JPH0226923A - Production of fire-resistant yarn of sulfur-containing acrylic base - Google Patents

Production of fire-resistant yarn of sulfur-containing acrylic base

Info

Publication number
JPH0226923A
JPH0226923A JP17536788A JP17536788A JPH0226923A JP H0226923 A JPH0226923 A JP H0226923A JP 17536788 A JP17536788 A JP 17536788A JP 17536788 A JP17536788 A JP 17536788A JP H0226923 A JPH0226923 A JP H0226923A
Authority
JP
Japan
Prior art keywords
sulfur
fiber
acrylic
fibers
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17536788A
Other languages
Japanese (ja)
Inventor
Takashi Takada
高田 貴
Takeo Matsunase
武雄 松名瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17536788A priority Critical patent/JPH0226923A/en
Publication of JPH0226923A publication Critical patent/JPH0226923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Fireproofing Substances (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce the title yarn having high tensile strength, excellent heat resistance, etc., in heating and sulfurizing a yarn bundle comprising acrylic fiber in a sulfur-containing atmosphere by bringing the yarn bundle into contact with a heating material having a hole or groove to promote sulfurization reaction. CONSTITUTION:A bundle 1 of acrylic fiber which more preferably consists an acrylonitrile-based polymer having >=2.5 intrinsic viscosity and high degree of polymerization and has mechanical properties of >=10g/d tensile strength, >=180g/d modulus in tension and >=2.2g/d knot strength is heated and sulfurized in a sulfur-containing atmosphere having >=5mol% sulfur-containing gas at 230-400 deg.C while bringing the yarn into contact with a heating material 3 having holes 2 to give the aimed yarn having 1-20wt.% sulfur content and >=40g/d tensile strength.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は、引張強度が高く、耐アルカリ性、耐熱性およ
び耐炎性に優れた硫黄含有アクリル系耐炎化繊維の製法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a sulfur-containing acrylic flame-resistant fiber that has high tensile strength and excellent alkali resistance, heat resistance, and flame resistance.

[従来の技術] 従来、消防服、炉前服、溶接火花防護シートなどの保護
具、ガスケット、グランドバッキングなどのシール材料
、断熱材、バッグフィルターによって代表される濾材、
ブレーキ、クラッチなどの摩擦材および電気絶縁材料な
どの耐熱性と耐炎性が要求される製品には、石綿が広く
使用されてきた。
[Prior Art] Conventionally, protective equipment such as firefighting suits, furnace vests, and welding spark protection sheets, sealing materials such as gaskets and ground backings, insulation materials, and filter media represented by bag filters,
Asbestos has been widely used in products that require heat resistance and flame resistance, such as friction materials such as brakes and clutches, and electrical insulation materials.

更に、石綿は高温での耐アルカリ性にも優れ、アスベス
トセメント板、珪酸カルシウム板及び軽量気泡コンクリ
ート板(ALC>などのように、180℃の水蒸気中で
オートクレーブ養生される石灰質や硅酸質からなる高性
能な水硬性無機製品にも大量に使用されている。
Furthermore, asbestos has excellent alkali resistance at high temperatures, and is made of calcareous or silicic materials that are autoclaved in steam at 180°C, such as asbestos cement boards, calcium silicate boards, and lightweight aerated concrete boards (ALC). It is also used in large quantities in high-performance hydraulic inorganic products.

しかしながら、石綿のほとんどを輸入に依存しているわ
が国では、石綿の輸入価格によって製品の製造コストが
大きく変動するという問題のほかに、近年に至って該石
綿はその粉塵が作業者の健康を著しく阻害することが判
明し、米国、欧州の一部の国などにおいては法的に使用
が規制されるに至り、この石綿に代わる繊維素材の開発
が我が国を含めて世界的規模で研究検討されている。
However, in Japan, which relies on imports for most of its asbestos, in addition to the problem that product manufacturing costs fluctuate greatly depending on the import price of asbestos, in recent years, asbestos dust has become a serious health hazard for workers. As a result, its use has been legally regulated in the United States and some European countries, and the development of textile materials to replace asbestos is being researched and considered on a global scale, including in Japan. .

これまでにこの石綿に代替する繊維素材として、例えば
ガラス、ロックウール、炭素繊維、フェノール繊維、ス
チール繊維、アラミド繊維及び耐炎化繊維など各種の繊
維が提案されている。これらの代替繊維の中で、比重が
小さく、柔軟で、難燃性に優れ、かつ炭素繊維に比較し
て安価な耐炎化繊維、即ち、アクリル系耐炎化繊維が最
も注目されている。
Various fibers have been proposed to replace asbestos, such as glass, rock wool, carbon fiber, phenol fiber, steel fiber, aramid fiber, and flame-resistant fiber. Among these alternative fibers, flame-resistant fibers that have a low specific gravity, flexibility, excellent flame retardancy, and are cheaper than carbon fibers, ie, acrylic flame-resistant fibers, are attracting the most attention.

しかし、アクリル系繊維を高温の空気中で加熱、酸化す
ることによって製造される耐炎化繊維は、繊維の内部に
比較して繊維の表皮部の酸化の程度が極めて大、きい不
均一な酸化構造を有しているために、機械的強度、特に
引張強度および結節強度が小ざく、かつ靭性(タフネス
〉が低く、紡績または編織が困難である。また、仮に紡
編織し得たとしても、1qられた製品の耐摩耗性および
耐熱性が悪く、たとえば150℃以上の高温下で長時間
使用すると、その強度が低下し、実用性能を失うなどと
いった問題があった。
However, flame-resistant fibers produced by heating and oxidizing acrylic fibers in high-temperature air have a highly uneven oxidation structure, with the surface area of the fibers being oxidized to a much greater degree than the inside of the fibers. As a result, mechanical strength, especially tensile strength and knot strength, is low, and toughness is low, making spinning, knitting and weaving difficult.Even if spinning, knitting and weaving were possible, 1q The resulting products have poor abrasion resistance and heat resistance, and when used for a long time at high temperatures of 150° C. or higher, for example, the strength decreases and practical performance is lost.

更に、上記アクリル系繊維を空気中で加熱、酸化した耐
炎化繊維は、高温での耐アルカリ性に著しく劣るため、
180’Cの水蒸気中で、オートクレーブ養生される水
硬性無機製品の補強材には全く使用できない。
Furthermore, flame-resistant fibers obtained by heating and oxidizing the above-mentioned acrylic fibers in the air have significantly poor alkali resistance at high temperatures.
It cannot be used at all as a reinforcing material for hydraulic inorganic products that are autoclaved in steam at 180'C.

そこで、本発明者らは先に高強度のアクリル系繊維を二
酸化硫黄のような硫黄含有雰囲気中で加熱、硫化するこ
とによって得られる引張強度が高く、靭性(タフネス)
に優れ、かつ高温での耐アルカリ性、耐熱性、耐炎性お
よび耐薬品性にも優れた硫黄含有アクリル系耐炎化繊維
を提案した。
Therefore, the present inventors first heated and sulfurized high-strength acrylic fibers in a sulfur-containing atmosphere such as sulfur dioxide, thereby achieving high tensile strength and toughness.
We proposed a sulfur-containing acrylic flame-resistant fiber that has excellent alkali resistance, heat resistance, flame resistance, and chemical resistance at high temperatures.

また、特公昭53−21396号公報には、炭素製品の
一製造方法として、空気などの活性雰囲気中で200〜
400’Cに保たれた加熱体表面に断続的に繰り返し接
触させて耐炎化する方法が開示されている。
In addition, Japanese Patent Publication No. 53-21396 describes a method for manufacturing carbon products in which 200 to
A method is disclosed in which flame resistance is achieved by intermittently and repeatedly contacting the surface of a heating element maintained at 400'C.

ざらに、特開昭61−174423号公報には、耐炎化
繊維を得るに際し、アクリル系繊維束を空気などの酸化
性雰囲気中で200〜350℃の加熱体に接触させて熱
処理した復、200〜350℃の該酸化性雰囲気中で熱
処理する方法が開示されている。
In general, JP-A-61-174423 discloses that when obtaining flame-resistant fibers, acrylic fiber bundles are heat-treated by contacting them with a heating element at 200 to 350°C in an oxidizing atmosphere such as air. A method of heat treatment in the oxidizing atmosphere at ~350°C is disclosed.

[発明が解決しようとする課題] ところで、アクリル系繊維からなる繊維束を硫黄含有雰
囲気中で加熱、硫化する場合、空気中で加熱、酸化する
時より反応熱はがなり少ないが、それでも繊維束の厚み
が大きくなると反応熱が繊維束内に蓄積され、そのため
暴走反応が起こり繊維束が切断してしまう。
[Problems to be Solved by the Invention] By the way, when a fiber bundle made of acrylic fibers is heated and sulfurized in a sulfur-containing atmosphere, the reaction heat is much less than when heated and oxidized in air. When the thickness of the fiber bundle increases, reaction heat accumulates within the fiber bundle, which causes a runaway reaction and breaks the fiber bundle.

従って、この暴走反応を防ぐには、繊維束の巾を広げ、
その厚みを小さくしなければならないが、生産性を高め
るため出来るだけ繊維束の厚みを大きくすることが望ま
れる。
Therefore, to prevent this runaway reaction, increase the width of the fiber bundle,
Although the thickness must be reduced, it is desirable to increase the thickness of the fiber bundle as much as possible in order to increase productivity.

そこで、前記公知例に記載されているように、繊維束内
に蓄積する反応熱を除去し暴走反応を抑制するのに、熱
伝導性の良い加熱体に繊維束を接触させるのは有効な方
法である。
Therefore, as described in the above-mentioned known example, it is an effective method to bring the fiber bundle into contact with a heating element having good thermal conductivity in order to remove the reaction heat accumulated within the fiber bundle and suppress the runaway reaction. It is.

しかしながら、アクリル系繊維を硫黄含有雰囲気中で加
熱、硫化する反応は、空気中で加熱、酸化する反応にく
らべがなり緩慢である。そのため、アクリル系繊維の断
面に均一に、かつ多量に硫化を進めるのにアクリル系繊
維と硫黄含有ガスとの接触を十分に行なう必要がある。
However, the reaction of heating and sulfurizing acrylic fibers in a sulfur-containing atmosphere is slower than the reaction of heating and oxidizing them in air. Therefore, it is necessary to bring the acrylic fiber into sufficient contact with the sulfur-containing gas in order to uniformly and extensively sulfurize the cross section of the acrylic fiber.

本発明の目的は、アクリル系繊維からなる繊維束を硫黄
含有雰囲気中で加熱、硫化して得られる硫黄含有アクリ
ル系耐炎化繊維の製造において、該繊維束内に蓄積する
反応熱を除去し、暴走反応を抑制するとともに、アクリ
ル系繊維と硫黄含有ガスとの硫化反応を促進させ、結果
として引張強度が高く、高温での耐アルカリ性、耐熱性
および耐炎性に優れた硫黄含有アクリル系耐炎化繊維(
以下、単に耐炎化繊維と略す)の製法を提供することに
ある。
The purpose of the present invention is to remove the reaction heat accumulated in the fiber bundle in the production of sulfur-containing acrylic flame-resistant fiber obtained by heating and sulfurizing a fiber bundle made of acrylic fiber in a sulfur-containing atmosphere, A sulfur-containing acrylic flame-resistant fiber that suppresses runaway reactions and promotes the sulfurization reaction between acrylic fibers and sulfur-containing gases, resulting in high tensile strength and excellent alkali resistance, heat resistance, and flame resistance at high temperatures. (
The purpose of the present invention is to provide a method for producing flame-resistant fibers (hereinafter simply referred to as flame-resistant fibers).

[課題を解決するための手段] この様な本発明の目的は、前記特許請求の範囲に記載し
たように、アクリル系繊維からなる繊維束を硫黄含有雰
囲気中で加熱、硫化するに際し、該繊維束を孔および/
または溝を有する加熱体に接触させることによって達成
することが出来る。
[Means for Solving the Problems] As stated in the claims, an object of the present invention is to provide a method for heating and sulfurizing fiber bundles made of acrylic fibers in a sulfur-containing atmosphere. Hole and/or
Alternatively, this can be achieved by contacting a heating element with grooves.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に用いるアクリル系繊維は、特に限定されるもの
ではないが、引張強度が高く、靭性(りフネス〉に優れ
た耐炎化繊維をjqるために、アクリル系繊維としても
高強度高弾性率でおることが望ましい。例えば重合度が
極限粘度で少なくとも1.5、好ましくは2.0〜5.
0の高重合度アクリロニトリル(以下ANと略す)系ポ
リマを使用し、引張強度が少なくとも7Cl/d、好ま
しくは9q/d以上、更に好ましくは10Q/d以上の
アクリル系繊維を形成させることが望ましい。
The acrylic fiber used in the present invention is not particularly limited, but in order to obtain a flame-resistant fiber with high tensile strength and excellent toughness, the acrylic fiber also has high strength and high modulus. For example, the degree of polymerization is at least 1.5 in intrinsic viscosity, preferably 2.0 to 5.
It is desirable to use a highly polymerized acrylonitrile (hereinafter abbreviated as AN) polymer with a tensile strength of at least 7 Cl/d, preferably 9 q/d or more, and more preferably 10 Q/d or more to form acrylic fibers. .

ここでアクリル系繊維の製造に用いられるAN系ポリマ
としては、AN単独または少なくとも90モル%のAN
と10モル%以下の該ANに対して共重合性を有するモ
ノマ、例えばアクリル酸、メタクリル酸、イタコン酸な
どのカルボン酸及びそれらの低級アルキルエステル類、
ヒドロキシメチルアクリレート、ヒドロキシエチルアク
リレート、ヒドロキシメチルメタアクリレートなどのカ
ルボン酸の水酸基を含有するヒドロキシアルキルアクリ
レート、アクリルアミド、メタクリルアミド、α−クロ
ルアクリロニトリル、ヒドロキシエチルアクリル酸、ア
リルスルホン酸、メタクリルスルホン酸などの共重合モ
ノマを例示することができる。これらの共重合上ツマの
うち、硫化反応が速く、酸素による酸化劣化が少なく、
強度の高い耐炎化繊維が得られるアクリルアミド類が特
に望ましい。
Here, the AN-based polymer used in the production of acrylic fibers includes AN alone or at least 90 mol% of AN.
and 10 mol% or less of a monomer copolymerizable with the AN, such as carboxylic acids such as acrylic acid, methacrylic acid, and itaconic acid, and lower alkyl esters thereof;
Hydroxyalkyl acrylates containing carboxylic acid hydroxyl groups such as hydroxymethyl acrylate, hydroxyethyl acrylate, and hydroxymethyl methacrylate; Examples include polymerized monomers. Among these copolymerization materials, the sulfurization reaction is fast, there is little oxidative deterioration due to oxygen,
Acrylamides are particularly desirable because they produce flame-resistant fibers with high strength.

これらのAN系ポリマは、ジメチルスルホキシド(DM
SO) 、ジメチルホルムアミド(DMF)、ジメチル
アセトアミド(DMAC>などの有機溶剤、塩化カルシ
ウム、塩化亜鉛、ロダンソーダなどの無機塩濃厚水溶液
、硝酸などの無機系溶剤に溶解して、溶液粘度が200
0ポイズ以上、好ましくは3000〜10000ポイズ
、ポリマ濃度が5〜20%の紡糸原液を作成する。
These AN-based polymers are dimethyl sulfoxide (DM
SO), dimethylformamide (DMF), dimethylacetamide (DMAC>, etc.), concentrated aqueous solutions of inorganic salts such as calcium chloride, zinc chloride, rhodan soda, etc., and inorganic solvents such as nitric acid to achieve a solution viscosity of 200%.
A spinning dope having a polymer concentration of 5 to 20% is prepared, with a polymer concentration of 0 poise or more, preferably 3000 to 10000 poise.

かくして得られた前記高重合度AN系ポリマの溶剤溶液
(紡糸原液)から、できる限り高強度高弾性率で、内外
構造差の少ない緻密な繊維を製造するためには、この高
重合度AN系ポリマの紡糸原液を紡糸口金を通して一旦
空気などの不活性雰囲気中に吐出した後、吐出された該
紡糸原液を凝固浴中に導いて凝固を完結させる、いわゆ
る゛乾湿式紡糸法を採用し、高度に延伸することが望ま
しい。
In order to produce dense fibers with as high strength and high modulus as possible and with little difference in internal and external structures from the solvent solution (spinning stock solution) of the high polymerization degree AN polymer thus obtained, it is necessary to use this high polymerization degree AN polymer. The polymer spinning stock solution is once discharged into an inert atmosphere such as air through a spinneret, and then the discharged spinning stock solution is introduced into a coagulation bath to complete coagulation. It is desirable to stretch it to

この乾湿式紡糸の具体的条件としては、紡糸原液を紡糸
口金面と凝固浴液面との距離が1〜20mm、好ましく
は3〜10mmの範囲内に設定された該紡糸口金面と凝
固浴液面とで形成される微小空間に吐出した後、凝固浴
へ導いて凝固させ、次いで得られた繊維糸条を常法によ
り、水洗、脱溶媒、1次延伸、乾燥・緻密化、2次延伸
、熱処理などの後処理工程を経由せしめて延伸繊維糸条
とする。
The specific conditions for this wet-dry spinning are such that the spinning dope is separated from the spinneret surface and the coagulating bath liquid level by setting the distance between the spinneret surface and the coagulating bath liquid level to be within a range of 1 to 20 mm, preferably 3 to 10 mm. After discharging it into the microspace formed by the surface, it is guided to a coagulation bath and coagulated, and then the obtained fiber thread is washed with water, desolventized, primary stretching, drying/densification, and secondary stretching by conventional methods. The fibers are then subjected to post-processing steps such as heat treatment to form drawn fiber threads.

この乾湿式紡糸によって得られる繊維糸条は、延伸性が
極めて優れているが、好ましくは2次延伸方法として、
150〜270’Cの乾熱下に少なくとも1.1倍、好
ましくは1.5倍以上延伸し、全有効延伸倍率が少なく
とも10倍、好ましくは12倍以上になるように延伸し
、その繊度を0゜5〜7デニール(d)、好ましくは1
〜5dの範囲内とするのがよい。
The fiber yarn obtained by this dry-wet spinning has extremely excellent drawability, but preferably as a secondary drawing method,
Stretched at least 1.1 times, preferably 1.5 times or more under dry heat at 150 to 270'C, and stretched so that the total effective stretching ratio is at least 10 times, preferably 12 times or more, and its fineness is adjusted. 0°5-7 denier (d), preferably 1
It is preferable to set it within the range of ~5d.

この繊度が0.5dよりも小さいと、得られる耐炎化繊
維の紡績性が低下し、耐摩耗性の良好な繊維製品を得る
ことが難しくなるし、7dよりも大きいと、硫化処理時
に繊維断面における硫化が不均一になるため好ましくな
い。
If the fineness is smaller than 0.5d, the spinnability of the resulting flame-resistant fiber will be reduced, making it difficult to obtain textile products with good abrasion resistance.If the fineness is larger than 7d, the fiber cross section will This is not preferable because the sulfurization becomes uneven.

かくして得られる繊維は、通常引張強度が7q/d以上
、引張弾性率が130C1/d以上の機械的物性を有す
る。より好ましくは特に極限粘度2゜5以上の高重合度
AN系ポリマからなる引張強度が10CJ/d以上、引
張弾性率が1800/d以上、結節強度2.2Cl/d
以上の機械的物性を有する繊維を使用するのかよい。
The fibers thus obtained usually have mechanical properties such as a tensile strength of 7 q/d or more and a tensile modulus of 130 C1/d or more. More preferably, it is made of a high degree of polymerization AN-based polymer having an intrinsic viscosity of 2.5 or more, a tensile strength of 10 CJ/d or more, a tensile modulus of 1800/d or more, and a knot strength of 2.2 Cl/d.
It is better to use fibers with the above mechanical properties.

また、硫黄含有雰囲気とは、二酸化硫黄、硫黄ガス、二
硫化炭素、硫化水素及び硫化カルボニル等の単独あるい
はそれらの混合ガスからなる硫黄含有ガスあるいは上記
硫黄含有ガスと不活性ガスとの混合ガスであって、特に
二酸化硫黄はアクリル系繊維に対する反応性に優れ、か
つ繊維断面に均一に硫化することができるので好ましく
用いられる。 また不活性ガスとしては、アクリル系繊
維と化学反応を起こさないガスであって、例えば窒素、
アルゴン、ヘリウム、二酸化炭素などを例示することが
できる。
Furthermore, the sulfur-containing atmosphere refers to a sulfur-containing gas consisting of sulfur dioxide, sulfur gas, carbon disulfide, hydrogen sulfide, carbonyl sulfide, etc. alone or a mixture thereof, or a mixture of the above sulfur-containing gas and an inert gas. Among these, sulfur dioxide is particularly preferably used because it has excellent reactivity with acrylic fibers and can uniformly sulfurize the cross section of the fibers. In addition, the inert gas is a gas that does not cause a chemical reaction with the acrylic fibers, such as nitrogen,
Examples include argon, helium, and carbon dioxide.

ここで上記硫黄含有混合ガスにおける硫黄含有ガスの含
有量は、3モル%以上、好ましくは5モル%以上である
。硫黄含有ガスの含有量が3モル%未満であるとアクリ
ル系繊維と硫黄含有ガスとの硫化反応よりも熱劣化が先
行するため高性能な耐炎化繊維は得られない。
Here, the content of the sulfur-containing gas in the sulfur-containing mixed gas is 3 mol% or more, preferably 5 mol% or more. If the content of the sulfur-containing gas is less than 3 mol%, thermal deterioration precedes the sulfurization reaction between the acrylic fiber and the sulfur-containing gas, making it impossible to obtain high-performance flame-resistant fibers.

ざらに、硫黄含有雰囲気中に含まれる酸素含有量は、1
モル%以下好ましくは0.5モル%以下、更に好ましく
は0.1モル%以下である。ここで酸素含有量が1モル
%より多くなるとアクリル系繊維と硫黄含有ガスとの硫
化反応よりも、酸素との反応が先行し、分子鎖の切断や
、繊維断面に不均一な酸化構造を与えたり、硫黄結合を
含んだ環化構造及び架橋構造が形成されるのを阻害した
りして、高性能な耐炎化繊維を得ることができなくなる
Roughly speaking, the oxygen content contained in a sulfur-containing atmosphere is 1
It is preferably 0.5 mol% or less, more preferably 0.1 mol% or less. If the oxygen content exceeds 1 mol%, the reaction with oxygen will precede the sulfurization reaction between the acrylic fiber and the sulfur-containing gas, causing molecular chain scission and creating a non-uniform oxidation structure in the cross section of the fiber. or inhibit the formation of cyclized structures and crosslinked structures containing sulfur bonds, making it impossible to obtain high-performance flame-resistant fibers.

次に、本発明のアクリル系繊維からなる繊維束を加熱、
硫化する方法を図面を用いて説明する。
Next, the fiber bundle made of the acrylic fiber of the present invention is heated,
The sulfiding method will be explained using drawings.

第1図において、硫黄含有雰囲気中でアクリル系繊維か
らなる繊維束1は、孔2を有する加熱体3に接触しなが
ら加熱、硫化される。
In FIG. 1, a fiber bundle 1 made of acrylic fibers is heated and sulfurized while contacting a heating body 3 having holes 2 in a sulfur-containing atmosphere.

また、第2図において、上記繊維束1は溝4を有する加
熱体5に接触しながら加熱、硫化される。
Further, in FIG. 2, the fiber bundle 1 is heated and sulfurized while being in contact with a heating element 5 having grooves 4.

ここで、加熱体の形状は特に限定されるものでなく、例
えば、板、ローラおよび種々の曲面を有するものなどが
用いられる。そして、加熱体に設けられる孔および溝は
それぞれ単独形態であってもあるいは両者が混合されて
いてもかまわない。
Here, the shape of the heating body is not particularly limited, and for example, plates, rollers, and those having various curved surfaces can be used. The holes and grooves provided in the heating body may be provided individually or in combination.

また上記孔および溝の形状、大きさ、数などは加熱、硫
化するアクリル系繊維束のポリマ組成、繊度、嵩密度な
どによって適宜選択することができる。
Further, the shape, size, number, etc. of the holes and grooves can be appropriately selected depending on the polymer composition, fineness, bulk density, etc. of the acrylic fiber bundle to be heated and sulfurized.

ところで、通常加熱炉において硫黄含有ガスはある流速
をもって流れているので、上記加熱体に設けられた孔お
よび溝を通しで硫黄含有ガスは繊維束内に浸透しアクリ
ル系繊維と反応するが、ざらに孔および溝を通して硫黄
含有ガスを積極的に吸引あるいは加圧することによって
、硫黄含有ガスの繊維束への浸透を高め、硫黄含有ガス
とアクリル系繊維との反応をより一層促進させることが
出来る。
By the way, since the sulfur-containing gas normally flows at a certain flow rate in a heating furnace, the sulfur-containing gas penetrates into the fiber bundle through the holes and grooves provided in the heating element and reacts with the acrylic fibers, but it does not cause roughness. By actively suctioning or pressurizing the sulfur-containing gas through the holes and grooves, it is possible to increase the penetration of the sulfur-containing gas into the fiber bundle and further promote the reaction between the sulfur-containing gas and the acrylic fibers.

また、上記硫黄含有雰囲気中の硫黄含有ガスの温度は2
30〜400℃であって、その硫化工程の加熱は一定温
度条件下でもよいし、昇温下でもよく、またアクリル系
繊維束は緊張、定長、弛緩のいずれの条件でもよい。−
例として、第一段加熱を230〜280°Cの温度範囲
に保たれた加熱炉中で行い、第2段加熱を280〜40
0℃の温度範囲内で、かつ段階的に昇温条件が設定され
た加熱炉中で硫化を完結させる方法を挙げることができ
る。
Furthermore, the temperature of the sulfur-containing gas in the sulfur-containing atmosphere is 2
The heating temperature in the sulfurization process may be from 30 to 400°C, and may be at a constant temperature or at an elevated temperature, and the acrylic fiber bundle may be under tension, constant length, or relaxed. −
As an example, the first stage heating is performed in a heating furnace maintained at a temperature range of 230 to 280 °C, and the second stage heating is performed at a temperature of 280 to 40 °C.
A method of completing sulfidation within a temperature range of 0° C. in a heating furnace in which temperature raising conditions are set in stages can be mentioned.

かくして得られる本発明の耐炎化繊維は、硫黄含有層が
少なくとも0.5重量%、好ましくは1〜20重量%で
あり、引張強度が3.5g/d以上、好ましくは4.0
g/d以上、更に好ましくは5.Oq/d以上である。
The thus obtained flame-resistant fiber of the present invention has a sulfur-containing layer of at least 0.5% by weight, preferably 1 to 20% by weight, and a tensile strength of 3.5 g/d or more, preferably 4.0 g/d.
g/d or more, more preferably 5. It is Oq/d or more.

本発明の耐炎化繊維は、オートクレーブ養生セメント補
強材、摩擦材、グランドバッキング、ガスケット等のシ
ール材、消防服、溶接火花防護シートなど石綿代替繊維
として広く使用することができ、この工業的意義は極め
て大きい。
The flame-resistant fibers of the present invention can be widely used as asbestos substitute fibers, such as autoclave-cured cement reinforcing materials, friction materials, ground backing, sealing materials such as gaskets, firefighting uniforms, and welding spark protection sheets, and this industrial significance is Extremely large.

以下、実施例により本発明の効果をざらに具体的に説明
する。
EXAMPLES Hereinafter, the effects of the present invention will be explained in detail using Examples.

[実施例] なお、本発明において、引張強度および極限粘度は次の
測定法により測定した値である。
[Example] In the present invention, tensile strength and intrinsic viscosity are values measured by the following measuring method.

(1)引張強度: J l5−L−1069に規定され
ている測定法に準じて測定した。
(1) Tensile strength: Measured according to the measuring method specified in J15-L-1069.

(2)極限粘度ニア5mClの乾燥AN重合体をフラス
コにいれ、0.INのチオシアン酸ソーダを含有するD
MF25mgを加えて、完全に溶解する。得られたポリ
マ溶液をオストウルド粘度計を用いて20℃で比粘度を
測定し、次式にしたがって極限粘度を算出する。
(2) A dry AN polymer with an intrinsic viscosity of near 5 mCl was placed in a flask, and the intrinsic viscosity was 0. D containing IN sodium thiocyanate
Add 25 mg of MF and dissolve completely. The specific viscosity of the obtained polymer solution was measured at 20° C. using an Ostauld viscometer, and the intrinsic viscosity was calculated according to the following formula.

1[[= [+、  x     >−1110,19
8実施例1 アクリルアミド2モル%、AN98モル%をDMSO中
で溶液重合し、極限粘度的3.0のAN系重合体を作成
した。得られた重合体溶液を紡糸原液とし、乾湿式紡糸
を行った。凝固浴としては、15°C155%DMSO
水溶液を使用した。また、紡糸口金と凝固浴液面との距
離は5mmに設定し、凝固浴液面から集束ガイドまでの
距離は400mmとした。
1 [[= [+, x >-1110,19
8 Example 1 2 mol % of acrylamide and 98 mol % of AN were solution polymerized in DMSO to create an AN-based polymer with an intrinsic viscosity of 3.0. The obtained polymer solution was used as a spinning stock solution, and wet-dry spinning was performed. As a coagulation bath, 15°C 155% DMSO
An aqueous solution was used. Further, the distance between the spinneret and the coagulation bath liquid level was set to 5 mm, and the distance from the coagulation bath liquid level to the focusing guide was 400 mm.

得られた未延伸繊維糸条は、熱水浴中で5倍に延伸した
のち、油剤を付与し、110’Cで乾燥緻密化した。
The obtained undrawn fiber yarn was drawn 5 times in a hot water bath, applied with an oil agent, and dried and densified at 110'C.

ついで、180’Cの乾熱チューブ中最高延伸倍率の8
5%で二次延伸し、単繊維の繊度約2デニール、引張強
度的14g/dおよびフィラメント数6000のアクリ
ル系繊維束を1qだ。
Then, in a dry heat tube at 180'C, the highest stretching ratio was 8.
1q of acrylic fiber bundles are secondly drawn at 5%, have a single fiber fineness of about 2 denier, a tensile strength of 14 g/d, and a filament count of 6000.

この繊維束を二酸化硫黄10%と窒素90%からなる硫
黄含有混合ガス中に導入し、直径1mmの孔を1mm間
隔に設けた加熱板に接触させながら300″C,10分
間緊張下に加熱、硫化した。
This fiber bundle was introduced into a sulfur-containing mixed gas consisting of 10% sulfur dioxide and 90% nitrogen, and heated under tension at 300"C for 10 minutes while contacting a heating plate with holes 1 mm in diameter at 1 mm intervals. Sulfurized.

この時、孔を通して上記硫黄含有混合ガスを強制的に流
した。
At this time, the sulfur-containing mixed gas was forced to flow through the holes.

得られた耐炎化繊維の硫黄含有量は、3.5重量%、引
張強度は、8.2g/dであった。この結果本発明では
、繊維束内での反応熱の蓄積がなく、繊維束への二酸化
硫黄の浸透がスムーズに進むため、引張強度の高い耐炎
化繊維が得られた。
The obtained flame-resistant fiber had a sulfur content of 3.5% by weight and a tensile strength of 8.2 g/d. As a result, in the present invention, there is no accumulation of reaction heat within the fiber bundle, and sulfur dioxide penetrates smoothly into the fiber bundle, so that flame-resistant fibers with high tensile strength were obtained.

比較例1 実施例1と同様にして得たアクリル系繊維束を孔のない
加熱板に接触させながら実施例1と同様にして加熱、硫
化した。
Comparative Example 1 An acrylic fiber bundle obtained in the same manner as in Example 1 was heated and sulfurized in the same manner as in Example 1 while being in contact with a heating plate without holes.

得られた耐炎化繊維の硫黄含有量は1.5〜2゜8重量
%、引張強度は4.8〜7.5C1/dとなり、硫黄含
有量および引張強度ともにばらつきが多く低かった。
The sulfur content of the obtained flame-resistant fibers was 1.5 to 2.8% by weight, and the tensile strength was 4.8 to 7.5 C1/d, and both the sulfur content and tensile strength were low with many variations.

[発明の効果] 本発明は、アクリル系繊維からなる繊維束を硫黄含有ガ
ス中で孔および/または溝を有する加熱体に接触させな
がら加熱、硫化するので、繊維束内に蓄積する反応熱を
除去するとともに、孔および/または溝を通して硫黄含
有ガスを繊維束内に十分浸透させることができる。この
ため、硫黄含有ガスによる硫化反応がスムーズに、かつ
繊維断面に均一に進行する。
[Effects of the Invention] In the present invention, a fiber bundle made of acrylic fibers is heated and sulfurized in a sulfur-containing gas while being brought into contact with a heating element having holes and/or grooves, so that the reaction heat accumulated within the fiber bundle is reduced. At the same time, the sulfur-containing gas can be sufficiently penetrated into the fiber bundle through the holes and/or grooves. Therefore, the sulfurization reaction caused by the sulfur-containing gas proceeds smoothly and uniformly over the fiber cross section.

したがって、得られる耐炎化繊維は引張強度が高い上に
、高温での耐アルカリ性、耐熱性および耐炎性などに優
れている。
Therefore, the obtained flame-resistant fibers have high tensile strength and are excellent in alkali resistance, heat resistance, flame resistance, etc. at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わる孔を有する加熱体にアクリル系
繊維束を接触させながら加熱、硫化する状態を示す模式
斜視図である。 第2図は、本発明に係わる溝を有する加熱体にアクリル
系繊維束を接触させながら加熱、硫化する状態を示す模
式斜視図である。 1;アクリル系繊維からなる繊維束 2:孔 3;孔を有する加熱体 4;溝 5;溝を有する加熱体
FIG. 1 is a schematic perspective view showing a state in which an acrylic fiber bundle is heated and sulfurized while being brought into contact with a heating body having holes according to the present invention. FIG. 2 is a schematic perspective view showing a state in which an acrylic fiber bundle is heated and sulfurized while being brought into contact with a heating body having grooves according to the present invention. 1; Fiber bundle made of acrylic fibers 2: Holes 3; Heating body 4 having holes; Grooves 5; Heating body having grooves

Claims (2)

【特許請求の範囲】[Claims] (1)アクリル系繊維からなる繊維束を硫黄含有雰囲気
中で加熱、硫化するに際し、該繊維束を孔および/また
は溝を有する加熱体に接触させることを特徴とする硫黄
含有アクリル系耐炎化繊維の製法。
(1) Sulfur-containing acrylic flame-resistant fiber characterized in that when heating and sulfurizing a fiber bundle made of acrylic fiber in a sulfur-containing atmosphere, the fiber bundle is brought into contact with a heating element having holes and/or grooves. manufacturing method.
(2)硫黄含有雰囲気が、二酸化硫黄を含む硫黄含有ガ
スである請求項1に記載の硫黄含有アクリル系耐炎化繊
維の製法。
(2) The method for producing a sulfur-containing acrylic flame-resistant fiber according to claim 1, wherein the sulfur-containing atmosphere is a sulfur-containing gas containing sulfur dioxide.
JP17536788A 1988-07-13 1988-07-13 Production of fire-resistant yarn of sulfur-containing acrylic base Pending JPH0226923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17536788A JPH0226923A (en) 1988-07-13 1988-07-13 Production of fire-resistant yarn of sulfur-containing acrylic base

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17536788A JPH0226923A (en) 1988-07-13 1988-07-13 Production of fire-resistant yarn of sulfur-containing acrylic base

Publications (1)

Publication Number Publication Date
JPH0226923A true JPH0226923A (en) 1990-01-29

Family

ID=15994851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17536788A Pending JPH0226923A (en) 1988-07-13 1988-07-13 Production of fire-resistant yarn of sulfur-containing acrylic base

Country Status (1)

Country Link
JP (1) JPH0226923A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140265A1 (en) * 2009-06-01 2010-12-09 日立化成工業株式会社 Friction material composition, friction material obtained from same, and friction member
CN102399339A (en) * 2010-09-08 2012-04-04 清华大学 Preparation method of sulfurized polyacrylonitrile

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140265A1 (en) * 2009-06-01 2010-12-09 日立化成工業株式会社 Friction material composition, friction material obtained from same, and friction member
US9039825B2 (en) 2009-06-01 2015-05-26 Hitachi Chemical Co., Ltd. Friction material composition, friction material using the same, and friction member
US9086105B2 (en) 2009-06-01 2015-07-21 Hitachi Chemical Company, Ltd. Friction material composition, friction material using the same, and friction member
US9410591B2 (en) 2009-06-01 2016-08-09 Hitachi Chemical Company, Ltd Friction material composition, friction material using the same, and friction member
CN102399339A (en) * 2010-09-08 2012-04-04 清华大学 Preparation method of sulfurized polyacrylonitrile

Similar Documents

Publication Publication Date Title
CA1095206A (en) Process for producing carbon fibers
KR101656976B1 (en) Carbon fiber bundle and method of producing carbon fiber bundle
JPH0474469B2 (en)
JPS6314094B2 (en)
JPH0226923A (en) Production of fire-resistant yarn of sulfur-containing acrylic base
JP3514780B2 (en) Method for producing carbon fiber
US4869856A (en) Method for producing carbon fibers from acrylonitrile fiber strands
JP6264819B2 (en) Acrylonitrile copolymer, carbon fiber precursor acrylonitrile fiber, carbon fiber, and method for producing carbon fiber
JP2008280632A (en) Method for producing precursor fiber bundle of carbon fiber
JPH01266224A (en) Production of sulfur-containing preoxidized acrylic fiber
US4237109A (en) Process for producing carbon fabric
JPH01306620A (en) Production of sulfur-containing acrylic inflammable fiber
JPH0618566Y2 (en) ▲ Ro ▼
JP3033960B2 (en) Novel carbon fiber production method using pre-drawing
JPH0364526A (en) Production of sulfur-containing acrylic flameproof yarn
KR870000534B1 (en) Carbon fiber and it's making method
JPH0233324A (en) Production of sulfur-containing acrylic flame-resistant fiber
JP2007332498A (en) Method for producing carbon fiber bundle
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JPS6233824A (en) Acrylic flameproofed fiber having improved abrasion resistance
US5502090A (en) High tenacity and high toughness acrylic sulfide fibers, a process for production thereof, and composite materials prepared by using it
JPH04281008A (en) Acrylonitrile-based precursor fiber bundle
JPH0742605B2 (en) Method for producing acrylic fiber
JPS6350528A (en) Sulfur-containing acrylic flame-retardant fiber having excellent toughness
KR20240071429A (en) Manufacturing method of high modulus graphite fiber