JPH05225978A - Magnesium-manganese dioxide dry battery - Google Patents

Magnesium-manganese dioxide dry battery

Info

Publication number
JPH05225978A
JPH05225978A JP4075088A JP7508892A JPH05225978A JP H05225978 A JPH05225978 A JP H05225978A JP 4075088 A JP4075088 A JP 4075088A JP 7508892 A JP7508892 A JP 7508892A JP H05225978 A JPH05225978 A JP H05225978A
Authority
JP
Japan
Prior art keywords
manganese dioxide
magnesium
positive electrode
dry battery
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4075088A
Other languages
Japanese (ja)
Inventor
Nobuaki Chiba
信昭 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP4075088A priority Critical patent/JPH05225978A/en
Publication of JPH05225978A publication Critical patent/JPH05225978A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve large current discharge characteristics by using chemically activated manganese dioxide mainly composed of gamma type crystals containing 0.4wt.% to 6.0wt.% of barium. CONSTITUTION:A positive electrode material is caused to contain chemically activated manganese dioxide mainly composed of gamma type crystals containing 0.4wt.% to 6.0wt.% of barium. A bottomed cylindrical magnesium can 1 as a negative electrode in common is filled with a positive electrode mix 6 so obtained via a separator 5. A carbon rod 4 is inserted through the center of the mix 6 and extended to the vicinity of the top of the can 1 for coupling to the through-hole of a polyethylene sealing plate 7 to seal the opening of the can 1. Also, the plate 7 has a vent 9 filled with wax. Furthermore, a metal cap 8 as a positive electrode terminal in common is coupled to the top of the rod 4 and the upper periphery of the can l is sealed with a metal ring 2. Also, an insulation bottom sheet 10 is laid on the inner bottom of the can 1, while an insulation collared sheet 3 is laid on the mix 6. As a result, large current discharge performance can be particularly improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はマグネシウム二酸化マン
ガン乾電池の大電流放電特性の改良に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of large current discharge characteristics of magnesium manganese dioxide dry batteries.

【0002】[0002]

【従来の技術】従来から、マグネシウム二酸化マンガン
乾電池は亜鉛カーボン乾電池(マンガン乾電池)に類似
しているが、負極として、マグネシウム合金を使用し、
正極は二酸化マンガンとアセチレンブラックの混合物を
使用し、過塩素酸マグネシウム水溶液を電解液としてい
る。放電時の全反応式は次の通りである。 Mg+2MnO+2HO→Mg(OH)+2MnOOH
2. Description of the Related Art Conventionally, a magnesium-manganese dioxide dry battery is similar to a zinc-carbon dry battery (manganese dry battery), but uses a magnesium alloy as a negative electrode,
The positive electrode uses a mixture of manganese dioxide and acetylene black, and uses an aqueous solution of magnesium perchlorate as an electrolytic solution. The total reaction formula during discharge is as follows. Mg + 2MnO 2 + 2H 2 O → Mg (OH) 2 + 2MnOOH

【0003】マグネシウム二酸化マンガン乾電池の特徴
は、マグネシウムの標準電位が高いので電池としての開
路電圧は1.9〜2.1V、作動電圧は1.5〜1.7
Vである。これらの値は亜鉛カーボン乾電池に比べて可
成り高い。又マグネシウムは電気化学当量が小さいの
で、電池の単位重量あるいは容積当りのエネルギーは大
略亜鉛カーボン乾電池の2倍も大きい。又放電中電池内
では熱及び水素を発生する腐食反応が起こり、この発熱
は電池自体を使用温度より高く保つ事となり、結果とし
て電池の放電効率が増加する。つまり低温での放電特性
が良好であると言う特徴がある。
The magnesium manganese dioxide dry battery is characterized in that the standard potential of magnesium is high, so that the open circuit voltage as a battery is 1.9 to 2.1 V and the operating voltage is 1.5 to 1.7.
It is V. These values are considerably higher than those of zinc-carbon batteries. Since magnesium has a small electrochemical equivalent, the energy per unit weight or volume of the battery is about twice as large as that of a zinc carbon dry battery. Further, during discharge, a corrosion reaction that generates heat and hydrogen occurs in the battery, and this heat generation keeps the battery itself higher than the operating temperature, resulting in an increase in the discharge efficiency of the battery. That is, there is a characteristic that the discharge characteristic at a low temperature is good.

【0004】この電池の欠点は電池貯蔵中にマグネシウ
ム缶表面にできる水酸化マグネシウムの保護皮膜によ
り、電池特有の「ボルデイジディレイ」が発生する。こ
の「おくれ」は電池に負荷がかかった場合、作動電圧が
初期におちこみ、回復するまでに時間がかかると言う現
象である(25℃で一般的放電レートで約1〜2秒)。
この現象は低温及び大電流放電、長期貯蔵ほど増大す
る。しかし、通信機器のような軍用機器に適しているこ
とが認められている。これらの電池は亜鉛カーボン乾電
池に比べ前記したように使用時間や貯蔵寿命が長く、作
動電圧が高く、かつ作動温度範囲も広いというような有
利な面がある。
A disadvantage of this battery is that a "hydraulic delay" peculiar to the battery occurs due to a protective film of magnesium hydroxide formed on the surface of the magnesium can during storage of the battery. This "lag" is a phenomenon that when a load is applied to the battery, the operating voltage falls to the initial stage and it takes time to recover (at a general discharge rate of about 1 to 2 seconds at 25 ° C).
This phenomenon increases with low temperature and high current discharge and long-term storage. However, it has been found suitable for military equipment such as communications equipment. These batteries have the advantages that they have a longer operating time and storage life, a higher operating voltage, and a wider operating temperature range, as described above, as compared with zinc carbon dry batteries.

【0005】一般に、マグネシウム二酸化マンガン乾電
池の構造は円筒形亜鉛カーボン乾電池に類似している。
衝撃押出法により製缶され、化学的に処理したマグネシ
ウム缶は、負極として作用すると共に容器の役割も果し
ている。正極合剤は基本的には二酸化マンガン、アセチ
レンブラック及び過塩素酸マグネシウム電解液の混合物
からできている。正極合剤の中心にはカーボン棒があり
電流集積材として作用する。又クラフト紙により正極と
負極を分離し、イオンのみ通過させるようにしている。
Generally, the structure of a magnesium manganese dioxide dry battery is similar to a cylindrical zinc carbon dry battery.
A magnesium can made by impact extrusion and chemically treated acts as a negative electrode and also serves as a container. The positive electrode mixture is basically made of a mixture of manganese dioxide, acetylene black and magnesium perchlorate electrolyte. There is a carbon rod in the center of the positive electrode mixture, which acts as a current collecting material. Also, the positive and negative electrodes are separated by kraft paper so that only ions can pass through.

【0006】ところで、上記マグネシウム二酸化マンガ
ン乾電池の正極活物質としては、従来より電解二酸化マ
ンガン、天然二酸化マンガン及び化学合成二酸化マンガ
ン等が用いられてきた。開示する文献としては特開昭5
3−88696号公報、特開昭60−221324号公
報をあげることができる。
Incidentally, electrolytic manganese dioxide, natural manganese dioxide, chemically synthesized manganese dioxide and the like have been conventionally used as the positive electrode active material of the magnesium manganese dioxide dry battery. Japanese Patent Laid-Open No. Sho 5
No. 3-88696 and JP-A No. 60-221324 can be mentioned.

【0007】[0007]

【発明が解決しようとする課題】一般に活性化化学処理
二酸化マンガンは、それを乾電池に充填したとき電池の
重負荷放電特性は比較的良好であるが、そのタップ密度
は1.1〜1.4g/cm程度と小さく、非常にポー
ラスな充填状態となる。したがって、その電池における
活物質たる二酸化マンガンの量は少なく、電池の軽負荷
放電が著しく低下する。この問題を解決するために、活
性化化学処理二酸化マンガンをロールプレスして平板状
の圧縮成形体としたのち、これを所望の粒度に粉砕して
重質化する試みがなされている(特開昭60−2213
24号公報参照)。
Generally, activated chemically treated manganese dioxide has a relatively good heavy load discharge characteristic when it is filled in a dry battery, but its tap density is 1.1 to 1.4 g. It is as small as / cm 2 and is in a very porous filled state. Therefore, the amount of manganese dioxide as the active material in the battery is small, and the light load discharge of the battery is significantly reduced. In order to solve this problem, an attempt has been made to roll-press activated chemically treated manganese dioxide into a flat-plate compression-molded body, and then grind this into a desired particle size to make it heavier. 60-2213
24).

【0008】しかしながら、上記方法によってタップ密
度で1.6g/cm以上となる圧縮成形粉を製造し、
これを用いたCD形マグネシウム二酸化マンガン乾電池
を組立て、大電流放電を行なうと、その放電持続時間は
著しく短かくなると言う問題を生じている。
However, a compression molding powder having a tap density of 1.6 g / cm 3 or more is produced by the above method,
When a CD-type magnesium-manganese dioxide dry battery using this is assembled and discharged at a large current, the problem that the discharge duration becomes remarkably short occurs.

【0009】本発明は従来の課題を解決するためになさ
れたもので、バリウムを0.4〜6.0重量%含有され
ているγ形結晶を主成分とする活性化化学処理二酸化マ
ンガンを用いて、特に大電流放電特性を改善したマグネ
シウム二酸化マンガン乾電池を提供しようとするもので
ある。
The present invention has been made in order to solve the conventional problems, and uses activated chemically treated manganese dioxide mainly containing γ-type crystals containing 0.4 to 6.0% by weight of barium. In particular, the present invention intends to provide a magnesium-manganese dioxide dry battery with improved high-current discharge characteristics.

【0010】[0010]

【課題を解決するための手段】本発明は、マグネシウム
またはその合金を負極活物質とし、二酸化マンガンを正
極活物質、過塩素酸マグネシウムを主電解液とする乾電
池において、正極活物質中にバリウムを1.4〜6.0
重量%含有するγ形結晶を主成分とする活性化化学処理
二酸化マンガンを含有させたことを特徴とするマグネシ
ウム二酸化マンガン乾電池である。
The present invention provides a dry battery using magnesium or an alloy thereof as a negative electrode active material, manganese dioxide as a positive electrode active material, and magnesium perchlorate as a main electrolyte, and barium in the positive electrode active material. 1.4-6.0
A magnesium-manganese dioxide dry battery is characterized in that it contains activated chemically treated manganese dioxide containing γ-type crystals as the main component in a weight percentage.

【0011】まず、本発明に使用される二酸化マンガン
は次に述べる方法で製造された二酸化マンガンである。
始めに、マンガン酸化物鉱石を焙焼する。鉱石として
は、各地で産出される軟マンガン鉱,菱マンガン鉱など
をあげることができるが、これらのうちとくに、二酸化
マンガン75.0〜88.0重量%、カルシウム0.0
1〜1.50重量%、ストロンチゥム0.01〜0.3
0重量%、バリウム0.40〜3.50重量%、その他
結合水、酸化鉄、酸化アルミニウム、酸化カリウム、酸
化ケイ素などを、総量で5.0〜25.0重量%含有す
る軟マンガン鉱は好適である。
First, the manganese dioxide used in the present invention is manganese dioxide produced by the following method.
First, the manganese oxide ore is roasted. Examples of the ore include soft manganese ore and rhodomanganese ore produced in various places. Among them, manganese dioxide 75.0 to 88.0% by weight and calcium 0.0
1-1.50% by weight, Strontium 0.01-0.3
Soft manganese ore containing 0 wt%, barium 0.40 to 3.50 wt%, other bound water, iron oxide, aluminum oxide, potassium oxide, silicon oxide in a total amount of 5.0 to 25.0 wt% is It is suitable.

【0012】このような鉱石を粉砕して例えば粒度60
メッシュ(タイラー )以下の細粉とし、この細粉を焙
焼炉により自成雰囲気中で焙焼する。焙焼温度は鉱石の
種類によって変動するが、通常は550〜1000℃で
ある。この焙焼過程で、鉱石中の二酸化マンガンは40
0〜500℃付近から三二酸化マンガンに転化し、さら
に800〜1000℃付近の温度から四三酸化マンガン
に転化する。焙焼する時間は格別限定されるものではな
いが、通常、0.5〜5時間であればよい。
Such an ore is crushed to a grain size of 60, for example.
Fine powder below the mesh (Tyler) is used, and this fine powder is roasted in a self-made atmosphere in a roasting furnace. The roasting temperature varies depending on the type of ore, but is usually 550 to 1000 ° C. During this roasting process, the manganese dioxide content in the ore was 40
It is converted to manganese trioxide from around 0 to 500 ° C, and further converted to trimanganese tetraoxide from around 800 to 1000 ° C. The roasting time is not particularly limited, but it is usually 0.5 to 5 hours.

【0013】このようにして得られた焙焼物を、つぎに
鉱酸で処理する。用いる鉱酸としては、例えば硫酸、硝
酸、塩酸などをあげることができる。この処理により、
下記のように例えば鉱酸として硫酸を用いたときの反応
式でみられるように、二酸化マンガンが生成する。 Mn+HSO→MnO+MnSO+HO Mn+2HSO→MnO+2MnSO+2H
The roasted product thus obtained is then treated with a mineral acid. Examples of the mineral acid used include sulfuric acid, nitric acid, hydrochloric acid and the like. By this process,
Manganese dioxide is produced, for example, as shown in the reaction equation below when sulfuric acid is used as the mineral acid. Mn 2 O 3 + H 2 SO 4 → MnO 2 + MnSO 4 + H 2 O Mn 3 O 4 + 2H 2 SO 4 → MnO 2 + 2MnSO 4 + 2H 2 O

【0014】このとき用いる鉱酸の濃度および処理時間
は生成した二酸化マンガン中のアルカリ土類金属の含有
量に影響を与える。例えば、前記した軟マンガン鉱石を
2規定の硫酸で1時間処理したとき、バリウムは増加し
0.80〜6.00重量%の含有量になる。
The concentration of the mineral acid and the treatment time used at this time affect the content of alkaline earth metal in the produced manganese dioxide. For example, when the above-described soft manganese ore is treated with 2N sulfuric acid for 1 hour, barium increases to a content of 0.80 to 6.00% by weight.

【0015】原料としての鉱酸の種類によっても変化す
るが、鉱酸が硫酸であった場合は、その濃度1〜4の規
定,処理時間0.5〜5時間であることが好ましく、硝
酸であった場合は、その濃度1〜6規定,処理時間0.
5〜5時間であることが好ましく、また塩酸であった場
合は、その濃度0.5〜3規定,処理時間0.1〜1時
間であることが好ましい。処理時の鉱酸の液温も生成し
た二酸化マンガンの特性に影響を与えるが通常は60〜
95℃であることが好適である。
When the mineral acid is sulfuric acid, it is preferable that the concentration is 1 to 4 and the treatment time is 0.5 to 5 hours. If there is, the concentration is 1 to 6 and the processing time is 0.
It is preferably 5 to 5 hours, and when hydrochloric acid is used, its concentration is preferably 0.5 to 3 N and the treatment time is 0.1 to 1 hour. Although the liquid temperature of the mineral acid at the time of treatment also affects the characteristics of the produced manganese dioxide, it is usually 60-
It is preferably 95 ° C.

【0016】上記した鉱石の焙焼過程、鉱酸による処理
過程で当初から鉱石中に含有されていたバリウムはどの
ような挙動をするのかという問題は必ずしも明確ではな
いが、推定するにバリウムはそのイオン半径が比較的大
きいので、上記した過程で二酸化マンガンに大きな結晶
歪を与え、その結果、生成二酸化マンガンはその活性度
が高まるのではないかと考えられる。
[0016] The problem of how barium contained in the ore from the beginning in the ore roasting process and the treatment with mineral acid behaves is not clear. Since the ionic radius is relatively large, it is considered that manganese dioxide is subjected to a large crystal strain in the above process, and as a result, the activity of the produced manganese dioxide is increased.

【0017】次いで、生成したMnOを水洗、中和処
理、乾燥処理を施した後、得られた粉末を1〜10トン
/cmの圧力下でロールプレスにより板状に圧縮成形
し、更に所定の粒度に粉砕することによりγ形結晶を主
成分とする活性化化学処理二酸化マンガン粉末を製造す
る。
Next, the produced MnO 2 is washed with water, neutralized, and dried, and then the obtained powder is compression-molded into a plate by a roll press under a pressure of 1 to 10 ton / cm 2 , and further. An activated chemically treated manganese dioxide powder containing γ-type crystals as a main component is produced by pulverizing to a predetermined particle size.

【0018】[0018]

【作用】本発明の活性化化学処理二酸化マンガン中のバ
リウムは、二酸化マンガンの製造過程または製造後に単
体の形、化合物の形で外部から二酸化マンガンに配合さ
れるものではなく、原料たる鉱石中に不純物として予め
含有されているものである。
The barium in the activated chemically treated manganese dioxide of the present invention is not added to manganese dioxide from the outside in the form of a simple substance or a compound in the form of a compound, but is added to the ore as a raw material. It is contained as an impurity in advance.

【0019】この含有量が0.4重量%より少ない場合
は、二酸化マンガンの純度がたとえ同じであったとして
も、大電流放電特性の低下がみられ、また逆に6.0重
量%より多い場合は、得られた二酸化マンガンの結晶構
造は高活性なγ形が少なく電気化学的な活性の低いα形
が多く混在し、同じく特性低下を招く。又本電池は電解
質(Mg(ClO)水溶液に腐食抑制剤として少
量添加しているクロム酸バリウム(BaCrO)と同
様に二酸化マンガン中のバリウム(バリウム酸化物)が
腐食抑制効果を示すものと推定される。
When the content is less than 0.4% by weight, even if the purity of manganese dioxide is the same, the large current discharge characteristics are deteriorated, and conversely, it is more than 6.0% by weight. In this case, the crystal structure of the obtained manganese dioxide contains few highly active [gamma] -forms and many [alpha] -forms with low electrochemical activity, which also leads to deterioration of properties. Further, in the present battery, barium (barium oxide) in manganese dioxide exhibits a corrosion inhibiting effect like barium chromate (BaCrO 4 ) which is a small amount added as a corrosion inhibitor to an electrolyte (Mg (ClO 4 ) 2 ) aqueous solution. It is estimated that

【0020】[0020]

【実施例】以下、本発明の実施例を図1を参照にして詳
細に説明する。 実施例1 図1は、CD形マグネシウム二酸化マンガン乾電池(高
さ90mm、径22mm)を示す断面図である。平均粒
径が20μm程度のγ形結晶のMnOを82.0%含
みかつバリウムを0.5重量%含有する活性化化学処理
二酸化マンガン粉末50重量部と、JISK1469に
よる塩酸吸液量が3.3ml/gのアセチレンブラック
粉末8重量部、クロム酸バリウム2重量部、水酸化マグ
ネシウム1重量部とを、攪拌混合機を用いて十分に撹拌
混合し、さらにこの混合物に電解液4規定の過塩素酸マ
グネシウム溶液を39重量部を加え混合し、均一な正極
合剤を調製した。このような方法で調製された正極合剤
を用いて図1に示す構造のCD形マグネシウム二酸化マ
ンガン乾電池を組立てた。
Embodiments of the present invention will now be described in detail with reference to FIG. Example 1 FIG. 1 is a cross-sectional view showing a CD-type magnesium manganese dioxide dry battery (height 90 mm, diameter 22 mm). 2. 50 parts by weight of activated chemically treated manganese dioxide powder containing 82.0% of γ-type crystals of MnO 2 having an average particle size of about 20 μm and 0.5% by weight of barium, and a hydrochloric acid absorption amount according to JIS K1469 of 3. 8 parts by weight of 3 ml / g acetylene black powder, 2 parts by weight of barium chromate, and 1 part by weight of magnesium hydroxide were sufficiently stirred and mixed by using a stirrer mixer, and the mixture was further mixed with perchlorine of 4N electrolyte. 39 parts by weight of the magnesium acid solution was added and mixed to prepare a uniform positive electrode mixture. A CD type magnesium manganese dioxide dry battery having the structure shown in FIG. 1 was assembled using the positive electrode mixture prepared by the above method.

【0021】即ち、負極を兼ねる有底円筒形のマグネシ
ウム缶(亜鉛1%、アルミニウム2%、残マグネシウ
ム)1内には、セパレータ5を介して前述した方法で調
製された正極合剤6が充填されている。この正極合剤6
の中心には炭素棒4が挿入されている。この炭素棒4
は、前記マグネシウム缶1の上部付近まで配置され、そ
の開口部を密閉するためのポリエチレン製封口板7の透
孔に嵌合されている。このポリエチレン製封口板7には
ワックスを充填したベント9がある。
That is, a bottomed cylindrical magnesium can (1% zinc, 2% aluminum, remaining magnesium) 1 also serving as a negative electrode was filled with a positive electrode mixture 6 prepared by the above-mentioned method through a separator 5. Has been done. This positive electrode mixture 6
A carbon rod 4 is inserted at the center of the. This carbon rod 4
Is arranged up to the vicinity of the upper portion of the magnesium can 1, and is fitted into the through hole of the polyethylene sealing plate 7 for sealing the opening. The polyethylene sealing plate 7 has a vent 9 filled with wax.

【0022】さらに炭素棒4の頭部には正極端子を兼ね
る金属キャップ8が嵌着されている。又マグネシウム缶
1の上部周縁は金属リング2でシールされている。前記
マグネシウム缶1の内部底面には、絶縁底紙10が配置
され、前記正極合剤6上には絶縁つば紙3が配置されて
いる。
Further, a metal cap 8 also serving as a positive electrode terminal is fitted on the head of the carbon rod 4. The top edge of the magnesium can 1 is sealed with a metal ring 2. An insulating bottom paper 10 is arranged on the inner bottom surface of the magnesium can 1, and an insulating brim paper 3 is arranged on the positive electrode mixture 6.

【0023】実施例2 実施例1と同様な平均粒径が20μm程度のγ形結晶の
MnO82.0重量%を含み、かつバリウムを1.9
重量%含有する活性化化学処理二酸化マンガン粉末を正
極活物質として用いた以外、実施例1と同様なマグネシ
ウム二酸化マンガン乾電池を組立てた。
Example 2 Similar to Example 1, 82.0% by weight of MnO 2 of γ-type crystal having an average particle size of about 20 μm was contained and barium was 1.9.
A magnesium manganese dioxide dry battery was assembled in the same manner as in Example 1 except that the activated chemically treated manganese dioxide powder contained in a weight percentage was used as the positive electrode active material.

【0024】実施例3 実施例1と同様な平均粒径が20μm程度のγ形結晶の
MnO81.8重量%含み、かつバリウムを5.5重
量%含有する活性化化学処理二酸化マンガン粉末を正極
活物質として用いた以外、実施例1と同様なマグネシウ
ム二酸化マンガン乾電池を組立てた。
Example 3 Similar to Example 1, an activated chemically treated manganese dioxide powder containing 81.8% by weight of MnO 2 of γ-type crystal having an average particle size of about 20 μm and 5.5% by weight of barium was used. A magnesium-manganese dioxide dry battery similar to that of Example 1 was assembled except that it was used as the positive electrode active material.

【0025】比較例1 市販の電解二酸化マンガンのみを正極活物質として用い
た以外、実施例1と同様なマグネシウム二酸化マンガン
乾電池を組立てた。 比較例2 国際共通サンプルI.C.S−12の化学合成二酸化マ
ンガン粉末のみを正極活物質として用いた以外、実施例
1と同様なマグネシウム二酸化マンガン乾電池を組立て
た。
Comparative Example 1 A magnesium-manganese dioxide dry battery similar to that of Example 1 was assembled except that only commercially available electrolytic manganese dioxide was used as the positive electrode active material. Comparative Example 2 International Common Sample I. C. A magnesium manganese dioxide dry battery similar to that of Example 1 was assembled except that only the chemically synthesized manganese dioxide powder of S-12 was used as the positive electrode active material.

【0026】実施例1〜3及び比較例1〜2の電池につ
いて、25℃で放電電流60mA,400mAおよび8
00mAによる大電流放電を連続して行ない、1.25
Vの放電電圧になるまでの持続時間から放電容量を計算
した。その結果を表1に示す。表1より明らかなよう
に、実施例1〜3のマグネシウム二酸化マンガン乾電池
は、比較例1〜2のマグネシウム二酸化マンガン乾電池
よりも大巾に放電容量が大きく、良好な大電流特性を有
することがわかる。
With respect to the batteries of Examples 1 to 3 and Comparative Examples 1 and 2, discharge currents of 60 mA, 400 mA and 8 at 25 ° C.
A large current discharge of 00 mA was continuously performed for 1.25
The discharge capacity was calculated from the duration until the discharge voltage reached V. The results are shown in Table 1. As is clear from Table 1, the magnesium-manganese dioxide dry batteries of Examples 1 to 3 have a significantly larger discharge capacity than the magnesium-manganese dioxide dry batteries of Comparative Examples 1 and 2, and have good large current characteristics. ..

【0027】[0027]

【表1】 [Table 1]

【0028】この理由は、負極の反応 Mg+2HO→Mg(OH)+2H+2e は負極表面に不動態膜を形成する反応であり、これによ
り電池の自己放電が抑えられている。しかしながら、高
い電流密度で放電すると不動態皮膜が破壊され、副反応
の水素発生反応Mg+2HO→H+Mg(OH)
が起こる。したがって、この副反応が本発明の二酸化マ
ンガンは少ないために二酸化マンガンの還元並びにこれ
に起因する電池電圧、放電容量の低下を防止できると推
定される。
The reason for this is that the reaction of the negative electrode Mg + 2H 2 O → Mg (OH) 2 + 2H + + 2e forms a passivation film on the surface of the negative electrode, which suppresses self-discharge of the battery. However, when discharged at a high current density, the passivation film is destroyed, and the side reaction hydrogen generation reaction Mg + 2H 2 O → H 2 + Mg (OH) 2
Happens. Therefore, it is presumed that this side reaction can prevent reduction of manganese dioxide and reduction of battery voltage and discharge capacity due to the reduction because manganese dioxide of the present invention is small.

【0029】[0029]

【発明の効果】以上詳述したように、本発明によれば特
に大電流放電性能を改善したマグネシウム二酸化マンガ
ン乾電池を提供することができる。
As described above in detail, according to the present invention, it is possible to provide a magnesium-manganese dioxide dry battery having particularly improved large current discharge performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のマグネシウム二酸化マンガン
乾電池の縦断面図である。
FIG. 1 is a vertical sectional view of a magnesium-manganese dioxide dry battery according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…マグネシウム缶 4…炭素棒 5…セパレータ 6…正極合剤 7…封口板 9…ベント 1 ... Magnesium can 4 ... Carbon rod 5 ... Separator 6 ... Positive electrode mixture 7 ... Sealing plate 9 ... Vent

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 マグネシウムまたはその合金を負極活物
質とし、二酸化マンガンを正極活物質、過塩素酸マグネ
シウムを主電解液とする乾電池において、正極活物質中
にバリウムを0.4〜6.0重量%含有するγ形結晶を
主成分とする活性化化学処理二酸化マンガンを含有させ
たことを特徴とするマグネシウム二酸化マンガン乾電
池。
1. A dry battery using magnesium or an alloy thereof as a negative electrode active material, manganese dioxide as a positive electrode active material, and magnesium perchlorate as a main electrolytic solution, and 0.4 to 6.0 parts by weight of barium in the positive electrode active material. %. A magnesium-manganese dioxide dry battery characterized by containing activated chemically treated manganese dioxide whose main component is γ-type crystal.
JP4075088A 1992-02-14 1992-02-14 Magnesium-manganese dioxide dry battery Pending JPH05225978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4075088A JPH05225978A (en) 1992-02-14 1992-02-14 Magnesium-manganese dioxide dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4075088A JPH05225978A (en) 1992-02-14 1992-02-14 Magnesium-manganese dioxide dry battery

Publications (1)

Publication Number Publication Date
JPH05225978A true JPH05225978A (en) 1993-09-03

Family

ID=13566068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4075088A Pending JPH05225978A (en) 1992-02-14 1992-02-14 Magnesium-manganese dioxide dry battery

Country Status (1)

Country Link
JP (1) JPH05225978A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074059A1 (en) * 2004-01-28 2005-08-11 The Gilette Company Cathode material and additive for an alkaline battery
US8709667B2 (en) 2011-08-02 2014-04-29 SUWEI Association Magnesium metal-air battery
JP2014192157A (en) * 2013-03-26 2014-10-06 Toyota Motor Engineering & Manufacturing North America Inc High capacity cathode material for magnesium battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005074059A1 (en) * 2004-01-28 2005-08-11 The Gilette Company Cathode material and additive for an alkaline battery
US7351499B2 (en) 2004-01-28 2008-04-01 The Gillette Company Cathode material for battery
US8709667B2 (en) 2011-08-02 2014-04-29 SUWEI Association Magnesium metal-air battery
JP2014192157A (en) * 2013-03-26 2014-10-06 Toyota Motor Engineering & Manufacturing North America Inc High capacity cathode material for magnesium battery

Similar Documents

Publication Publication Date Title
EP0882309B1 (en) Zinc anode for an electrochemical cell
JP3873760B2 (en) Alkaline battery
US5660953A (en) Rechargeable manganese dioxide cathode
JP3215448B2 (en) Zinc alkaline battery
JP3215446B2 (en) Zinc alkaline battery
JPH0660870A (en) Manufacture of dry battery
JP3215447B2 (en) Zinc alkaline battery
US3350198A (en) Cadmium metal sponge
JPH05225978A (en) Magnesium-manganese dioxide dry battery
JPH0222984B2 (en)
US3617384A (en) Zinc alkaline secondary cell
JPH05225979A (en) Magnesium-manganese dioxide dry battery
JPH0719604B2 (en) Alkaline battery manufacturing method
JP2609609B2 (en) Alkaline battery
JPH0317181B2 (en)
JPH06223829A (en) Zinc alkaline battery
JP4327586B2 (en) Aluminum primary battery
JPH065284A (en) Zinc alkaline battery
JP3187862B2 (en) Zinc alkaline battery
JP2563108B2 (en) Alkaline battery
JP2563107B2 (en) Alkaline battery
JP2563109B2 (en) Alkaline battery
JPH09270254A (en) Zinc alkaline battery
JPH0317182B2 (en)
JPH0620687A (en) Alkaline battery