JPS6211458B2 - - Google Patents

Info

Publication number
JPS6211458B2
JPS6211458B2 JP55035274A JP3527480A JPS6211458B2 JP S6211458 B2 JPS6211458 B2 JP S6211458B2 JP 55035274 A JP55035274 A JP 55035274A JP 3527480 A JP3527480 A JP 3527480A JP S6211458 B2 JPS6211458 B2 JP S6211458B2
Authority
JP
Japan
Prior art keywords
manganese dioxide
battery
hydrogen
positive electrode
open circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55035274A
Other languages
Japanese (ja)
Other versions
JPS56132770A (en
Inventor
Yoshinori Toyoguchi
Takashi Iijima
Teruyoshi Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3527480A priority Critical patent/JPS56132770A/en
Publication of JPS56132770A publication Critical patent/JPS56132770A/en
Publication of JPS6211458B2 publication Critical patent/JPS6211458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、二酸化マンガンを正極活物質に用い
る有機電解質電池の正極の製造方法に関するもの
で、放電電圧より不当に高い開路電圧を示さない
電池を与える二酸化マンガン正極を提供すること
を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a positive electrode for an organic electrolyte battery using manganese dioxide as a positive electrode active material, and provides a manganese dioxide positive electrode that provides a battery that does not exhibit an open circuit voltage unreasonably higher than the discharge voltage. The purpose is to

リチウムで代表される軽金属を負極活物質とす
る有機電解質電池は高エネルギー密度を有し、特
に電卓や電子ウオツチ用電源としての小形電池と
して普及しつつある。この電池の正極活物質とし
てはいくつかのものが実用化されているがその1
つに二酸化マンガンがある。
BACKGROUND OF THE INVENTION Organic electrolyte batteries that use light metals such as lithium as negative electrode active materials have high energy density and are becoming popular as small batteries, especially as power sources for calculators and electronic watches. There are several cathode active materials in practical use for this battery, one of which is
There is manganese dioxide.

二酸化マンガンを正極に用いた電池の開路電圧
は3.4〜3.5Vである。放電電圧は、放電電流や温
度により変化するが、約3.05〜2.7Vの範囲に入る
ものがほとんどである。この電池は、一般に電卓
や電子ウオツチ用電源として用いられ、その電卓
や電子ウオツチには、3V駆動のICや3V用液晶表
示装置が使われている。これらICや液晶は、一
般には3V用として設計されているため、動作電
圧の範囲は3.3V〜2.7Vとされている場合が多
く、電池電圧がこの範囲の電圧より大である時に
は、電子ウオツチでは、時計が進んだり、また表
示素子の不必要なセグメントまでもが表れたりし
て不都合な事態となる。また電圧が低い場合には
時計が遅れたり、表示に必要なセグメントが表れ
なかつたりする。このICや液晶表示素子の動作
電圧範囲を変えることは、技術的には可能である
が、特別仕様のものとなり、より高価なものとな
る。
The open circuit voltage of a battery using manganese dioxide as the positive electrode is 3.4 to 3.5V. The discharge voltage varies depending on the discharge current and temperature, but most fall within the range of about 3.05 to 2.7V. This battery is generally used as a power source for calculators and electronic watches, and these calculators and electronic watches use 3V drive ICs and 3V liquid crystal display devices. These ICs and liquid crystals are generally designed for 3V, so the operating voltage range is often 3.3V to 2.7V, and when the battery voltage is higher than this range, the electronic watch In this case, the clock may advance or even unnecessary segments of the display element may appear, resulting in an inconvenient situation. Furthermore, if the voltage is low, the clock may be delayed or the segments necessary for display may not appear. Although it is technically possible to change the operating voltage range of this IC or liquid crystal display element, it would require special specifications and would be more expensive.

負極にリチウム、正極に二酸化マンガンを用い
た有機電解質電池は、放電電圧が3.05〜2.7Vであ
り、上記の電子ウオツチや電卓用電源として適し
たものである。しかし、開路電圧は約3.4〜3.5V
と高く、このため電池を時計などに装着した場
合、電池の電圧が放電により3.3V以下になるま
では、時計の微調整ができず、また表示素子も電
圧が高い間は、各セグメントが表れ、丁度8の字
が出たようになる。これは電卓の場合も同じであ
る。従つて、これらの機器メーカーでは、電池を
装着し、数百時間経過後、電池電圧が3.3V以下
になつてから微調整し出荷するなど生産管理が煩
雑となる。一方、ユーザーの立場からは、電池交
換の際に、電池の電圧が3.4〜3.5Vから3.3V以下
になるまで使用できなくなるなどの欠点が生じ
る。この欠点をなくすには、一つには、ICや液
晶表示素子に特別仕様のものを用いるか、または
電池の開路電圧を3.3V以下にすることが必要と
なる。
An organic electrolyte battery using lithium for the negative electrode and manganese dioxide for the positive electrode has a discharge voltage of 3.05 to 2.7V, and is suitable as a power source for the above-mentioned electronic watches and calculators. But the open circuit voltage is about 3.4~3.5V
Therefore, when the battery is attached to a watch, etc., fine adjustment of the watch cannot be made until the battery voltage drops to 3.3V or less due to discharge, and each segment will not be displayed while the display element voltage is high. , it will look like a figure 8. The same is true for calculators. Therefore, production management is complicated for manufacturers of these devices, such as installing batteries, making fine adjustments, and shipping only after the battery voltage drops to 3.3V or less after several hundred hours have passed. On the other hand, from a user's perspective, there are disadvantages such as when replacing the battery, the battery cannot be used until the battery voltage drops from 3.4 to 3.5V to 3.3V or less. In order to eliminate this drawback, it is necessary to use specially designed ICs and liquid crystal display elements, or to reduce the open circuit voltage of the battery to 3.3V or less.

本発明は、この二酸化マンガン―リチウム電池
の放電電圧を変えないで、開路電圧を3.3V以下
に低下させることを目的としている。
The present invention aims to reduce the open circuit voltage of this manganese dioxide-lithium battery to 3.3V or less without changing the discharge voltage.

二酸化マンガン―リチウム電池の開路電圧が
3.4〜3.5Vと高い理由は、二酸化マンガン表面の
活性酸素によるものであり、この活性酸素をなく
すことにより電池の開路電圧は低下すると考えら
れる。そこで本発明者らは二酸化マンガンを85℃
以下の穏やかな条件で所定量以上の水素で処理
し、二酸化マンガン自体の低級酸化物への還元を
行わせることなく、水素を二酸化マンガン表面の
活性酸素と反応させ、生成する水分を真空乾燥に
より除去することにより、二酸化マンガン―リチ
ウム電池の開路電圧を3.3V以下に低下させるこ
とに成功した。
The open circuit voltage of a manganese dioxide-lithium battery is
The reason why it is as high as 3.4 to 3.5V is due to active oxygen on the surface of manganese dioxide, and it is thought that eliminating this active oxygen reduces the open circuit voltage of the battery. Therefore, the present inventors prepared manganese dioxide at 85°C.
Treat with a predetermined amount or more of hydrogen under the following mild conditions to allow hydrogen to react with active oxygen on the surface of manganese dioxide without reducing manganese dioxide itself to lower oxides, and remove the resulting moisture by vacuum drying. By removing this, they succeeded in lowering the open circuit voltage of a manganese dioxide-lithium battery to below 3.3V.

以下、本発明を実施例により詳細に説明する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

二酸化マンガンを400℃で4時間加熱し、二酸
化マンガン中の結合水や付着水を除いた。この二
酸化マンガン100重量部に対して、導電材のカー
ボンブラツク3重量部と結着剤のフツ素樹脂6重
量部を加えて混合し正極合剤とし、この正極合剤
0.3gを3トンの荷重で直径14.5mmの円板に圧縮
成型した。
Manganese dioxide was heated at 400°C for 4 hours to remove bound water and attached water in manganese dioxide. To 100 parts by weight of this manganese dioxide, 3 parts by weight of carbon black as a conductive material and 6 parts by weight of fluororesin as a binder are added and mixed to form a positive electrode mixture.
0.3g was compression molded into a disc with a diameter of 14.5mm under a load of 3 tons.

次に、この正極板を真空乾燥機中に入れ、減圧
にした後、窒素と水素を各種の割合で混合した気
体を乾燥機中に入れ密閉した後、85℃に昇温させ
3時間放置した。放置後85℃に保つたまま真空乾
燥を1晩行つた。
Next, this positive electrode plate was placed in a vacuum dryer, the pressure was reduced, and a gas mixture of nitrogen and hydrogen in various proportions was placed in the dryer and sealed, and the temperature was raised to 85°C and left for 3 hours. . After being left to stand, vacuum drying was performed overnight while maintaining the temperature at 85°C.

このように穏やかな条件下で水素と反応させる
には、85℃以下でなくてはならない。これ以上の
温度では二酸化マンガン自体が三二酸マンガンな
どの低級酸化物へ還元され、もはや正極活物質と
しての機能を失う。一方反応時間は短い方が製造
工程として良く、さらに生成した水分を除くのに
必要な乾燥時の温度は高い方がよい。これより85
℃では反応時間は短かく、次の乾燥工程も、温度
変化させることなく反応容器をかねた真空乾燥機
を減圧にするだけで良く製造工程として極めて簡
略化されたものとなる。
To react with hydrogen under such mild conditions, the temperature must be below 85°C. At temperatures above this temperature, manganese dioxide itself is reduced to lower oxides such as manganese sesquioxide and no longer functions as a positive electrode active material. On the other hand, the shorter the reaction time, the better the manufacturing process, and the higher the drying temperature required to remove the generated moisture. 85 from this
℃, the reaction time is short, and the subsequent drying step can be performed by simply reducing the pressure of the vacuum dryer that also serves as a reaction container without changing the temperature, making the manufacturing process extremely simple.

第1図は、上記のようにして製造した正極を用
いた電池を示すもので、1は正極、2はセパレー
タ、3はリチウム負極、4は電池ケース、5は封
口板、6はガスケツトである。
Figure 1 shows a battery using the positive electrode manufactured as described above, where 1 is a positive electrode, 2 is a separator, 3 is a lithium negative electrode, 4 is a battery case, 5 is a sealing plate, and 6 is a gasket. .

なお、電解液にはプロピレンカーボネートと
1,2―ジメトキシエタンとの体積比2:1の混
合物に1モル/の過塩素酸リチウムを溶解させ
たものを用いた。
The electrolytic solution used was a mixture of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 2:1 in which 1 mol/mol of lithium perchlorate was dissolved.

第2図は上記真空乾燥機中に正極とともに封入
した水素の量と、得られた正極を用いた電池の開
路電圧との関係を示している。図の水素量は、正
極中の二酸化マンガン1g当たりの量に換算し、
さらに標準状態(25℃、1気圧下)での体積で表
した。なお、水素は混合する窒素の量を調整して
1気圧にして真空乾燥機中に封入した。従つて、
水素量Oは水素と反応させない二酸化マンガンを
用いた場合に相当する。
FIG. 2 shows the relationship between the amount of hydrogen sealed together with the positive electrode in the vacuum dryer and the open circuit voltage of a battery using the obtained positive electrode. The amount of hydrogen in the figure is converted to the amount per gram of manganese dioxide in the positive electrode,
Furthermore, the volume was expressed under standard conditions (25°C, 1 atm). Note that hydrogen was sealed in a vacuum dryer at a pressure of 1 atmosphere by adjusting the amount of nitrogen to be mixed. Therefore,
The hydrogen amount O corresponds to the case where manganese dioxide which is not reacted with hydrogen is used.

第2図より、電池の開路電圧を3.3V以下とす
るには、水素の量は二酸化マンガン1g当たり
1.4c.c.以上必要であることがわかる。
From Figure 2, in order to keep the open circuit voltage of the battery below 3.3V, the amount of hydrogen per gram of manganese dioxide is
It turns out that 1.4cc or more is required.

この二酸化マンガン1gに対し水素1.4c.c.は、
二酸化マンガン1モルに対し水素0.0054モルに相
当し、MnO2→MnO1.9946の酸素量の変化に相当す
る。このことからも、二酸化マンガンの表面活性
酸素の除去のみで、二酸化マンガン内部への影響
がない状態で、開路電圧を3.3V以下とすること
が可能であることがわかる。
1.4cc of hydrogen per 1g of manganese dioxide is
This corresponds to 0.0054 mol of hydrogen per 1 mol of manganese dioxide, and corresponds to a change in the amount of oxygen from MnO 2 to MnO 1 .9946 . This also shows that it is possible to reduce the open circuit voltage to 3.3V or less only by removing surface active oxygen from manganese dioxide without affecting the inside of manganese dioxide.

第3図は、二酸化マンガン1g当たり1.5c.c.の
水素と反応させた正極を用いた電池Aの20℃60K
Ω負荷の場合の放電曲線を示した。比較例として
水素と反応させていない正極を用いた電池Bの放
電曲線をも示した。
Figure 3 shows battery A at 60K at 20℃ using a positive electrode reacted with 1.5cc of hydrogen per gram of manganese dioxide.
The discharge curve in case of Ω load is shown. As a comparative example, a discharge curve of battery B using a positive electrode not reacted with hydrogen is also shown.

これより本発明による電池Aは、放電特性の点
からは従来例Bと比べてあまり変わつていないこ
とがわかる。電子ウオツチや、電卓での使用条件
は消費電流は数マイクロアンペアーであり、第3
図より従来の二酸化マンガン―リチウム電池では
3.3V以上の放電電圧を示す時間が長いことがわ
かる。
From this, it can be seen that the battery A according to the present invention is not much different from the conventional example B in terms of discharge characteristics. The usage conditions for electronic watches and calculators are that the current consumption is several microamperes, and the third
From the figure, the conventional manganese dioxide-lithium battery
It can be seen that it takes a long time to show a discharge voltage of 3.3V or higher.

この実施例では水素と共に窒素を用いたが、窒
素の代わりにアルゴンなどの不活性ガスを用いて
も水素の効果には変わりがなく有効であつた。ま
た、正極に成型する前に、二酸化マンガン単独を
水素で処理しても効果がある。
In this example, nitrogen was used together with hydrogen, but even if an inert gas such as argon was used instead of nitrogen, the effect of hydrogen remained the same and was effective. It is also effective to treat manganese dioxide alone with hydrogen before molding it into a positive electrode.

二酸化マンガン―リチウム電池の正極を硫酸の
存在下で過酸化水素やヒドラジン、亜硫酸などの
還元剤で処理することは既に特開昭54―110428号
公報で知られている。しかしこのような還元剤で
処理しても開路電圧は3.5Vであると記載されて
おり、これら還元剤は電池の開路電圧を3.3V以
下にするのに効果がないことを示している。
It is already known from JP-A No. 110428/1983 that the positive electrode of a manganese dioxide-lithium battery is treated with a reducing agent such as hydrogen peroxide, hydrazine, or sulfite in the presence of sulfuric acid. However, it is stated that even when treated with such reducing agents, the open circuit voltage is 3.5V, indicating that these reducing agents are ineffective in reducing the open circuit voltage of the battery to 3.3V or less.

さらにこの技術では、処理後の二酸化マンガン
の水洗を行わないと、還元剤が二酸化マンガンに
付着したままであり、電池の保存特性に大きな影
響を及ぼす。一方、本発明の85℃以下での水素処
理は、反応容器をそのまま真空にすれば良く、工
程的にもはるかに優れている。
Furthermore, with this technology, if the manganese dioxide is not washed with water after treatment, the reducing agent remains attached to the manganese dioxide, which has a significant effect on the storage characteristics of the battery. On the other hand, the hydrogen treatment of the present invention at 85° C. or lower is much superior in terms of process, as it is sufficient to simply evacuate the reaction vessel.

二酸化マンガン表面の活性酸素をなくすには、
電池を予備放電する方法が考えられるが、この方
法では製造した電池全てを1つ1つ予備放電しな
ければならず、製造上繁雑となる。これに比べ本
発明の方法では、一度に多量の処理ができ、工程
的にも簡単ですむ利点がある。
To eliminate active oxygen on the surface of manganese dioxide,
A method of pre-discharging the batteries may be considered, but this method requires pre-discharging all the manufactured batteries one by one, making the manufacturing process complicated. In comparison, the method of the present invention has the advantage of being able to process a large amount at once and of being simple in terms of process.

以上のように、本発明によれば、容易に開路電
圧3.3V以下の二酸化マンガン―リチウム電池を
得ることができる。
As described above, according to the present invention, a manganese dioxide-lithium battery with an open circuit voltage of 3.3V or less can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に用いた電池の縦断面
図、第2図は正極の処理に用いた水素量と電池の
開路電圧との関係を示す図、第3図は電池の放電
特性の比較を示す。
Figure 1 is a longitudinal cross-sectional view of a battery used in an example of the present invention, Figure 2 is a diagram showing the relationship between the amount of hydrogen used in the treatment of the positive electrode and the open circuit voltage of the battery, and Figure 3 is the discharge characteristics of the battery. A comparison is shown.

Claims (1)

【特許請求の範囲】 1 二酸化マンガンを85℃以下の温度で水素で処
理する工程を有することを特徴とする有機電解質
電池用正極の製造法。 2 前記水素の量が、二酸化マンガン1g当たり
標準状態で少なくとも1.4c.c.である特許請求の範
囲第1項記載の有機電解質電池用正極の製造法。
[Claims] 1. A method for producing a positive electrode for an organic electrolyte battery, comprising the step of treating manganese dioxide with hydrogen at a temperature of 85° C. or lower. 2. The method for producing a positive electrode for an organic electrolyte battery according to claim 1, wherein the amount of hydrogen is at least 1.4 cc per gram of manganese dioxide under standard conditions.
JP3527480A 1980-03-19 1980-03-19 Manufacture of positive electrode for organic electrolyte battery Granted JPS56132770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3527480A JPS56132770A (en) 1980-03-19 1980-03-19 Manufacture of positive electrode for organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3527480A JPS56132770A (en) 1980-03-19 1980-03-19 Manufacture of positive electrode for organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPS56132770A JPS56132770A (en) 1981-10-17
JPS6211458B2 true JPS6211458B2 (en) 1987-03-12

Family

ID=12437201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3527480A Granted JPS56132770A (en) 1980-03-19 1980-03-19 Manufacture of positive electrode for organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS56132770A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135850U (en) * 1987-02-28 1988-09-06

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102147185B (en) * 2010-12-10 2012-11-28 奇瑞汽车股份有限公司 Drying method of pole pieces of lithium-ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135850U (en) * 1987-02-28 1988-09-06

Also Published As

Publication number Publication date
JPS56132770A (en) 1981-10-17

Similar Documents

Publication Publication Date Title
EP1873847A1 (en) Cathode active material and process for producing the same
JPH0368507B2 (en)
JPS58166633A (en) Positive electrode for organic solvent cell
US4804597A (en) Organic electrolyte cell
US6270925B1 (en) Lithium battery
JP3318941B2 (en) Manufacturing method of cathode material
JPS6211458B2 (en)
JP3396990B2 (en) Organic electrolyte secondary battery
JPS61135056A (en) Manufacture of organic electrolyte cell
JPS61153950A (en) Zinc alkaline storage battery
JPS59171465A (en) Manufacture of positive pole active substance for organic electrolyte battery
JPS6177257A (en) Zinc alkaline battery
JP3017756B2 (en) Non-aqueous electrolyte secondary battery
JPH0251218B2 (en)
JP2751169B2 (en) Organic electrolyte battery
JPS6313305B2 (en)
JPS5814468A (en) Organic electrolyte battery
JPS62187118A (en) Production of manganese dioxide
JPS59217946A (en) Manufacture of nonaqueous electrolyte battery
JPH05225978A (en) Magnesium-manganese dioxide dry battery
JPH0588511B2 (en)
JPH0635371Y2 (en) Non-aqueous electrolyte battery
JPH0316744B2 (en)
JPH036622B2 (en)
JPH02189861A (en) Organic electrolyte battery