JPS6214472A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6214472A
JPS6214472A JP15367985A JP15367985A JPS6214472A JP S6214472 A JPS6214472 A JP S6214472A JP 15367985 A JP15367985 A JP 15367985A JP 15367985 A JP15367985 A JP 15367985A JP S6214472 A JPS6214472 A JP S6214472A
Authority
JP
Japan
Prior art keywords
film
impurity
pox
source
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15367985A
Other languages
Japanese (ja)
Other versions
JPH0797565B2 (en
Inventor
Mitsunobu Sekiya
関谷 光信
Toshiyuki Samejima
俊之 鮫島
Setsuo Usui
碓井 節夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60153679A priority Critical patent/JPH0797565B2/en
Publication of JPS6214472A publication Critical patent/JPS6214472A/en
Publication of JPH0797565B2 publication Critical patent/JPH0797565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Abstract

PURPOSE:To allow the diffusion of impurity at a low temperature by a method wherein impurity is thermally diffused into a semiconductor substrate with a compound layer of impurity atoms and oxygen atoms formed in a low temperature proicess as an impurity diffusion source. CONSTITUTION:After a gate electrode 4 consisting of an a-Si film 2, a gate insulation film 3 and a polycrystalline Si has been formed in a glass substrate 1, a POX film 5 is formed on the whole surface with plasma CVD method. Then, a laser beam 6 is directed on it. At that time, the gate electrode 4 acts as a mask. P is diffused into the a-Si film 2 at the section where the POX film 5 directly contacts with the a-Si film 2 so as to form a source region 7 and a drain region 8. After the POX film 5 has been removed, an electrodes 9 and 10 are formed to form a passivation film 11. By this method, impurity diffusion can be performed in a low-temperature process, thereby improving the characteristics of a semiconductor device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関するものであって、
薄膜トランジスタ(T P T)の製造に適用して最適
なものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device,
This method is most suitable for manufacturing thin film transistors (TPTs).

〔発明の概要〕[Summary of the invention]

本発明は、半導体装置の製造方法において、不純物原子
と酸素原子との化合物層を低温プロセスにより半導体基
体上に形成し、熱処理を行うことにより、この化合物層
を不純物拡散源として半導体基体に不純物原子を拡散さ
せるようにすることにより、半導体基体に容易にしかも
低温で不純物拡散を行うことを可能にし、これによって
特性の良好な半導体装置を簡単な工程で製造可能とした
ものである。
The present invention provides a method for manufacturing a semiconductor device, in which a compound layer of impurity atoms and oxygen atoms is formed on a semiconductor substrate by a low-temperature process, and heat treatment is performed to inject impurity atoms into the semiconductor substrate using this compound layer as an impurity diffusion source. By diffusing the impurity into the semiconductor substrate, it is possible to easily diffuse the impurity at a low temperature, thereby making it possible to manufacture a semiconductor device with good characteristics through a simple process.

〔従来の技術〕[Conventional technology]

従来、アモルファス5iTFTまたは多結晶5iTFT
のソース領域及びドレイン領域は、n゛層(またはpI
層)により構成されている。これらのソース領域及びド
レイン領域は、いわゆるスタッガード(s tagge
red)型TFTの場合には気相成長により形成され、
またセルフアラインメント型TPTの場合にはイオン注
入またはPSG膜(またはBSG膜)を用いた不純物ド
ーピングにより形成されている。
Conventionally, amorphous 5iTFT or polycrystalline 5iTFT
The source and drain regions of the n layer (or pI
layer). These source and drain regions are so-called staggered.
In the case of red) type TFT, it is formed by vapor phase growth,
In the case of a self-alignment type TPT, it is formed by ion implantation or impurity doping using a PSG film (or BSG film).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、スタッガード型TPTにおいて気相成長
によりソース領域及びドレイン領域を形成する方法では
、これらのソース領域及びドレイン領域とゲート電極と
の重なりの面積を小さくすることが困難であるため、ソ
ース・ゲート間及びドレイン・ゲート間の容量が大きく
、このためスイッチング速度が小さい。のみならず、T
PTのオン時に反転層とn層層(またはp層層)との間
に寄生抵抗(反転層となっていない真性半導体層)が存
在するためトランジスタ特性が悪い。
However, in the method of forming source and drain regions by vapor phase growth in staggered TPT, it is difficult to reduce the area of overlap between these source and drain regions and the gate electrode. The capacitance between the capacitor and the drain and the gate is large, so the switching speed is low. Not only T.
When the PT is turned on, parasitic resistance (intrinsic semiconductor layer that is not an inversion layer) exists between the inversion layer and the n-layer (or p-layer), resulting in poor transistor characteristics.

またセルフアラインメント型TFTにおいてイオン注入
によりソース領域及びドレイン領域を形成する方法では
、イオン注入工程のコストが高いのみならず、注入不純
物イオンの活性化のために600℃以上での熱処理を行
う必要があるという欠点がある。さらにpsc膜(BS
G膜)を不純物拡散源として用いてソース領域及びドレ
イン領域を形成する方法は、P (B)の拡散のために
高温の熱処理が必要であるのみならず、ソース領域及び
ドレイン領域を構成するn層層(またはp層層)とソー
ス電極及びドレイン電極とのコンタクトをとるためにP
SG膜(BSG膜)のエツチング工程が必要であり、製
造工程数が多いという欠点がある。
Furthermore, in the method of forming source and drain regions by ion implantation in self-alignment TFTs, not only is the cost of the ion implantation process high, but also heat treatment at 600°C or higher is required to activate the implanted impurity ions. There is a drawback. In addition, the psc film (BS
The method of forming source and drain regions using a G film) as an impurity diffusion source not only requires high-temperature heat treatment for diffusion of P (B), but also requires P to make contact between the layer (or p layer) and the source and drain electrodes.
This method requires an etching step for the SG film (BSG film), and has the drawback of requiring a large number of manufacturing steps.

本発明は、従来技術が有する上述のような欠点を是正し
た半導体装置の製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that corrects the above-mentioned drawbacks of the prior art.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上述のような従来技術の欠点を是正すべ
く鋭意研究を行った結果、次のような現象を見いだし、
本発明を案出するに至った。すなわち、まず例えばガラ
ス基板上に例えばa −Si膜を形成した後、PI(3
とNtO(またはOx)との混合ガス(例えばPHi/
NzO≧0.001 >を反応ガスとして用いたプラズ
マCVD法により低温で気相成長を行う、これによって
上述のa−5i膜上にPOX膜が形成される。次にSi
に強く吸収される波長の光、例えばエキシマ−レーザー
によるレーザービームによりP OX / a −St
界面近傍を局部加熱して、a−3i膜を溶融させる。こ
の結果、POX膜中のPがa−Si膜中に拡散してn層
が形成され、活性化も同時に行われる。
The inventors of the present invention have conducted extensive research to correct the shortcomings of the prior art as described above, and have discovered the following phenomenon.
The present invention has been devised. That is, first, for example, an a-Si film is formed on, for example, a glass substrate, and then PI (3
and NtO (or Ox) (e.g. PHi/
Vapor phase growth is performed at low temperature by plasma CVD using NzO≧0.001 as a reaction gas, thereby forming a POX film on the a-5i film described above. Next, Si
POX/a-St is generated by a laser beam of a wavelength that is strongly absorbed by, for example, an excimer laser.
The a-3i film is melted by locally heating near the interface. As a result, P in the POX film is diffused into the a-Si film to form an n-layer, and activation is also performed at the same time.

上述のa−3i膜の代わりに多結晶Si膜、単結晶Si
膜等を用いた場合も同様にしてn層を形成することがで
きる。また上述のプラズマCVDにおいてBJbとNZ
O(またはOX)との混合ガスを反応ガスとして用いれ
ば、a−5i膜上にBOX膜が形成されるので、このB
OX膜中のBをSi中に拡散させることによってp層を
形成することができる。
Polycrystalline Si film, single-crystalline Si film is used instead of the above-mentioned a-3i film.
Even when a film or the like is used, the n-layer can be formed in the same manner. In addition, in the plasma CVD described above, BJb and NZ
If a mixed gas with O (or OX) is used as a reaction gas, a BOX film will be formed on the a-5i film.
The p layer can be formed by diffusing B in the OX film into Si.

しかも上述のPOX膜及びBOX膜はいずれも水洗によ
って容易に除去することが可能であるので好都合である
Moreover, both the above-mentioned POX film and BOX film can be easily removed by washing with water, which is advantageous.

本発明は上述のような実験結果に基づいて案出されたも
のである。
The present invention was devised based on the above-mentioned experimental results.

すなわち本発明に係る半導体装置の製造方法は、不純物
原子と酸素原子との化合物層(例えばpo。
That is, the method for manufacturing a semiconductor device according to the present invention includes a compound layer of impurity atoms and oxygen atoms (for example, po.

膜5)を低温プロセスにより半導体基体(例えばa−5
t膜2)上に形成する工程と、熱処理(例えばレーザー
ビーム6によるビームアニール)を行うことにより、上
記化合物層を不純物拡散源として上記半導体基体に上記
不純物原子を拡散させる工程と、上記化合物層を除去す
る工程とをそれぞれ具備している。
film 5) to a semiconductor substrate (e.g. a-5) by a low-temperature process.
t film 2), a step of diffusing the impurity atoms into the semiconductor substrate using the compound layer as an impurity diffusion source by performing heat treatment (for example, beam annealing with a laser beam 6), and a step of diffusing the impurity atoms into the semiconductor substrate using the compound layer as an impurity diffusion source. and a step of removing.

〔実施例〕〔Example〕

以下本発明の実施例につき図面を参照しながら説明する
Embodiments of the present invention will be described below with reference to the drawings.

まず本発明をプレーナ型TPTの製造に適用した第1実
施例につき図面を参照しながら説明する。
First, a first embodiment in which the present invention is applied to manufacturing a planar TPT will be described with reference to the drawings.

第1A図に示すように、まず例えばガラス基板1上に従
来公知の方法と同様にしてa−3i膜2、SiO□から
成るゲート絶縁膜3及び多結晶Siから成るゲート電極
4を形成した後、既述と同様な方法、すなわち例えばP
H3とN20(または0□)との混合ガスを反応ガスと
して用いたプラズマCVD法により全面にPO1I膜5
を形成する。
As shown in FIG. 1A, first, an a-3i film 2, a gate insulating film 3 made of SiO□, and a gate electrode 4 made of polycrystalline Si are formed on, for example, a glass substrate 1 using a conventionally known method. , in the same way as described above, i.e. for example P
A PO1I film 5 is formed on the entire surface by plasma CVD using a mixed gas of H3 and N20 (or 0□) as a reaction gas.
form.

次に第1B図に示すように、室温において例えばエキシ
マ−レーザーによるレーザービーム6を上方より照射す
る。この際、ゲート電極4がa−Sil[2へのエネル
ギー供給のマスクとして働く結果、PO,膜5がa−S
i膜2と直接接している部分においてPOxOx中のP
がa−Si膜膜中中拡散されて、ゲート電極4とセルフ
ァラインにn゛型のソース領域7及びドレイン領域8が
形成される。
Next, as shown in FIG. 1B, a laser beam 6 of, for example, an excimer laser is irradiated from above at room temperature. At this time, as a result of the gate electrode 4 acting as a mask for energy supply to a-Sil[2, PO and film 5
In the part directly in contact with the i-film 2, P in POxOx
is diffused into the a-Si film to form an n'-type source region 7 and drain region 8 at the gate electrode 4 and self-alignment line.

次に上述のpo、膜5を水洗により除去した後、第1C
図に示すように、ソース領域7及びドレイン領域8にそ
れぞれ電極9.10を形成し、さらにPSG膜、Sin
、膜、Si3N、膜等から成るパッシベーション膜11
を全面に形成して、目的とするnチャネルのブレーナ型
TPTを完成させる。
Next, after removing the above-mentioned po and membrane 5 by washing with water,
As shown in the figure, electrodes 9 and 10 are formed in the source region 7 and drain region 8, respectively, and a PSG film and a Sin
, film, Si3N, film, etc., passivation film 11
is formed over the entire surface to complete the desired n-channel Brehner type TPT.

上述の第1実施例によれば、a −Si膜膜上上ゲート
絶縁膜3及びゲート電極4を形成し、次いで全面にPO
X膜5を形成した後、レーザービーム6を照射してPO
,膜5からa−St膜膜中中Pを拡散させることにより
n゛型のソース領域7及びドレイン領域8を形成してい
るので、室温でソース領域7及びドレイン領域8を容易
に形成することができ、従って低温プロセスにより、低
融点のガラス基板1を用いてTPTを製造することがで
きる。しかもゲート電極4に対してセルファラインにこ
れらのソース領域7及びドレイン領域8を形成すること
ができるので、ソース領域7及びドレイン領域8とゲー
ト電極4との重なりを小さくすることができる。従って
、ソース・ゲート間及びドレイン・ゲート間の容量を小
さくすることができるので、スイッチング速度の大きい
TPTを得ることができる。
According to the first embodiment described above, the upper gate insulating film 3 and the gate electrode 4 are formed on the a-Si film, and then PO is formed on the entire surface.
After forming the X film 5, a laser beam 6 is irradiated to form the PO
Since the n-type source region 7 and drain region 8 are formed by diffusing P in the a-St film from the film 5, the source region 7 and drain region 8 can be easily formed at room temperature. Therefore, TPT can be manufactured using a low melting point glass substrate 1 by a low temperature process. Furthermore, since the source region 7 and drain region 8 can be formed in a self-aligned manner with respect to the gate electrode 4, the overlap between the source region 7 and the drain region 8 and the gate electrode 4 can be reduced. Therefore, the capacitance between the source and the gate and between the drain and the gate can be reduced, so that a TPT with a high switching speed can be obtained.

また従来のようにイオン注入や高温の熱処理を行う必要
がなく、さらにはPSG膜を不純物拡散源として用いた
場合に必要であったエツチング工程も不要となる。この
ため、製造工程の簡略化及び製造コストの低減を図るこ
とができる。のみならず、上述のPOx膜5は既述のよ
うに水洗により容易に除去することができるので、製造
上極めて有利である。
Further, there is no need to perform ion implantation or high-temperature heat treatment as in the prior art, and furthermore, there is no need for an etching process that is necessary when a PSG film is used as an impurity diffusion source. Therefore, it is possible to simplify the manufacturing process and reduce manufacturing costs. In addition, the above-mentioned POx film 5 can be easily removed by washing with water as described above, which is extremely advantageous in manufacturing.

次に本発明をスタフガード型TPTの製造に適用した第
2実施例につき説明する。
Next, a second embodiment in which the present invention is applied to manufacturing a stuffed guard type TPT will be described.

第2A図に示すように、まずガラス基板1上に多結晶S
iから成るゲート電極4.5iOzから成るゲート絶縁
膜3及びa−Si膜2を形成した後、第1実施例と同様
にして全面にPOX膜5を形成する。
As shown in FIG. 2A, first, polycrystalline S is placed on the glass substrate 1.
After forming the gate electrode 4.5 iOz and the a-Si film 2, a POX film 5 is formed on the entire surface in the same manner as in the first embodiment.

次に第2B図に示すように、ガラス基板1の下方から例
えばエキシマ−レーザーによるレーザービーム6を照射
する。この際、第1実施例におけると同様にゲート電極
4がa−3i膜2へのエネルギー供給のマスクとして働
く結果、PO,膜5中のPがa−5i膜2中に拡散され
て、ゲート電極4に対してセルファラインにnゝ型のソ
ース領域7及びドレイン領域8が形成される。
Next, as shown in FIG. 2B, a laser beam 6 such as an excimer laser is irradiated from below the glass substrate 1. At this time, as in the first embodiment, as the gate electrode 4 acts as a mask for supplying energy to the a-3i film 2, PO and P in the film 5 are diffused into the a-5i film 2, and the gate electrode 4 acts as a mask for supplying energy to the a-3i film 2. An n-type source region 7 and drain region 8 are formed in self-alignment with respect to the electrode 4.

次に水洗によりPOX膜5を除去した後、第2C図に示
すように、ソース領域7及びドレイン領域8にそれぞれ
電極9.lOを形成し、さらに全面にパッシベーション
膜11を形成して、目的とするnチャネルのスタフガー
ド型TPTを完成させる。
Next, after removing the POX film 5 by washing with water, as shown in FIG. 2C, electrodes 9. 1O is formed, and a passivation film 11 is further formed on the entire surface to complete the intended n-channel stuffed guard type TPT.

この第2実施例によれば、第1実施例と同様に室温でソ
ース領域7及びドレイン領域8を容易に形成することが
できるので、低温プロセスにより、低融点のガラス基板
lを用いてスタフガード型TPTを製造することができ
る。しかも第1実施例と同様にソース領域7及びドレイ
ン領域8をゲート電極4に対してセルファラインに形成
することができるので1、ソース・ゲート間及びドレイ
ン・ゲート間の容量を小さくすることができ、従ってス
イッチング速度の大きいスタフガード型TPTを得るこ
とができる。のみならず、a−5i膜2を薄くすること
により、ゲート電極4と多少の重なりが生ずるようにソ
ース領域7及びドレイン領域8を形成することができる
ので、TPTのオン時にこれらのソース領域7及びドレ
イン領域8とチャネルとの間に寄生抵抗、すなわち反転
層となっていない真性半導体層が存在せず、従ってTP
Tの特性が良好である。
According to the second embodiment, the source region 7 and the drain region 8 can be easily formed at room temperature as in the first embodiment, so a stuff guard type TPT can be manufactured. Moreover, as in the first embodiment, the source region 7 and the drain region 8 can be formed in a self-aligned manner with respect to the gate electrode 4, so that the capacitance between the source and the gate and between the drain and the gate can be reduced. Therefore, it is possible to obtain a stuffed guard type TPT with a high switching speed. In addition, by making the a-5i film 2 thinner, the source region 7 and drain region 8 can be formed so as to overlap with the gate electrode 4 to some extent. There is no parasitic resistance, that is, an intrinsic semiconductor layer that is not an inversion layer, between the drain region 8 and the channel, and therefore the TP
T characteristics are good.

以上本発明の実施例につき説明したが、本発明は上述の
2つの実施例に限定されるものではなく、本発明の技術
的思想に基づく種々の変形が可能である。例えば、上述
の2つの実施例において、P08膜5の代わりに必要に
応じてsbo、膜やASOII膜を用いてもよい。さら
にBOX膜を用いることにより、ソース領域7及びドレ
イン領域8がp゛型であるpチャネルのTPTを製造す
ることができる。また上述の2つの実施例において用い
たa−5i膜20代わりに多結晶Si膜、単結晶Si膜
、さらには必要に応じてSi以外の半導体膜を用いるこ
とも可能である。同様に、必要に応じてガラス基板1の
他に石英基板等を用いることも可能である。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above two embodiments, and various modifications can be made based on the technical idea of the present invention. For example, in the two embodiments described above, instead of the P08 film 5, an sbo film or an ASOII film may be used as necessary. Further, by using the BOX film, it is possible to manufacture a p-channel TPT in which the source region 7 and drain region 8 are p' type. Further, instead of the a-5i film 20 used in the above two embodiments, it is also possible to use a polycrystalline Si film, a single crystal Si film, or even a semiconductor film other than Si if necessary. Similarly, it is also possible to use a quartz substrate or the like in addition to the glass substrate 1, if necessary.

さらに、上述の2つの実施例においては、不純物拡散を
行わせるための加熱源としてエキシマ−レーザーによる
レーザービームを用いたが、必要に応じてYAGレーザ
−、ルビーレーザー等によるレーザービーム照射、電子
ビーム照射、IR照射等を用いてもよい。
Furthermore, in the above two embodiments, a laser beam by an excimer laser was used as a heating source for impurity diffusion, but if necessary, laser beam irradiation by a YAG laser, ruby laser, etc., or electron beam irradiation could be used. Irradiation, IR irradiation, etc. may also be used.

さらにまた、POX膜5(またはBO,膜)の除去は水
洗以外の方法、例えば所定のエツチング液を用いたウェ
ットエツチングやドライエツチングによっても行うこと
が可能である。
Furthermore, the POX film 5 (or BO, film) can be removed by a method other than washing with water, such as wet etching or dry etching using a predetermined etching solution.

なお上述の2つの実施例においては、本発明をTPTの
製造に適用した場合につき説明したが、その他の半導体
装置にも本発明を通用することが可能である。
In the above two embodiments, the present invention is applied to the manufacture of TPT, but the present invention can also be applied to other semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

本発明に係る半導体装置の製造方法によれば、半導体装
置の特性に悪影響を与えないように半導体基体に容易に
しかも低温で不純物拡散を行うことが可能であるので、
特性の良好な半導体装置を低温プロセスにより製造する
ことが可能である。
According to the method for manufacturing a semiconductor device according to the present invention, it is possible to easily diffuse impurities into a semiconductor substrate at a low temperature so as not to adversely affect the characteristics of the semiconductor device.
It is possible to manufacture a semiconductor device with good characteristics by a low-temperature process.

しかも製造工程の簡略化及び製造コストの低減を図るこ
とができる。
Furthermore, it is possible to simplify the manufacturing process and reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第1C図は本発明をプレーナ型TPTの製造
に適用した第1実施例を工程順に示す断面図、第2A図
〜第2C図は本発明をスタッガード型TPTの製造に適
用した第2実施例を工程順に示す断面図である。 なお図面に用いた符号において、 l・・・−・・・−・−・・−・・ガラス基板2−・・
・−・−一一−−−−・・−a−St膜4・−−−−一
−・−・・・−−−一一−−ゲート電極5−・・・・・
・・・・−・・−・PO,膜6−・−・−・・〜・−・
・−・−・・レーザービーム7−・−・−・−・−・−
・・・ソース領域8・・−−−一−・・−・・−・・・
−・・ドレイン領域である。
Figures 1A to 1C are cross-sectional views showing the first embodiment in which the present invention is applied to the manufacture of a planar TPT, and Figures 2A to 2C are sectional views in which the present invention is applied to the manufacture of a staggered TPT. FIG. 7 is a cross-sectional view showing the second embodiment in the order of steps. In addition, in the symbols used in the drawings, l...-------...Glass substrate 2-...
・-・-11-------a-St film 4------1-----11--Gate electrode 5--
・・−・・−・PO, Membrane 6−・−・−・・〜・−・
・−・−・・Laser beam 7−・−・−・−・−・−
...Source area 8...---1-...
-...Drain region.

Claims (1)

【特許請求の範囲】 不純物原子と酸素原子との化合物層を低温プロセスによ
り半導体基体上に形成する工程と、熱処理を行うことに
より、上記化合物層を不純物拡散源として上記半導体基
体に上記不純物原子を拡散させる工程と、 上記化合物層を除去する工程とをそれぞれ具備すること
を特徴とする半導体装置の製造方法。
[Claims] By forming a compound layer of impurity atoms and oxygen atoms on the semiconductor substrate by a low-temperature process and performing heat treatment, the impurity atoms can be introduced into the semiconductor substrate using the compound layer as an impurity diffusion source. A method for manufacturing a semiconductor device, comprising the steps of diffusing the compound layer and removing the compound layer.
JP60153679A 1985-07-12 1985-07-12 Method for manufacturing semiconductor device Expired - Lifetime JPH0797565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60153679A JPH0797565B2 (en) 1985-07-12 1985-07-12 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60153679A JPH0797565B2 (en) 1985-07-12 1985-07-12 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS6214472A true JPS6214472A (en) 1987-01-23
JPH0797565B2 JPH0797565B2 (en) 1995-10-18

Family

ID=15567792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60153679A Expired - Lifetime JPH0797565B2 (en) 1985-07-12 1985-07-12 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0797565B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215669A (en) * 1988-07-01 1990-01-19 Ricoh Co Ltd Semiconductor device
US5656511A (en) * 1989-09-04 1997-08-12 Canon Kabushiki Kaisha Manufacturing method for semiconductor device
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5956105A (en) * 1991-06-14 1999-09-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors
US6778231B1 (en) 1991-06-14 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device
US6975296B1 (en) 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642336A (en) * 1979-09-14 1981-04-20 Fujitsu Ltd Manufacturing method of semiconductor device
JPS59218775A (en) * 1983-01-19 1984-12-10 Seiko Epson Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5642336A (en) * 1979-09-14 1981-04-20 Fujitsu Ltd Manufacturing method of semiconductor device
JPS59218775A (en) * 1983-01-19 1984-12-10 Seiko Epson Corp Manufacture of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215669A (en) * 1988-07-01 1990-01-19 Ricoh Co Ltd Semiconductor device
US5656511A (en) * 1989-09-04 1997-08-12 Canon Kabushiki Kaisha Manufacturing method for semiconductor device
US6713783B1 (en) 1991-03-15 2004-03-30 Semiconductor Energy Laboratory Co., Ltd. Compensating electro-optical device including thin film transistors
US5933205A (en) * 1991-03-26 1999-08-03 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5963278A (en) * 1991-03-26 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method for driving the same
US5956105A (en) * 1991-06-14 1999-09-21 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US6778231B1 (en) 1991-06-14 2004-08-17 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device
US6975296B1 (en) 1991-06-14 2005-12-13 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same
US7928946B2 (en) 1991-06-14 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Electro-optical device and method of driving the same

Also Published As

Publication number Publication date
JPH0797565B2 (en) 1995-10-18

Similar Documents

Publication Publication Date Title
KR920009745B1 (en) Manufacturing method of semiconductor
JPH0669149A (en) Fabrication of semiconductor device
JP2001028448A (en) Manufacture if thin-film transistor
US20060030109A1 (en) Method to produce highly doped polysilicon thin films
JPS6214472A (en) Manufacture of semiconductor device
JPH0691032B2 (en) Method for manufacturing semiconductor device
JPH04287332A (en) Manufacture of semiconductor element
JPH03148836A (en) Manufacture of thin film transistor
JP2771812B2 (en) Method for manufacturing semiconductor device
JPH0212924A (en) Manufacture of bipolar transistor
JPH05235031A (en) Manufacture method of thin film transistor
JP2874175B2 (en) Method for manufacturing semiconductor device
JPH02163942A (en) Manufacture of mis transistor
JP3413699B2 (en) Semiconductor device and manufacturing method thereof
JPH118195A (en) Manufacture of thin film transistor
KR100268860B1 (en) Manufacturing method of a semiconductor device
JPH06342808A (en) Method of manufacturing thin film transistor
KR20010003691A (en) Method of forming shallow junction of semiconductor device
KR0124060B1 (en) Forming method of insulating layer for flatening of semiconductor device
KR100406564B1 (en) Method for manufacturing mos field effect transistor(fet)
JPH0845837A (en) Production process of polycrystalline semiconductor film
JPH02187035A (en) Manufacture of semiconductor device
JPH04354328A (en) Production of semiconductor device
JPH02312244A (en) Manufacture of semiconductor device
KR20010065336A (en) Method For Forming The Source-Drain Of MOS - Transitor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term