JPS5814468A - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JPS5814468A
JPS5814468A JP56112433A JP11243381A JPS5814468A JP S5814468 A JPS5814468 A JP S5814468A JP 56112433 A JP56112433 A JP 56112433A JP 11243381 A JP11243381 A JP 11243381A JP S5814468 A JPS5814468 A JP S5814468A
Authority
JP
Japan
Prior art keywords
cupric oxide
battery
discharge
voltage
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56112433A
Other languages
Japanese (ja)
Inventor
Takafumi Fujii
隆文 藤井
Junichi Yamaura
純一 山浦
Yoshinori Toyoguchi
豊口 「よし」徳
Takashi Iijima
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56112433A priority Critical patent/JPS5814468A/en
Publication of JPS5814468A publication Critical patent/JPS5814468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To stabilize early voltage in an initial discharge stage and decrease deterioration of discharge voltage and capacity after the high temperature storage of a battery by controlling the amount of oxygen adsorption of cupric oxide. CONSTITUTION:Adsorbed oxygen in cupric oxide is released to 1X10<-4>g atom or less by heating cupric oxide at 500-850 deg.C in air or nitrogen atmosphere, then this cupric oxide is used as a positive active mass. A voltage stabilizing time from start of discharge immediately after a battery is produced is short, and the deterioration of discharge capacity is small even after storage at 60 deg.C. Figure shows that in a positive electrode 1 of a button type battery, a positive black mix obtained by mixing cupric oxide and artificial graphite of a conductive mass is press-molded to form a pellet and the pellet is placed in a stainless steel case 2 and press-molded again to fix in the case 2.

Description

【発明の詳細な説明】 本発明は、酸化第二銅(Cub)を正極活物質。[Detailed description of the invention] The present invention uses cupric oxide (Cub) as a positive electrode active material.

リチウム、マグネシウム、アルミニウムなどの軽金属を
負極活物質とし、有機電解質を用いるいわゆる有機電解
質電池に関するもので、特に電池の放電初期における電
圧の早期安定化および高温保存後における放電々圧や容
量劣化の低減といった電池性能の改良を目的としたもの
である。
This relates to so-called organic electrolyte batteries that use light metals such as lithium, magnesium, and aluminum as negative electrode active materials and organic electrolytes, and are particularly effective in stabilizing voltage early in the early stages of battery discharge and reducing discharge voltage and capacity deterioration after high-temperature storage. The aim is to improve battery performance.

従来のこの種正極活物質に酸化第二銅を用いる電池は、
保存性に優れるとされてきた。しかし、60℃程度の高
温に1力月保存すると、放電に圧の低下や容量劣化が起
こる。このような性能の劣化は酸化第二銅の種類によっ
ても大きく変動する。
Conventional batteries using cupric oxide as the positive electrode active material are
It has been considered to have excellent storage stability. However, if it is stored at a high temperature of about 60° C. for a month, a drop in discharge pressure and a deterioration in capacity occur. Such deterioration in performance varies greatly depending on the type of cupric oxide.

すなわち、酸化第二銅の製法として、硝酸銅(Cu (
NO3)2 ) =炭酸銅(Cu CO3)−水酸化銅
(Cu(OH))、酢酸鋼((0M3Co2)4Cu2
−2H20)の熱分解法や金属銅、酸化第一銅(Cu 
20 )を高温下の酸素または空気中で直接酸化する方
法および電解酸化法が知られているが、それらの出発原
料や製法などによって劣化度合が変わる。
In other words, as a method for producing cupric oxide, copper nitrate (Cu (
NO3)2 ) = copper carbonate (Cu CO3) - copper hydroxide (Cu(OH)), acetic acid steel ((0M3Co2)4Cu2
-2H20) thermal decomposition method, metallic copper, cuprous oxide (Cu
A method of directly oxidizing 20) in oxygen or air at high temperature and an electrolytic oxidation method are known, but the degree of deterioration varies depending on the starting materials and manufacturing method.

このような性能劣化の原因は、化学的もしくは物理的に
酸化第二銅の表面に吸着した酸素が有機溶媒を酸化した
り、重合を開始させるためと考えられる。例えば、有機
電解質電池に用いられる有機溶媒の中で比較的多用され
るものとして1.2−ジメトキシエタンが挙げられる。
The cause of such performance deterioration is thought to be that oxygen chemically or physically adsorbed on the surface of cupric oxide oxidizes the organic solvent or initiates polymerization. For example, 1,2-dimethoxyethane is a relatively frequently used organic solvent used in organic electrolyte batteries.

これは前述のような吸着酸素と次式のように過酸化物を
形成し、生成した過酸化物は分解してアルデヒド、ケト
ン。
This forms peroxide as shown in the following formula with adsorbed oxygen as mentioned above, and the generated peroxide decomposes into aldehydes and ketones.

酸などになるものと考えられる。It is thought that it becomes an acid.

(0):吸着酸素を表す。(0): Represents adsorbed oxygen.

また、電池製造直後の放電では、前述のような吸着酸の
量が多く吸着しているものほど放電開始から電圧が安定
化するまでに要する時間が長くなるという傾向がみられ
る。これは正極活物質である酸化第二銅が放電反応を起
こす以前により活性な吸着酸素が反応するためと考えら
れる。特に腕時計用電源として使用する場合には、電池
の放電開始から電圧が安定化するまでに要する時間は、
時計の精度など、の7点からできるだけ短い方が望まし
い。
In addition, when discharging a battery immediately after manufacture, there is a tendency, as described above, that the larger the amount of adsorbed acid adsorbed, the longer the time required from the start of discharge until the voltage stabilizes. This is thought to be because the more active adsorbed oxygen reacts before the cupric oxide, which is the positive electrode active material, causes a discharge reaction. Especially when used as a power source for a wristwatch, the time required from the start of battery discharge until the voltage stabilizes is
It is desirable to keep the length as short as possible based on seven points, including the accuracy of the clock.

本発明者らは、酸化第二銅の吸着酸素量と電池製造直後
における放電開始からの電圧安定化時間および電池の高
温保存に伴う電池性能の劣化との間の相関性を検討した
結果、酸化第二銅の吸着酸素量を規制することにより、
前述のような欠点を除去できることを見出した。
The present inventors investigated the correlation between the amount of oxygen adsorbed by cupric oxide, the voltage stabilization time from the start of discharge immediately after battery manufacture, and the deterioration of battery performance due to high temperature storage of the battery. By regulating the amount of oxygen adsorbed by cupric
It has been found that the above-mentioned drawbacks can be eliminated.

すなわち、本発明は、酸化第二銅をSOO〜850℃の
空気中または窒素雰囲気中で熱処理するなどにより、酸
化第二銅に吸着した吸着酸素をlX10−4して使用す
ることを特徴と4も有機電解質電池で牟る0 以下、本発明をその実施例により詳細に説明する。
That is, the present invention is characterized in that the cupric oxide is heat treated in air or in a nitrogen atmosphere at a temperature of SOO to 850°C, and the adsorbed oxygen adsorbed to the cupric oxide is used after 1×10−4. In the following, the present invention will be explained in detail with reference to examples thereof.

使用した酸化第二銅は酸化第一銅をSOO〜700℃で
焼成し粉砕する工程を5回程度繰り返し操作して得たも
のを用いた。
The cupric oxide used was obtained by repeating the process of firing cuprous oxide at SOO to 700°C and pulverizing it about 5 times.

酸化第二銅の吸着酸素量は次のようにして定量した。酸
化第二銅2Fに0.1規定のヨウ化カリウム水溶液を2
0CG加え、よく振とうした後、冷暗所に1時間放置す
る。ここで次式のようにヨウ素が遊離する。
The amount of oxygen adsorbed by cupric oxide was determined as follows. Add 2 0.1N potassium iodide aqueous solution to 2F cupric oxide.
Add 0CG, shake well, and leave in a cool, dark place for 1 hour. Here, iodine is liberated as shown in the following formula.

(0)+2KI+H20=2KOH+I2次に、ヨウ素
を遊離させた試料を分光光度計で吸光度を測定し、あら
かじめ求めたヨウ慎の検量線を用いて定量をおこなった
(0)+2KI+H20=2KOH+I2 Next, the absorbance of the sample from which iodine had been released was measured using a spectrophotometer, and quantification was performed using a previously determined Ioshin calibration curve.

第1図は性能試験に′用いたボタン形電池を示す。Figure 1 shows the button-type battery used in the performance test.

1は正極で、酸化第二銅100重量部と導電材の人造黒
鉛10重量部を混合した正極合剤160tnfを加圧成
形してベレットを作り、ステンレス鋼製のケース2へ入
れて再度加圧成形をおこないケース2内へ固定したもの
である。この正極1の大きさは直径8@911m1.厚
み0.56mmで、電気容量は80mAhである。3は
厚さ1.60■のリチウム板を直径5.0mmに打ち抜
いた負極で、ポリプロピレン製のガスケット4を装着し
たステンレス鋼製の封口板6に圧着しである。上記の正
、負極組立体をポリプロピレン製不織布からなるセパレ
ータ6を介して重ね合わせ、かしめ封口して電池を構成
した。この電池の大きさは直径9.6■、高さ2.6m
である。
1 is the positive electrode, and a pellet is made by pressure-molding 160 tnf of a positive electrode mixture of 100 parts by weight of cupric oxide and 10 parts by weight of artificial graphite, which is a conductive material, and the pellet is put into a stainless steel case 2 and pressurized again. It is molded and fixed inside the case 2. The size of this positive electrode 1 is 8@911 m1 in diameter. The thickness is 0.56 mm, and the electric capacity is 80 mAh. Reference numeral 3 denotes a negative electrode made by punching out a lithium plate with a thickness of 1.60 mm to a diameter of 5.0 mm, and is press-bonded to a sealing plate 6 made of stainless steel equipped with a gasket 4 made of polypropylene. The positive and negative electrode assemblies described above were stacked on top of each other with a separator 6 made of a nonwoven polypropylene fabric interposed therebetween, and then caulked and sealed to form a battery. The size of this battery is 9.6cm in diameter and 2.6m in height.
It is.

なお、電解液には炭酸プロピレンと1,2−ジメトキシ
エタンとを体積比1:2の割合で混合したもの1tに1
モルの過塩素酸リチウムを溶解させたものを用いた。
In addition, the electrolyte solution is a mixture of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1:2.
A solution containing mol of lithium perchlorate was used.

次に、空気中において酸化第二銅を各種温度で6時間熱
処理した後の吸着酸素量を・次表および第第3図は前記
各種温度で熱処理し、吸着酸素量の異なった酸化第二銅
を用いた製造直後の電池について、20℃において13
にΩを負荷として放電した放電・特性を示すもので、と
くに放電開始から電圧が安定する放電初期の部分を示し
たもので7.7 ある。図から明らかなように吸着酸素量の大きいものほ
ど、電圧が安定するまでに要する時間が長くなることが
わかる。
Next, the amount of adsorbed oxygen after heat treating cupric oxide at various temperatures in air for 6 hours is shown in the following table and Figure 3. 13 at 20°C for batteries immediately after manufacture using
It shows the discharge characteristics when discharged with Ω as a load, and especially shows the early part of the discharge when the voltage stabilizes from the start of the discharge. As is clear from the figure, the larger the amount of adsorbed oxygen, the longer the time required for the voltage to stabilize.

また、前記の電池を60℃で1力月間保存した後、20
℃で13にΩ負荷の放電をしたときの特性を第4図に示
す。明らかに吸着酸素量の多い酸化第二銅を用いたもの
ほど保存に伴う性能劣化が大きいことがわかる。
In addition, after storing the above battery at 60°C for 1 month,
Figure 4 shows the characteristics when discharging into a 13Ω load at ℃. It is clear that the performance deterioration due to storage is greater when cupric oxide is used, which has a larger amount of adsorbed oxygen.

実施例では酸化第一銅を焼成、粉砕して得た酸化第二銅
を用いた場合について述べたが、出発原料や製法が異な
る場合においても前述と同様の試験をおこなった結果、
熱処理しない場合の吸着酸素量にバラツキはあるが、い
ずれの場合も熱処理温度が500℃以上になると、吸着
酸素量が酸化第二銅1り当たり1.0X10−’グラム
原子以下に減少し、第2図と同様な傾向を示した。なお
、温度が高くなれば吸着酸素量は少なくなるが、酸化第
二銅が分解するので、適当な熱処理温度はSOO〜86
0℃で、処理時間は1〜6時間である。
In the example, a case was described in which cupric oxide obtained by calcining and pulverizing cuprous oxide was used, but as a result of conducting tests similar to those described above even when the starting materials and manufacturing methods were different,
Although there are variations in the amount of adsorbed oxygen without heat treatment, in any case, when the heat treatment temperature becomes 500°C or higher, the amount of adsorbed oxygen decreases to 1.0×10−' gram atom or less per cupric oxide, and It showed the same tendency as in Figure 2. Note that as the temperature increases, the amount of adsorbed oxygen decreases, but cupric oxide decomposes, so the appropriate heat treatment temperature is SOO~86
At 0°C, the treatment time is 1-6 hours.

電池試験においても前述と同様に吸着酸素量の多い酸化
第二銅を用いたものほど、電池製造直後における放電開
始から電圧が安定化するまでに要する時間が長く、保存
に伴う性能劣化が大きかった。
In battery tests, as mentioned above, batteries using cupric oxide with a higher amount of adsorbed oxygen took longer to stabilize the voltage from the start of discharge immediately after battery manufacture, and the performance deterioration during storage was greater. .

以上の結果から明らかなように、酸化第二銅に吸着した
酸素量を酸化第二銅1y当たり1.0X10グラム原子
以下に脱離させた酸化第二銅を正極活℃程度の高温で保
存しても電池性能の劣化が少ないことがわかる。
As is clear from the above results, cupric oxide in which the amount of oxygen adsorbed on cupric oxide has been desorbed to less than 1.0 x 10 gram atoms per y of cupric oxide can be stored at a high temperature similar to the positive electrode active temperature. It can be seen that there is little deterioration in battery performance.

以上のように、本発明によれば、電池性能の優れた有機
電解質電池を得ることができる。
As described above, according to the present invention, an organic electrolyte battery with excellent battery performance can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例のボタン形電池の一部を断面にした側面
図、第2図は酸化第二銅の熱処理温度と吸着酸素量の関
係を示す図、第3図は電池製造直後の放電特性を示す図
、第4図は電池を保存した後の放電特性を示す図である
。 1・・・・・・正極、3・・・・・・負極、6・・・・
・・セノくレータ。 第1図 第2図 撚処理う’rK廣(・す 第351 右匁t1毎耶(hrン 第4図 放覧1号聞(hr)
Figure 1 is a partially cross-sectional side view of the button-shaped battery of the example, Figure 2 is a diagram showing the relationship between the heat treatment temperature of cupric oxide and the amount of adsorbed oxygen, and Figure 3 is the discharge immediately after battery manufacture. FIG. 4 is a diagram showing the discharge characteristics after the battery has been stored. 1...Positive electrode, 3...Negative electrode, 6...
... Senokureta. Fig. 1 Fig. 2 Twisting process

Claims (1)

【特許請求の範囲】 酸化第二銅を活物質とする正極と、軽金属を活物質とす
る負極および有機電解質とを有し、前記酸化第二銅の吸
着酸素量が酸化第二銅1り当たり4 1.0×10 グラム原子以下であることを特徴とする
有機電解質電池。
[Scope of Claims] A positive electrode having cupric oxide as an active material, a negative electrode having a light metal as an active material, and an organic electrolyte, wherein the amount of oxygen adsorbed by the cupric oxide is per cupric oxide. 4. An organic electrolyte battery characterized by having a particle size of 1.0×10 gram atoms or less.
JP56112433A 1981-07-17 1981-07-17 Organic electrolyte battery Pending JPS5814468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56112433A JPS5814468A (en) 1981-07-17 1981-07-17 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56112433A JPS5814468A (en) 1981-07-17 1981-07-17 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JPS5814468A true JPS5814468A (en) 1983-01-27

Family

ID=14586510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56112433A Pending JPS5814468A (en) 1981-07-17 1981-07-17 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JPS5814468A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165577A (en) * 1979-06-12 1980-12-24 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165577A (en) * 1979-06-12 1980-12-24 Sanyo Electric Co Ltd Nonaqueous electrolyte cell

Similar Documents

Publication Publication Date Title
JP2001273898A (en) Positive active material for nonaqueous electrolyte secondary battery, method of manufacturing same, and nonaqueous electrolyte secondary battery using the active material
JPH0773878A (en) Manufacture of metal hydride electrode
JP3274016B2 (en) Method for producing lithium cobaltate-based positive electrode active material for lithium secondary battery
JPS61208750A (en) Lithium organic secondary battery
US3288643A (en) Process for making charged cadmium electrodes
JPH05182667A (en) Manufacture of positive electrode material
JPS5814468A (en) Organic electrolyte battery
JP2002216762A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JPS61135056A (en) Manufacture of organic electrolyte cell
JP2009283291A (en) Manufacturing method of positive electrode for lithium battery and positive electrode for lithium battery
JPS60131768A (en) Organic electrolyte battery
JP2751390B2 (en) Method for producing positive electrode mixture for thermal battery and thermal battery using the same
JP2812943B2 (en) Organic electrolyte battery
JPS581971A (en) Organic electrolyte battery
JPS60258870A (en) Organic electrolyte lithium secondary battery
JPH05179372A (en) Production of hydrogen occluding alloy powder
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JP2751169B2 (en) Organic electrolyte battery
JPS6313305B2 (en)
JPH09147919A (en) Manufacture of nonaqueous electrolyte secondary cell
JPS59217946A (en) Manufacture of nonaqueous electrolyte battery
JP3448886B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JPS5832749B2 (en) Manufacturing method for positive electrode active material for organic electrolyte batteries
JPH03214562A (en) Manufacture of positive electrode for secondary battery with non-aqueous electrolyte
JPH0635371Y2 (en) Non-aqueous electrolyte battery