JPS62143365A - Manufacture of organic electrolyte battery - Google Patents

Manufacture of organic electrolyte battery

Info

Publication number
JPS62143365A
JPS62143365A JP60283442A JP28344285A JPS62143365A JP S62143365 A JPS62143365 A JP S62143365A JP 60283442 A JP60283442 A JP 60283442A JP 28344285 A JP28344285 A JP 28344285A JP S62143365 A JPS62143365 A JP S62143365A
Authority
JP
Japan
Prior art keywords
positive electrode
case
heat treatment
chalcopyrite
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60283442A
Other languages
Japanese (ja)
Inventor
Takafumi Fujii
隆文 藤井
Teruyoshi Morita
守田 彰克
Nobuo Eda
江田 信夫
Hide Koshina
秀 越名
Kaoru Murakami
薫 村上
Shuichi Nishino
西野 秀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60283442A priority Critical patent/JPS62143365A/en
Publication of JPS62143365A publication Critical patent/JPS62143365A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To prevent an increase in internal resistance and a drop in discharge capacity at high temperature storage from occurring, by applying heat treatment to the pellet pressurized and molded to an active material inclusive of chalcopyrite after mixing a conductive agent or this agent and a binding agent under the specified temperature range in a state of the pellet alone or being molded as one body together with a metallic case. CONSTITUTION:A positive electrode is made up of molding such a pellet that is produced as pressurized and molded to an active material after mixing a conductive agent alone or this agent and a binding agent, with itself or together with a metallic case as one body, and it is subjected to heat treatment at a temperature range of 70-120 deg.C. With this heat treatment, the positive electrode 1 is mixed with a chalcopyrite 100pts.wt. and a graphite 10pts.wt. as a conductive agent and formed into a compact. Next, this positive electrode 1 is housed in a case 2 being nickeled to iron and, after being fitted with a positive electrode ring 3 consisting of stainless steel, it is pressurized again and unitized in this case. In addition, the positive electrode 1 unitized with the case is subjected to the heat treatment at the specified temperature under decompression (or under atmospheric pressure allowable).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、カルコパイライト単独もしくはカルコパイラ
イトと金属酸化物との混合物よりなる正極活物質を熱処
理する有機電解液電池の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing an organic electrolyte battery in which a positive electrode active material made of chalcopyrite alone or a mixture of chalcopyrite and a metal oxide is heat-treated.

従来の技術 従来この種の有機電解液電池は、正極活物質に金属の酸
化物、硫化物などを、負極活物質にリチウム、アルミニ
ウム、マグネシウムまたはこれらを含む合金を用い、電
解液としてピレンカーボネート、γ−ブチロラクトンな
どのエステル、1゜2ジメトキシエタン、1,3ジオキ
ソランなどのエーテルの単独または2種以上の混合溶媒
中に、過塩素酸リチウム、ホウ7ノ化リチウムなどの無
機塩を溶解したものなどで構成され、エネルギー密度が
高く、自己放電や耐漏液性にも濠れる′特長を有するも
のである。
Conventional technology Conventionally, this type of organic electrolyte battery uses metal oxides, sulfides, etc. as the positive electrode active material, lithium, aluminum, magnesium, or alloys containing these as the negative electrode active material, and uses pyrene carbonate, pyrene carbonate, etc. as the electrolyte. Inorganic salts such as lithium perchlorate and lithium boro7onide are dissolved in a single or mixed solvent of two or more of esters such as γ-butyrolactone, ethers such as 1゜2 dimethoxyethane, and 1,3 dioxolane. It has the characteristics of high energy density, self-discharge and leakage resistance.

とぐに、正極にフッ化炭素、二酸化マンガンあるいは塩
化チオニルを、負極にリチウムを用いたいわゆる3v級
のリチウム電池はすでに実用化されている。
So-called 3V class lithium batteries, which use carbon fluoride, manganese dioxide, or thionyl chloride for the positive electrode and lithium for the negative electrode, have already been put into practical use.

一方、酸化銀電池や水銀電池など既存1捏池との互換性
を目的とした1、5v級リチウム電池の商品化も進めら
、hている。
Meanwhile, progress is being made in the commercialization of 1.5v class lithium batteries for compatibility with existing batteries such as silver oxide batteries and mercury batteries.

とくにカルコパイライトを正極活物質とするりチウム電
池は、二硫化鉄(F1382)や酸化第二銀(Cub)
などを正極活物質とするものに比べて電圧平坦性、ある
いは放電の進行に伴う正極の、膨潤が小さいなどの点で
擾れ、すでに特開昭57−34671号特開昭59−8
7764号公報などで開示されている。
In particular, lithium batteries that use chalcopyrite as the positive electrode active material use iron disulfide (F1382) and silver oxide (Cub).
Compared to the positive electrode active material, the voltage flatness and the swelling of the positive electrode as the discharge progresses are small.
This is disclosed in Publication No. 7764 and the like.

また、エネルギー密度が大きいという二硫化鉄や酸化第
二銅の長所を生かしつ\、放電々圧の二段カーブや放電
の進行に伴う正極の膨潤が大きいといった欠点を解消す
るために、カルコパイライトを混合して改良が図られた
特開昭58−19766号公報、特開昭58−2060
56号公報の例もある。
In addition, while taking advantage of iron disulfide and cupric oxide's high energy density, we developed chalcopyrite to overcome the drawbacks of a two-stage discharge pressure curve and large swelling of the positive electrode as discharge progresses. JP-A-58-19766 and JP-A-58-2060, which were improved by mixing
There is also an example in Publication No. 56.

カルコパイライトは天然の鉱石を粉砕した天然品と、C
u、Fe、SあるいはCu2 S + F e S2な
どから合成された合成品とがある。これらのうち天然品
は電池性能に悪影響を及ぼす不純物が多く含まれている
ため、通常は合成品が使用されていた。
Chalcopyrite is a natural product made by crushing natural ores, and C
There are synthetic products synthesized from u, Fe, S, Cu2 S + Fe S2, etc. Of these, synthetic products are usually used because natural products contain many impurities that adversely affect battery performance.

しかしながら、いずれの場合にも水分に対する安定性に
乏しく、水の存在下でカルコパイライト中の鉄分が溶出
する性質がある。このため、従来カルコパイライトを使
用する正極の脱水処理条件は、常圧まだは減圧下150
℃程度の温度で加熱処理されていた。
However, in either case, the stability against moisture is poor, and the iron content in chalcopyrite tends to be eluted in the presence of water. For this reason, conventional dehydration treatment conditions for positive electrodes using chalcopyrite are normal pressure and reduced pressure.
It was heat-treated at a temperature of about ℃.

発明が解決しようとする問題点 このような従来の合成品であっても電池性能の劣化、と
くに高温保存において著しい内部抵抗の増加や放電容量
の低下という問題があった。
Problems to be Solved by the Invention Even with such conventional synthetic products, there has been a problem of deterioration of battery performance, particularly a significant increase in internal resistance and decrease in discharge capacity during high-temperature storage.

本発明はこのような問題を解決するもので、正極体を熱
処理することを目的としたものである。
The present invention is intended to solve such problems, and is aimed at heat-treating a positive electrode body.

問題点を解決するだめの手段 この問題を解決するために本発明は、カルコパイライト
を含む活物質に導電剤単独もしくは導電剤と結着剤を混
合して加圧成形したペレットをペレット単独かもしくは
金属ケースに成形一体化した状態で70〜12C)℃の
温度範囲で加熱処理するものである。
Means to Solve the Problem In order to solve this problem, the present invention provides pellets made by pressure molding an active material containing chalcopyrite, a conductive agent alone or a mixture of a conductive agent and a binder. It is heat-treated in a temperature range of 70 to 12C) while integrally molded into a metal case.

作  用 この構成による性能劣化を起こした電池を種々解析した
結果、性能劣化を引き起こす理由は必ずしも明らかでは
ないが、正極活物質であるカルコパイライトおよび正極
合剤を加圧成形したペレットを従来の150℃あるいは
それ以上の高温で加熱処理すると、カルコパイライト中
のイオウの脱離、カルコパイライトの酸化、また電池内
では活物質中のイオウが電解液に溶解し電解液の分解や
リチウム負極上への析出などが起こりゃすくなるためだ
と考えられる。
As a result of various analyzes of batteries with performance deterioration caused by this configuration, the reason for the performance deterioration is not necessarily clear. Heat treatment at high temperatures of °C or higher will cause desorption of sulfur in chalcopyrite, oxidation of chalcopyrite, and sulfur in the active material will dissolve in the electrolyte in the battery, resulting in decomposition of the electrolyte and deposition on the lithium negative electrode. This is thought to be because precipitation becomes more likely to occur.

一方、70℃以下の低温で処理した場合は、カルコパイ
ライトあるいはペレット中の水分が除去されにくいため
に、残留水分によってカルコパイライト中の鉄が溶出す
る。また残留水分が負極のリチウムと反応する。このよ
うなことから内部抵抗の上昇や放電容量が低下が起こる
と考えられる。
On the other hand, when the treatment is carried out at a low temperature of 70° C. or lower, it is difficult to remove water in chalcopyrite or pellets, and iron in the chalcopyrite is eluted by residual water. In addition, residual moisture reacts with lithium in the negative electrode. It is thought that this causes an increase in internal resistance and a decrease in discharge capacity.

本発明によれば、カルコパイライトの酸化やイオウの脱
離、あるいは電解液中への溶出、さらにはリチウム負極
への析出が抑制されることがら電池性能が安定すること
となる。
According to the present invention, the oxidation of chalcopyrite, the desorption of sulfur, its elution into the electrolytic solution, and further its precipitation on the lithium negative electrode are suppressed, resulting in stable battery performance.

実施例 以下本発明の実施例について詳述する。Example Examples of the present invention will be described in detail below.

実施例■ 第1図において、1は正極でカルコバイライト本実施例
では合成したカルコパイライトを用いたが、天然のカル
コパイライトを使用しても良い100重量部、導電剤と
してグラフフィト1o重量部を混合してなる成形体であ
る。
Example ■ In Fig. 1, 1 is a positive electrode and chalcopyrite is used. In this example, synthesized chalcopyrite was used, but 100 parts by weight of natural chalcopyrite may be used, and 10 parts by weight of graphite was used as a conductive agent. It is a molded product made by mixing.

次に、この正極は鉄にニッケルメッキを施したケースに
収納し、ステンレス鋼よりなる正極リング3を装着した
後、再度加圧してケースに一体化したものである。
Next, this positive electrode was housed in a case made of nickel-plated iron, and after a positive electrode ring 3 made of stainless steel was attached, it was again pressurized and integrated into the case.

さらに、前記ケースに一体化した正極は減圧下(または
常圧下でも良い)において次表に示した各温度で12時
間の加熱処理を行なった。
Furthermore, the positive electrode integrated into the case was heat-treated for 12 hours at each temperature shown in the following table under reduced pressure (or normal pressure may be used).

なおこの場合、正極のみを加熱処理し、その後ケースに
一体化しても良い。
In this case, only the positive electrode may be heat-treated and then integrated into the case.

試料屋  熱処理温度 1     60(℃) 4   12Q 4は封口板、5はその内面に圧着した金属リチウムから
なる負極である。6はポリプロピレン製の不織布からな
る含浸材、7はポリプロピレン製の微細孔フィルムから
なるセパレータで、炭酸プロピレンと1.2ジメトキシ
エタンとを体積比で1:1の割合で混合した溶媒に過塩
素酸リチウムを1モル/l溶解させた電解液の所定址を
含浸している。8はポリプロピレン製のガスケットであ
る。
Sample shop Heat treatment temperature 1 60 (°C) 4 12Q 4 is a sealing plate, and 5 is a negative electrode made of metal lithium that is pressed onto the inner surface of the sealing plate. 6 is an impregnated material made of polypropylene nonwoven fabric, 7 is a separator made of polypropylene microporous film, and perchloric acid is added to a solvent containing propylene carbonate and 1.2 dimethoxyethane mixed at a volume ratio of 1:1. A predetermined area is impregnated with an electrolytic solution in which 1 mol/l of lithium is dissolved. 8 is a gasket made of polypropylene.

以上のようにして組立てた電池を60’Cで6力月間の
保存試験を行なった。
The battery assembled as described above was subjected to a storage test at 60'C for 6 months.

第2図、第3図は保存試験による内部抵抗変化、および
20℃で1 sKΩ放電(1,ov終止)を行なったと
きの放電容量を示す。
Figures 2 and 3 show internal resistance changes due to storage tests and discharge capacity when 1 sKΩ discharge (1, ov termination) was performed at 20°C.

実施例■ 前記カルコパイライト1oo重量部に導電剤としてアセ
チレンブラック5重量部および結着剤として47フ化エ
チレン・フッ化プロピレン共重合体6重量部からなる正
極を使用して、実施例工と同様に電池の組立てならびに
保存試験を行なった。
Example ■ A positive electrode consisting of 10 parts by weight of the chalcopyrite, 5 parts by weight of acetylene black as a conductive agent, and 6 parts by weight of 47-fluorinated ethylene/fluorinated propylene copolymer as a binder was used, but the same procedure as in Example was carried out. The battery was assembled and a storage test was conducted.

第4図、第6図はその試験結果で6Q℃で6力月の保存
試験による内部抵抗および放電容量の変化を示す。
FIGS. 4 and 6 show the test results, and show changes in internal resistance and discharge capacity after a storage test of 6 months at 6Q°C.

実施例■ カルコパイライト501計部、酸化第二銅5゜重量部お
よびグラファイト10重量部からなる正極を使用して実
施例■と同様に電池の組立てならびに保存試験を行なっ
た。その結果を前記同様第6図、第7図に示す。
Example (2) A battery was assembled and a storage test was carried out in the same manner as in Example (2) using a positive electrode consisting of 1 part by weight of chalcopyrite 50, 5 parts by weight of cupric oxide and 10 parts by weight of graphite. The results are shown in FIGS. 6 and 7 as above.

実施例■ カルコバイライト50重量部、酸化第二銅60重量部、
アセチレンプラック6重量部、4フフ化エチレン、67
ノ化プロピレン共重合体6重量部からなる正極を使用し
て実施例■と同様に電池を組立て、保存試験を行なった
。その結果を前記同様第8図、第9図に示す。
Example ■ 50 parts by weight of chalcobyrite, 60 parts by weight of cupric oxide,
Acetylene plaque 6 parts by weight, 4-fluorinated ethylene, 67
A battery was assembled in the same manner as in Example (2) using a positive electrode made of 6 parts by weight of dipropylene copolymer, and a storage test was conducted. The results are shown in FIGS. 8 and 9 as above.

これらの図から80〜120℃の温度で加熱処理した正
極ペレットを用いると保存後における内部抵抗の増加も
少なく放電容量の低下も少ないことが明らかであり、加
熱処理温度の下限は前述の水分除去の点から7o℃であ
る。
From these figures, it is clear that using positive electrode pellets heat-treated at a temperature of 80 to 120°C results in less increase in internal resistance and less decrease in discharge capacity after storage, and the lower limit of the heat treatment temperature is determined by the moisture removal described above. From this point, it is 7oC.

発明の効果 合してなる正極を70〜120℃の温度範囲で加熱処理
することによシ、電池の高温保存における内部抵抗およ
び容量劣化を解消した有機電解液電池を提供できるもの
である。
By heat-treating the positive electrode formed by the effects of the invention in a temperature range of 70 to 120°C, it is possible to provide an organic electrolyte battery that eliminates internal resistance and capacity deterioration during high-temperature storage of the battery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例により製造した有機電解液電
池を示す半断面図、第2図、第3図は実施例■に記載し
た電池の初期および保存後の内部抵抗、放電容量の変化
を示す図、第4図、第5図は実施例Hに記載の電池の内
部抵抗、放電容量の変化を示す図、第6図、第7図は実
施例■に記載の電池の内部抵抗、放電容量の変化を示す
図、第8図、第9図は実施例■に記載の電池の60℃、
6力月保存による内部抵抗および放電容量の変化を示す
図である。 1・・・・正極、2・・・・・ケース、3・・・・・・
正極リング、4・・・・・・封口板、6・・・・・・負
極、6・・・・・・含浸材、7・・・・・・セパレータ
、8・・・・・・ガスケット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ルー
工種 ?・−ブース 3−・−正極リング°。 4・・−封口根 5−・−酋  7艷F 6°°−箸r浸亨す 7−−−こノでレータ 第 1 図                 6゛−
カスブ・・ノド第2図 処  理  盈  ぺ((°Cン 第4図 第5図 処理悪文(C) 第6図 第7図 so       too       150   
   200処 理 温 横 (C)
FIG. 1 is a half-sectional view showing an organic electrolyte battery manufactured according to an embodiment of the present invention, and FIGS. 2 and 3 show the internal resistance and discharge capacity at the initial stage and after storage of the battery described in Example Figures 4 and 5 are diagrams showing changes in the internal resistance and discharge capacity of the battery described in Example H. Figures 6 and 7 are diagrams showing the internal resistance of the battery described in Example ■. , Figures 8 and 9 are diagrams showing changes in discharge capacity at 60°C,
FIG. 3 is a diagram showing changes in internal resistance and discharge capacity due to storage for six months. 1...Positive electrode, 2...Case, 3...
Positive electrode ring, 4... Sealing plate, 6... Negative electrode, 6... Impregnating material, 7... Separator, 8... Gasket. Name of agent: Patent attorney Toshi Nakao and one other person?・−Booth 3−・−Positive ring °. 4...-Sealing root 5---Choice 7㉷F 6°°-Chopsticks r immersed 7---Here's the rotor Fig. 1 6゛-
Kasbu throat Figure 2 Processing Ei Pe ((°C Figure 4 Figure 5 Processing Bad sentence (C) Figure 6 Figure 7 so too 150
200 processing warm side (C)

Claims (2)

【特許請求の範囲】[Claims] (1)カルコパイライト(CuFeS_2_−_x、但
し0<x≦0.24)を含む正極、軽金属を活物質とす
る負極および有機電解液からなる電池の製造法であって
、前記正極は活物質に導電剤単独もしくは導電剤と結着
剤を混合して加圧成形して得たペレットを、ペレット単
独かもしくは金属ケースに成形一体化し70〜120℃
の温度範囲で加熱処理することを特徴とする有機電解液
電池の製造法。
(1) A method for manufacturing a battery consisting of a positive electrode containing chalcopyrite (CuFeS_2_-_x, where 0<x≦0.24), a negative electrode using a light metal as an active material, and an organic electrolyte, wherein the positive electrode is an active material. Pellets obtained by pressure molding a conductive agent alone or a mixture of a conductive agent and a binder are molded into a metal case or molded together at 70 to 120°C.
A method for producing an organic electrolyte battery, characterized by heat treatment in a temperature range of .
(2)導電剤は黒鉛又は炭素から成る特許請求の範囲第
1項記載の有機電解液電池の製造法。
(2) The method for manufacturing an organic electrolyte battery according to claim 1, wherein the conductive agent is made of graphite or carbon.
JP60283442A 1985-12-17 1985-12-17 Manufacture of organic electrolyte battery Pending JPS62143365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60283442A JPS62143365A (en) 1985-12-17 1985-12-17 Manufacture of organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60283442A JPS62143365A (en) 1985-12-17 1985-12-17 Manufacture of organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS62143365A true JPS62143365A (en) 1987-06-26

Family

ID=17665596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60283442A Pending JPS62143365A (en) 1985-12-17 1985-12-17 Manufacture of organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS62143365A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294363A (en) * 1988-09-30 1990-04-05 Furukawa Battery Co Ltd:The Positive electrode for nonaqueous electrolyte secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927454A (en) * 1982-08-05 1984-02-13 Matsushita Electric Ind Co Ltd Manufacture of organic electrolytic cell
JPS59171465A (en) * 1983-03-18 1984-09-27 Matsushita Electric Ind Co Ltd Manufacture of positive pole active substance for organic electrolyte battery
JPS59173958A (en) * 1983-03-22 1984-10-02 Matsushita Electric Ind Co Ltd Manufacture of positive active material for organic electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927454A (en) * 1982-08-05 1984-02-13 Matsushita Electric Ind Co Ltd Manufacture of organic electrolytic cell
JPS59171465A (en) * 1983-03-18 1984-09-27 Matsushita Electric Ind Co Ltd Manufacture of positive pole active substance for organic electrolyte battery
JPS59173958A (en) * 1983-03-22 1984-10-02 Matsushita Electric Ind Co Ltd Manufacture of positive active material for organic electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294363A (en) * 1988-09-30 1990-04-05 Furukawa Battery Co Ltd:The Positive electrode for nonaqueous electrolyte secondary battery
JP2691580B2 (en) * 1988-09-30 1997-12-17 古河電池株式会社 Positive electrode for non-aqueous electrolyte secondary batteries

Similar Documents

Publication Publication Date Title
JPH0368507B2 (en)
JPS58166633A (en) Positive electrode for organic solvent cell
JP3223523B2 (en) Non-aqueous electrolyte secondary battery
JP3396990B2 (en) Organic electrolyte secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP2734978B2 (en) Non-aqueous electrolyte battery
JPS62143365A (en) Manufacture of organic electrolyte battery
JPS6146948B2 (en)
JPH0251218B2 (en)
JPS61264679A (en) Organic electrolyte battery
JPS63307662A (en) Organic electrolyte battery
JPH03214562A (en) Manufacture of positive electrode for secondary battery with non-aqueous electrolyte
JPH03285264A (en) Nonaqueous electrolytic battery
JPS5987772A (en) Organic electrolyte battery
JPS62262371A (en) Organic electrolyte cell
JPS61264681A (en) Organic electrolyte battery
JPH02262246A (en) Organic electrolyte battery
JPS61264680A (en) Organic electrolyte battery
JPS59217946A (en) Manufacture of nonaqueous electrolyte battery
JPH0432160A (en) Organic electrolytic battery
JPH0215568A (en) Nonaqueous type electrolyte battery
JPS6211458B2 (en)
JPS59224073A (en) Nonaqueous electrolyte cell
JPH0215566A (en) Nonaqueous type electrolyte battery