inorganic products that are autoclaved in steam at 80°C.

ところで本発明者らは、先に高強度のアクリル系繊維を
二酸化硫黄のような硫黄含有雰囲気中で加熱、硫化する
ことによって得られる引張強度が高く靭性(タフネス)
に優れ、かつ高温での耐アルカリ性、耐熱性、および耐
薬品性にも優れた硫黄含有アクリル系耐炎化繊維を提案
した。
By the way, the present inventors first heated and sulfurized high-strength acrylic fibers in a sulfur-containing atmosphere such as sulfur dioxide, thereby achieving high tensile strength and toughness.
We proposed a sulfur-containing acrylic flame-resistant fiber that has excellent alkali resistance, heat resistance, and chemical resistance at high temperatures.

また特公昭47−36462号公報には高強力炭素繊維
を得る特殊な方法として、耐炎化工程でポリアクリロニ
トリル繊維を二酸化硫黄、硫黄分子、硫化カルボニルお
よび上記硫黄含有気体に窒素、アルゴン、ヘリウム、−
酸化炭素、水素などの不活性気体との混合気体中で熱処
理を行う方法が開示されている。
In addition, Japanese Patent Publication No. 47-36462 describes a special method for obtaining high-strength carbon fibers in which polyacrylonitrile fibers are mixed with sulfur dioxide, sulfur molecules, carbonyl sulfide, and the above-mentioned sulfur-containing gases in a flame-retardant process by nitrogen, argon, helium, -
A method is disclosed in which heat treatment is performed in a gas mixture with an inert gas such as carbon oxide and hydrogen.

[発明が解決しようとする課題] しかしながら、前記公知例に記載されている硫黄含有ガ
スはおおむね毒性を有し、中には特定化学物質に指定さ
れている有毒ガスもあり、作業環境における該ガスの含
有量は法的に規制されている。
[Problems to be Solved by the Invention] However, most of the sulfur-containing gases described in the above-mentioned known examples are toxic, and some of them are designated as specified chemical substances. The content of is regulated by law.

従って、アクリル系繊維を上記のような有毒な硫黄含有
ガスからなる雰囲気中で加熱、硫化する場合、加熱炉に
おける該繊維の走行部及び周辺装置のバッキング部分か
らの漏洩が問題となる。
Therefore, when acrylic fibers are heated and sulfurized in an atmosphere containing a toxic sulfur-containing gas as described above, leakage from the running part of the fibers in the heating furnace and the backing part of peripheral equipment becomes a problem.

そのため硫黄含有雰囲気中に占める有毒な硫黄含有ガス
の含有量は、シール性の点からできるだけ少ない方が望
ましい。しかし、硫黄含有ガスの含有量があまり少なく
なると硫化反応よりも熱劣化が先行し高性能な硫黄含有
アクリル系耐炎化繊維は得られない。
Therefore, it is desirable that the content of toxic sulfur-containing gas in the sulfur-containing atmosphere be as small as possible from the viewpoint of sealing performance. However, if the content of the sulfur-containing gas is too low, thermal deterioration precedes the sulfurization reaction, making it impossible to obtain a high-performance sulfur-containing acrylic flame-resistant fiber.

本発明の目的は、アクリル系繊維を硫黄含有雰囲気中で
加熱、硫化して得られる硫黄含有アクリル系耐炎化繊維
の製造において、該硫黄含有雰囲気として特定含有量の
硫黄含有ガスと不活性ガスからなる硫黄含有混合ガスを
用いることによって、硫黄含有雰囲気中での熱劣化を抑
えかつ硫化反応を促進させ、結果として引張強度が高く
高温での耐アルカリ性、耐熱性および耐炎性に優れた硫
黄含有アクリル系耐炎化繊維(以下、単に耐炎化繊維と
略す)の製造方法を提供するにある。
An object of the present invention is to produce flame-resistant sulfur-containing acrylic fibers obtained by heating and sulfurizing acrylic fibers in a sulfur-containing atmosphere. By using a sulfur-containing mixed gas that suppresses thermal deterioration in a sulfur-containing atmosphere and promotes the sulfurization reaction, the result is a sulfur-containing acrylic that has high tensile strength and excellent alkali resistance, heat resistance, and flame resistance at high temperatures. The purpose of the present invention is to provide a method for producing flame-resistant fibers (hereinafter simply referred to as flame-resistant fibers).

[課題を解決するための手段] このような本発明の目的は、前記特許請求の範囲に記載
したように、アクリル系繊維を3モル%以上の硫黄含有
ガスと97モル%以下の不活性ガスからなる硫黄含有混
合ガス中で加熱、硫化することによって達成することが
できる。
[Means for Solving the Problems] As described in the claims, an object of the present invention is to provide acrylic fibers with a sulfur-containing gas of 3 mol% or more and an inert gas of 97 mol% or less. This can be achieved by heating and sulfiding in a sulfur-containing mixed gas consisting of:

本発明に用いる硫黄含有混合ガスは、硫黄含有ガスと不
活性ガスから構成される。硫黄含有ガスの含有量は、3
モル%以上、好ましくは3モル%以上80モル%以下、
更に好ましくは5モル%以上50モル%以下である。
The sulfur-containing mixed gas used in the present invention is composed of a sulfur-containing gas and an inert gas. The content of sulfur-containing gas is 3
mol% or more, preferably 3 mol% or more and 80 mol% or less,
More preferably, it is 5 mol% or more and 50 mol% or less.

ここで硫黄含有ガスの含有量が3モル%未満であると、
アクリル系繊維と硫黄含有ガスとの反応、即ち硫化反応
よりも熱劣化が先行し、優れた耐熱性を発現する硫黄を
含んだ環化構造および硫黄の架橋構造の生成が不十分な
ため、結果として硫黄含有量が少なく高性能な耐炎化繊
維を得ることはできない。
Here, if the content of sulfur-containing gas is less than 3 mol%,
Thermal deterioration precedes the reaction between acrylic fibers and sulfur-containing gas, that is, the sulfurization reaction, and the formation of sulfur-containing cyclized structures and sulfur cross-linked structures that exhibit excellent heat resistance is insufficient, resulting in However, it is not possible to obtain high-performance flame-resistant fibers with low sulfur content.

更に硫黄含有ガスの含有量が3モル%未満であると、上
述のように熱劣化が先行するため大量のアクリル系繊維
を用いた場合、繊維間に蓄熱した反応熱によって低い温
度で暴走反応が発生するので、温度を高めて硫化反応を
短時間で終えることができず製造コストを高めることに
なる。
Furthermore, if the content of sulfur-containing gas is less than 3 mol%, thermal deterioration will precede it as described above, so when a large amount of acrylic fiber is used, runaway reactions may occur at low temperatures due to the reaction heat accumulated between the fibers. Therefore, the sulfurization reaction cannot be completed in a short time by raising the temperature, which increases manufacturing costs.

一方、硫黄含有ガスの含有量が3モル%以上であれば、
含有量が多いほど暴走反応発生温度は高くなり、温度を
高めて硫化反応を短時間で終えることができるが、あま
り含有量が多いとその効果も小さくなると同時に加熱炉
におけるアクリル系繊維の走行部及び周辺装置のバッキ
ング部分からの硫黄含有ガスの漏洩が多(なるため硫黄
含有ガスの含有量としては得られる耐炎化繊維の性能を
損なわない範囲でできるだけ少ない方が望ましい。
On the other hand, if the content of sulfur-containing gas is 3 mol% or more,
The higher the content, the higher the temperature at which the runaway reaction occurs, and the sulfurization reaction can be completed in a short time by raising the temperature. Also, the leakage of sulfur-containing gas from the backing part of peripheral devices is high (because of this, it is desirable that the content of sulfur-containing gas be as small as possible without impairing the performance of the flame-resistant fiber obtained).

また硫黄含有ガスとは、二酸化硫黄、硫黄ガス、二硫化
炭素、硫化水素及び硫化カルボニル等の単独あるいはそ
れらの混合ガスであって、特に二酸化硫黄はアクリル系
繊維に対する反応性に優れ、かつ繊維断面に均一に硫化
することができるので好ましく用いられる。
In addition, sulfur-containing gas refers to sulfur dioxide, sulfur gas, carbon disulfide, hydrogen sulfide, carbonyl sulfide, etc. alone or in a mixture thereof. In particular, sulfur dioxide has excellent reactivity to acrylic fibers, and It is preferably used because it can be sulfurized uniformly.

さらに二酸化硫黄と硫化水素からなる混合ガスを用いる
と、アクリル系繊維への硫黄の導入反応が著しく速くな
り、反応時間を短時間で終え製造コストを下げたり、あ
るいは反応温度を下げて暴走反応の危険性を避けること
ができる。
Furthermore, when a mixed gas consisting of sulfur dioxide and hydrogen sulfide is used, the reaction of introducing sulfur into acrylic fibers becomes extremely fast, which shortens the reaction time and reduces manufacturing costs, or lowers the reaction temperature to prevent runaway reactions. danger can be avoided.

そして上記混合ガスを用いて製造される耐炎化繊維は、
硫黄含有量が多く、引張強度が高くかつ高温での耐アル
カリ性および耐熱性にも優れる。
The flame-resistant fiber produced using the above mixed gas is
It has a high sulfur content, high tensile strength, and excellent alkali resistance and heat resistance at high temperatures.

また不活性ガスとしてはアクリル系繊維と化学反応を起
こさないガスであって、例えば窒素、アルゴン、ヘリウ
ム、二酸化炭素、水蒸気などの単独あるいはそれらの混
合ガスを例示することができる。
Further, the inert gas is a gas that does not cause a chemical reaction with the acrylic fibers, and examples thereof include nitrogen, argon, helium, carbon dioxide, water vapor, and the like alone or in a mixture thereof.

特に不活性ガスとして水蒸気を用いると、硫化反応終了
後の廃ガスから硫黄含有ガスを回収する際、水蒸気は水
として分離後、水に溶解した硫黄含有ガスを分溜によっ
て容易に回収できる。そのうえ回収設備を小型化でき、
回収コストの低減にきわめて有利である。
In particular, when water vapor is used as the inert gas, when recovering sulfur-containing gas from the waste gas after the sulfidation reaction is completed, the water vapor is separated as water, and then the sulfur-containing gas dissolved in water can be easily recovered by fractional distillation. Moreover, the collection equipment can be downsized,
This is extremely advantageous in reducing recovery costs.

つぎに、本発明に用いるアクリル系繊維は特に限定され
るものではないが、引張強度が高く、靭性(タフネス)
に優れた耐炎化繊維を得るために、アクリル系繊維とし
ても高強度、高弾性率であることが望ましい。たとえば
重合度が極限粘度で少なくとも1.5以上、好ましくは
2.0〜5.0の高重合度ポリアクリロニトリル(以下
ANと略す)系ポリマを使用し、引張強度が少なくとも
7g/d、好ましくは9 g / d以上、更に好まし
くはLog/d以上のアクリル系繊維を形成させること
が望ましい。
Next, the acrylic fiber used in the present invention is not particularly limited, but has high tensile strength and toughness.
In order to obtain flame-resistant fibers with excellent properties, it is desirable that the acrylic fibers have high strength and high elastic modulus. For example, a high polymerization degree polyacrylonitrile (hereinafter abbreviated as AN) based polymer having an intrinsic viscosity of at least 1.5, preferably 2.0 to 5.0, and a tensile strength of at least 7 g/d, preferably It is desirable to form acrylic fibers of 9 g/d or more, more preferably Log/d or more.

ここでアクリル系繊維の製造に用いられるAN系ポリマ
としては、AN単独または少なくとも90モル%のAN
と10モル%以下の該ANに対して共重合性を有するモ
ノマ、たとえばアクリル酸、メタクリル酸、イタコン酸
などのカルボン酸及びそれらの低級アルキルエステル類
、ヒドロキシメチルアクリレート、ヒドロキシエチルア
クリレート、ヒドロキシメチルメタアクリレートなどの
カルボン酸に水酸基を含有するヒドロキシアルキルアク
リレート、アクリルアミド、メタクリルアミド、α−ク
ロルアクリロニトリル、ヒドロキシエチルアクリル酸、
アリルスルホン酸、メタクリルスルホン酸などの共重合
モノマを例示することができるが、これらの共重合モノ
マのうち硫化反応が速く、酸素による酸化劣化が少なく
、引張強度の高い耐炎化繊維が得られるアクリルアミド
類が特に望ましい。
Here, the AN-based polymer used in the production of acrylic fibers includes AN alone or at least 90 mol% of AN.
and 10 mol% or less of monomers copolymerizable with the AN, such as carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, and their lower alkyl esters, hydroxymethyl acrylate, hydroxyethyl acrylate, and hydroxymethyl methacrylate. Hydroxy alkyl acrylate containing a hydroxyl group in a carboxylic acid such as acrylate, acrylamide, methacrylamide, α-chloroacrylonitrile, hydroxyethyl acrylic acid,
Examples of copolymerizable monomers include allylsulfonic acid and methacrylsulfonic acid. Among these copolymerizable monomers, acrylamide has a fast sulfurization reaction, little oxidative deterioration due to oxygen, and produces flame-resistant fibers with high tensile strength. Particularly desirable.

これらのAN系ポリマはジメチルスルホキシド(DMS
O) 、ジメチルホルムアミド(DMF)、ジメチルア
セトアミド(DMAc)などの有機溶剤、塩化カルシウ
ム、塩化亜鉛、ロダンソーダなどの無機塩濃厚水溶液、
硝酸などの無機系溶剤に溶解して、溶液粘度が2000
ポイズ以上、好ましくは3000〜10000ポイズ、
ポリマ濃度が5〜20%の紡糸原液を作成する。
These AN-based polymers are dimethyl sulfoxide (DMS
O), organic solvents such as dimethylformamide (DMF) and dimethylacetamide (DMAc), concentrated aqueous solutions of inorganic salts such as calcium chloride, zinc chloride, and rhodan soda;
When dissolved in an inorganic solvent such as nitric acid, the solution viscosity is 2000.
Poise or more, preferably 3000 to 10000 poise,
A spinning dope having a polymer concentration of 5 to 20% is prepared.

かくして得られた前記高重合度AN系ポリマの溶剤溶液
(紡糸原液)から、できる限り高強度、高弾性率で、内
外構造差の少ない緻密な繊維を製造するためには、この
高重合度AN系ポリマの紡糸原液を紡糸口金を通して一
旦空気などの不活性雰囲気中に吐出した後、吐出された
該紡糸原液を凝固浴中に導いて凝固を完結させる、いわ
ゆる乾湿式紡糸法を採用し、高度に延伸することが望ま
しい。
In order to produce dense fibers with as high strength and high modulus as possible and with little difference in internal and external structures from the solvent solution (spinning stock solution) of the high polymerization degree AN polymer thus obtained, it is necessary to use this high polymerization degree AN. A so-called wet-dry spinning method is adopted, in which the spinning stock solution of the polymer is once discharged into an inert atmosphere such as air through a spinneret, and then the discharged spinning stock solution is introduced into a coagulation bath to complete coagulation. It is desirable to stretch it to

この乾湿式紡糸の具体的条件としては、紡糸原液を紡糸
口金面と凝固浴液面との間の距離を1〜20mm1好ま
しくは3〜10mmの範囲内に設定、該紡糸口金面と凝
固浴液面とで形成される微小空間に吐出した後、凝固浴
へ導き凝固させ、ついで得られた繊維糸条を常法により
、水洗、脱溶媒、1次延伸、乾燥・緻密化、2次延伸、
熱処理などの後処理工程を経由せしめて延伸繊維糸条と
する。この乾湿式紡糸によって得られる繊維糸条は、延
伸性が極めて優れているが、好ましくは2次延伸方法と
して、150〜270°Cの乾熱下に少なくとも1.1
倍、好ましくは1.5倍以上延伸し、全有効延伸倍率が
少なくとも10倍、好ましくは12倍以上になるように
延伸し、その繊度を0.5〜7デニール(d)、好まし
くは1〜5dの範囲内とするのがよい。
The specific conditions for this dry-wet spinning are as follows: The distance between the spinneret surface and the coagulation bath liquid level is set within the range of 1 to 20 mm, preferably 3 to 10 mm, and the distance between the spinneret surface and the coagulation bath liquid is After discharging into the microspace formed by the surface, the fiber thread is introduced into a coagulation bath and coagulated, and then the obtained fiber thread is washed with water, desolventized, first stretched, dried and densified, second stretched,
It is made into a drawn fiber thread by passing through a post-processing process such as heat treatment. The fiber yarn obtained by this dry-wet spinning has extremely excellent drawability. Preferably, as a secondary drawing method, at least 1.1
Stretched to a total effective stretching ratio of at least 10 times, preferably 12 times or more, with a fineness of 0.5 to 7 deniers (d), preferably 1 to 1.5 times, preferably 1.5 times or more. It is preferable to set it within the range of 5d.

この繊度が0.5dよりも小さいと、得られる耐炎化繊
維の紡績性が低下し、耐摩耗性の良好な繊維製品を得る
ことが難しくなるし、7dよりも大きいと、硫化処理時
の繊維断面における硫化が不均一になるため好ましくな
い。
If the fineness is smaller than 0.5d, the spinnability of the resulting flame-resistant fiber will be reduced, making it difficult to obtain textile products with good abrasion resistance.If the fineness is larger than 7d, the fiber during sulfurization will This is not preferable because sulfurization becomes uneven in the cross section.

かくして得られる繊維は、通常引張強度が7g/d以上
、引張弾性率が130g/d以上の機械的物性を有する
が、特に極限粘度2.5以上の高重合度AN系ポリマか
らなる引張強度が10g/d以上、引張弾性率が180
g/d以上、結節強度2.2g/d以上の機械的物性を
有する繊維を使用するのがよい。
The fibers obtained in this way usually have mechanical properties such as a tensile strength of 7 g/d or more and a tensile modulus of 130 g/d or more. 10g/d or more, tensile modulus is 180
It is preferable to use fibers having mechanical properties of 2.2 g/d or more and a knot strength of 2.2 g/d or more.

得られたアクリル系繊維は、前記硫黄含有混合ガス中で
230〜400°Cの温度領域で加熱、硫化されるが、
硫化工程の加熱は一定温度条件下でもよいし、昇温下で
もよく、またアクリル系繊維は緊張、定長、弛緩のいず
れの条件でもよい。−例として、第一段加熱を230〜
280℃の温度範囲に保たれた加熱炉中で行い、第2段
加熱を280〜400℃の温度範囲内で、かつ段階的に
昇温条件に設定された加熱炉中で硫化を完結させる方法
を挙げることができる。
The obtained acrylic fiber is heated and sulfurized in the temperature range of 230 to 400 ° C in the sulfur-containing mixed gas,
The heating in the sulfurization step may be performed under constant temperature conditions or under elevated temperature conditions, and the acrylic fibers may be under tension, constant length, or relaxed conditions. - As an example, the first stage heating is 230 ~
A method in which sulfurization is carried out in a heating furnace maintained at a temperature range of 280°C, and the second stage heating is performed within a temperature range of 280 to 400°C, and sulfurization is completed in a heating furnace set to temperature increasing conditions in stages. can be mentioned.

かくして得られた本発明の耐炎化繊維は、硫黄含有量が
少なくとも0.5重量%、好ましくは1〜50重量%で
あり、引張強度が3.5g/d以上、好ましくは4.0
g/d以上、更に好ましくは5.0g/d以上である。
The thus obtained flame-resistant fiber of the present invention has a sulfur content of at least 0.5% by weight, preferably 1 to 50% by weight, and a tensile strength of 3.5 g/d or more, preferably 4.0 g/d.
g/d or more, more preferably 5.0 g/d or more.

本発明によって得られる硫黄含有アクリル系耐炎化繊維
は、オートクレーブ養生セメント補強材、摩擦材、グラ
ンドバッキング、ガスケット等のシール材、消防服、溶
接火花防護シートなど石綿代替繊維として広く使用する
ことができ、この工業的意義は極めて大きい。
The sulfur-containing acrylic flame-resistant fiber obtained by the present invention can be widely used as an asbestos substitute fiber, such as autoclave curing cement reinforcing materials, friction materials, ground backing, sealing materials such as gaskets, firefighting suits, and welding spark protection sheets. , this industrial significance is extremely large.

以下、実施例により本発明の効果をさらに具体的に説明
する。
Hereinafter, the effects of the present invention will be explained in more detail with reference to Examples.

[実施例] なお、本発明において、引張強度、極限粘度、暴走反応
発生温度および耐アルカリ性は次の測定法により測定し
た値である。
[Example] In the present invention, tensile strength, intrinsic viscosity, runaway reaction occurrence temperature, and alkali resistance are values measured by the following measuring method.

(1)引張強度: J l5−L−1069に規定され
ている測定法に準じて測定した。
(1) Tensile strength: Measured according to the measuring method specified in J15-L-1069.

(2)極限粘度ニア5mgの乾燥AN重合体をフラスコ
にいれ、0.INのチオシアン酸ソーダを含有するDM
F25mgを加えて、完全に溶解する。得られたポリマ
溶液をオストワルド粘度計を用いて20℃で比粘度を測
定し、次式にしたがって極限粘度を算出した。
(2) Put 5 mg of dry AN polymer with an intrinsic viscosity of near 0.0 in a flask. DM containing IN sodium thiocyanate
Add 25 mg of F and dissolve completely. The specific viscosity of the obtained polymer solution was measured at 20° C. using an Ostwald viscometer, and the intrinsic viscosity was calculated according to the following formula.

極限粘度= [+、  x      −1]10.198(3)暴
走反応発生温度:1.2万デニールのアクリル系繊維を
長さ20mmに切断し、かさ密度2400デニール/ 
m m ”になるように針金をコイル状に巻いて糸束を
作成する。
Intrinsic viscosity = [+, x -1] 10.198 (3) Runaway reaction occurrence temperature: 12,000 denier acrylic fiber was cut into a length of 20 mm, and the bulk density was 2400 denier/
Create a bundle of yarn by winding the wire into a coil so that it has a length of ``mm''.

ついで糸束の近傍に熱電対を据え付けそれを所定の温度
に加熱された二酸化硫黄と窒素からなる硫黄含有混合ガ
スが流速10cm/分で流れている反応炉に導入し、糸
束内の反応熱の蓄熱によって暴走反応が発生する最低の
温度を測定した。
Next, a thermocouple was installed near the yarn bundle, and the thermocouple was introduced into a reactor in which a sulfur-containing mixed gas consisting of sulfur dioxide and nitrogen heated to a predetermined temperature was flowing at a flow rate of 10 cm/min. The lowest temperature at which a runaway reaction occurs due to heat accumulation was measured.

(4)耐アルカリ性:セメント10重量%の水溶液の上
澄み液に試料繊維を弛緩状態で浸漬し180℃の加圧下
で6時間処理した。
(4) Alkali resistance: Sample fibers were immersed in a relaxed state in the supernatant liquid of an aqueous solution containing 10% by weight of cement and treated under pressure at 180°C for 6 hours.

前記セメント上澄み液による処理前後の繊維の引張強力
を測定し、両者の値より引張強力保持率(%)を下式に
より算出しこれを持って耐アルカリ性とした。
The tensile strength of the fibers before and after treatment with the cement supernatant liquid was measured, and from both values, the tensile strength retention rate (%) was calculated using the following formula, and this was taken as the alkali resistance.

(引張強力保持率)= (処理後の強力)/(処理前の強力)X100実施例1
〜4.比較例1.2 アクリルアミド2モル%、AN98モル%をDMSO中
で溶液重合し、極限粘度3.0のAN系重合体を作成し
た。得られた重合体溶液を紡糸原液とし、乾湿式紡糸を
行った。凝固浴としては、15°C155%DMSO水
溶液を使用した。また、紡糸口金と凝固浴液面との距離
は5mmに設定し、凝固浴液面から集束ガイドまでの距
離は400mmとした。
(Tensile strength retention rate) = (Strength after treatment) / (Strength before treatment) x 100 Example 1
~4. Comparative Example 1.2 2 mol% of acrylamide and 98 mol% of AN were solution polymerized in DMSO to create an AN-based polymer with an intrinsic viscosity of 3.0. The obtained polymer solution was used as a spinning stock solution, and wet-dry spinning was performed. As a coagulation bath, a 15°C 155% DMSO aqueous solution was used. Further, the distance between the spinneret and the coagulation bath liquid level was set to 5 mm, and the distance from the coagulation bath liquid level to the focusing guide was 400 mm.

得られた未延伸繊維糸条は、熱水浴中で5倍に延伸した
のち、油剤を付与し、110°Cで乾燥緻密化した。
The obtained undrawn fiber yarn was drawn 5 times in a hot water bath, then applied with an oil agent and dried and densified at 110°C.

ついで、180℃の乾熱チューブ中最高延伸倍率の85
%で二次延伸し、単繊維の繊度約2デニール、引張強度
14g/dのアクリル系繊維を得た。
Then, in a dry heat tube at 180°C, the highest stretching ratio was 85.
% to obtain an acrylic fiber having a single fiber fineness of about 2 denier and a tensile strength of 14 g/d.

このようにして得られたアクリル系繊維を第1表に示し
た280°Cの二酸化硫黄(802)と窒素(N2)か
らなる硫黄含有混合ガス中で30分間加熱、硫化した。
The acrylic fibers thus obtained were heated and sulfurized for 30 minutes in a sulfur-containing mixed gas of sulfur dioxide (802) and nitrogen (N2) at 280°C as shown in Table 1.

得られた耐炎化繊維の硫黄含有量と引張強度を第1表に
示した。また各硫黄含有混合ガス中での暴走反応発生温
度を測定し第1表に示した。
Table 1 shows the sulfur content and tensile strength of the flame-resistant fibers obtained. In addition, the temperatures at which runaway reactions occurred in each sulfur-containing mixed gas were measured and are shown in Table 1.

本発明の耐炎化繊維の製造方法は、二酸化硫黄との硫化
反応がスムーズに進むため、S0□100%の場合と同
様の引張強度が得られ、また暴走反応発生温度が高いた
め温度を高めて硫化反応を短時間で終えることができる
In the method for producing flame-resistant fibers of the present invention, the sulfurization reaction with sulfur dioxide proceeds smoothly, so the same tensile strength as in the case of 100% S0□ can be obtained, and the temperature at which the runaway reaction occurs is high, so it is possible to increase the temperature. The sulfurization reaction can be completed in a short time.

実施例5〜7 また実施例1で得たアクリル系繊維を二酸化硫黄、硫化
水素(N2 S)及び窒素からなる硫黄含有混合ガス中
において260℃で加熱硫化した。
Examples 5 to 7 The acrylic fibers obtained in Example 1 were heated and sulfurized at 260°C in a sulfur-containing mixed gas consisting of sulfur dioxide, hydrogen sulfide (N2S), and nitrogen.

得られた耐炎化繊維の硫黄含有量と引張強度、耐アルカ
リ性を第2表に示した。
Table 2 shows the sulfur content, tensile strength, and alkali resistance of the flame-resistant fibers obtained.

硫黄含有ガスとして、二酸化硫黄と硫化水素からなる混
合ガスを用いると著しく短時間で硫化反応が進み、硫黄
含有量が高くかつ引っ張り強度が高く耐アルカリ性に優
れた耐炎化繊維が得られ、また同反応時間では耐熱性へ
の寄与が大きな硫黄の含有量が多い耐炎化繊維が得られ
た。
When a mixed gas consisting of sulfur dioxide and hydrogen sulfide is used as the sulfur-containing gas, the sulfurization reaction proceeds in a significantly short time, producing flame-resistant fibers with high sulfur content, high tensile strength, and excellent alkali resistance. In terms of reaction time, flame-resistant fibers with a high sulfur content, which greatly contributes to heat resistance, were obtained.

実施例8,9 実施例1で得たアクリル系繊維を二酸化硫黄、水蒸気お
よび窒素からなる硫黄含有混合ガス中で260℃、1時
間反応を行った。得られた耐炎化繊維の引張強度及び硫
黄含有量を第3表に示した。
Examples 8 and 9 The acrylic fibers obtained in Example 1 were reacted at 260° C. for 1 hour in a sulfur-containing mixed gas consisting of sulfur dioxide, water vapor, and nitrogen. Table 3 shows the tensile strength and sulfur content of the flame-resistant fibers obtained.

不活性ガスとして多量の水蒸気を用いても、窒素を用い
た場合と同じ性能の耐炎化繊維が得られた。さらに、反
応終了後洗ガスを100℃以下に冷却し、凝集した水に
溶解した二酸化硫黄は分溜することによって、容易に回
収できた。
Even when a large amount of water vapor was used as the inert gas, flame-resistant fibers with the same performance as nitrogen were obtained. Further, after the reaction was completed, the wash gas was cooled to 100° C. or lower, and the sulfur dioxide dissolved in the coagulated water could be easily recovered by fractional distillation.

一方、不活性ガスとして多量の窒素を用いた場合、廃ガ
スから二酸化硫黄を回収するには、−15℃以下に冷却
する必要があった。
On the other hand, when a large amount of nitrogen was used as the inert gas, it was necessary to cool the waste gas to -15°C or lower in order to recover sulfur dioxide from the waste gas.

[発明の効果] 本発明の硫黄含有アクリル系耐炎化繊維の製造方法は、
アクリル系繊維を3モル%以上の硫黄含有ガスと97モ
ル%以下の不活性ガスからなる硫黄含有混合ガス中で加
熱、硫化するので、有毒である硫黄含有ガスの含有量が
少ないため製造工程での漏洩が低減できる。
[Effect of the invention] The method for producing the sulfur-containing acrylic flame-resistant fiber of the present invention includes:
Acrylic fibers are heated and sulfurized in a sulfur-containing mixed gas consisting of 3 mol% or more of sulfur-containing gas and 97 mol% or less of inert gas, so the content of toxic sulfur-containing gas is low, making it easy to use in the manufacturing process. leakage can be reduced.

更にアクリル系繊維との硫化反応が速く、熱劣化が少な
いため、得られる耐炎化繊維は引張強度が高い上に、高
温での耐アルカリ性、耐熱性および耐炎性などに優れる
Furthermore, since the sulfurization reaction with acrylic fibers is fast and there is little thermal deterioration, the resulting flame-resistant fibers have high tensile strength and are excellent in alkali resistance, heat resistance, flame resistance, etc. at high temperatures.

Claims (1)

【特許請求の範囲】 (1)アクリル系繊維を3モル%以上の硫黄含有ガスと
97モル%以下の不活性ガスからなる硫黄含有混合ガス
中で加熱、硫化することを特徴とする硫黄含有アクリル
系耐炎化繊維の製造方法(2)硫黄含有混合ガスが、5
〜50モル%の硫黄含有ガスと95〜50モル%の不活
性ガスである請求項(1)に記載の硫黄含有アクリル系
耐炎化繊維の製造方法 (3)硫黄含有ガスが、二酸化硫黄である請求項(1)
または(2)に記載の硫黄含有アクリル系耐炎化繊維の
製造方法。 (4)硫黄含有ガスが、二酸化硫黄と硫化水素からなる
混合ガスである請求項(1)または(2)に記載の硫黄
含有アクリル系耐炎化繊維の製造方法。 (5)不活性ガスが、水蒸気および/または窒素である
請求項(1)または(2)に記載の硫黄含有アクリル系
耐炎化繊維の製造方法。
[Scope of Claims] (1) A sulfur-containing acrylic fiber characterized by heating and sulfurizing acrylic fibers in a sulfur-containing mixed gas consisting of a sulfur-containing gas of 3 mol% or more and an inert gas of 97 mol% or less. Method for producing flame-resistant fiber (2) The sulfur-containing mixed gas is
The method for producing a sulfur-containing acrylic flame-resistant fiber according to claim (1), wherein the sulfur-containing gas is ~50 mol% sulfur-containing gas and 95-50 mol% inert gas (3) the sulfur-containing gas is sulfur dioxide. Claim (1)
Or the method for producing a sulfur-containing acrylic flame-resistant fiber according to (2). (4) The method for producing a sulfur-containing acrylic flame-resistant fiber according to claim 1 or 2, wherein the sulfur-containing gas is a mixed gas consisting of sulfur dioxide and hydrogen sulfide. (5) The method for producing a sulfur-containing flame-resistant acrylic fiber according to claim (1) or (2), wherein the inert gas is water vapor and/or nitrogen.
JP1086789A 1988-04-13 1989-01-19 Production of sulfur-containing acrylic flame-resistant fiber Pending JPH0233324A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9063888 1988-04-13
JP63-90638 1988-04-13

Publications (1)

Publication Number Publication Date
JPH0233324A true JPH0233324A (en) 1990-02-02

Family

ID=14004041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1086789A Pending JPH0233324A (en) 1988-04-13 1989-01-19 Production of sulfur-containing acrylic flame-resistant fiber

Country Status (1)

Country Link
JP (1) JPH0233324A (en)

Similar Documents

Publication Publication Date Title
CA1095206A (en) Process for producing carbon fibers
JPH0233324A (en) Production of sulfur-containing acrylic flame-resistant fiber
JPS6197477A (en) Raw yarn for producing carbon fiber
JPS59228069A (en) Acrylonitrile fiber
JPH0364526A (en) Production of sulfur-containing acrylic flameproof yarn
JPH01266224A (en) Production of sulfur-containing preoxidized acrylic fiber
JPH0226923A (en) Production of fire-resistant yarn of sulfur-containing acrylic base
JPH01306620A (en) Production of sulfur-containing acrylic inflammable fiber
JPS60181322A (en) Manufacture of carbon fiber
KR101909892B1 (en) The method of producing the polyacrylonitrile precursor for carbon fiber and the method of producing carbon fiber
JPS6350528A (en) Sulfur-containing acrylic flame-retardant fiber having excellent toughness
US4237109A (en) Process for producing carbon fabric
JP2015071722A (en) Acrylonitrile-based copolymer, carbon fiber precursor acrylonitrile-based fiber, carbon fiber, and manufacturing method of carbon fiber
JPS6233824A (en) Acrylic flameproofed fiber having improved abrasion resistance
US5502090A (en) High tenacity and high toughness acrylic sulfide fibers, a process for production thereof, and composite materials prepared by using it
JP2007332498A (en) Method for producing carbon fiber bundle
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP3048449B2 (en) Acrylonitrile precursor fiber
JPH0615722B2 (en) Method for producing acrylic fiber for producing carbon fiber
KR870000534B1 (en) Carbon fiber and it&#39;s making method
JP4433299B2 (en) Copolymer polybenzazole fiber
JPH04333620A (en) Carbon fiber and its production
JPH0454240Y2 (en)
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
WO1987006276A1 (en) Sulfurized acrylic fibers with high strength and high toughness, process for their preparation, and composite material comprising them