JPS60258870A - Organic electrolyte lithium secondary battery - Google Patents

Organic electrolyte lithium secondary battery

Info

Publication number
JPS60258870A
JPS60258870A JP59114950A JP11495084A JPS60258870A JP S60258870 A JPS60258870 A JP S60258870A JP 59114950 A JP59114950 A JP 59114950A JP 11495084 A JP11495084 A JP 11495084A JP S60258870 A JPS60258870 A JP S60258870A
Authority
JP
Japan
Prior art keywords
battery
alloy
lithium secondary
hydrogen
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59114950A
Other languages
Japanese (ja)
Inventor
Nobuo Eda
江田 信夫
Teruyoshi Morita
守田 彰克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59114950A priority Critical patent/JPS60258870A/en
Publication of JPS60258870A publication Critical patent/JPS60258870A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the safety of a lithium secondary battery by properly maintaining its characteristics during charge-and-discharge by installing a hydrogen-absorbing alloy in the battery. CONSTITUTION:In a lithium secondary battery containing an organic electrolyte, a hydrogen-absorbing alloy 5 or a member containing the alloy 5 is placed over a generation element having a negative electrode 2, a positive electrode 3 and a separator 4 contained in a case 1 so that the alloy 5 does not touch the generation element. The alloy 5 is composed of at least one compound selected from among CaNi5, LaNi5, Ti0.6, Zr0.4 and Mn1.9Cu0.1. In the battery having the above structure, when the internal pressure of the battery increases to a given level due to hydrogen gas produced in the battery, the alloy 5 absorbs hydrogen to produce a metal hydride thereby resulting in reduced internal pressure of the battery. Consequently, there is no possibility that the battery expands or explodes.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液リチウム二次電池の品質保全およ
び安全性の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to improving the quality and safety of organic electrolyte lithium secondary batteries.

従来例の構成とその問題点 有機電解液リチウム電池は、高エネルギー密度。Conventional configuration and its problems Organic electrolyte lithium batteries have high energy density.

低温特性、耐漏液性および貯蔵性に優れる長所を有し、
二酸化マンガンおよびフッ化炭素を正極に用いた電池は
、既に市場で高い評価を得て、広く使用されるに至って
いる。
It has the advantages of low-temperature properties, leakage resistance, and storage stability.
Batteries using manganese dioxide and carbon fluoride as positive electrodes have already received high praise in the market and are now widely used.

現在、これらの特徴を生かして、充放電のできる二次電
池化への取組みが盛んに行なわれてい本二次電池として
、一般的に問題となりそうな点は、可逆性のある正極活
物質の開発、充電時の電解液の分解の問題と充電時のリ
チウム負極(デンドライト状析出リチウムによる正負極
間の短絡)の問題などがある。
Currently, efforts are being made to develop rechargeable batteries that can be charged and discharged by taking advantage of these characteristics. During development, problems include decomposition of the electrolyte during charging, and problems with the lithium negative electrode (short circuit between the positive and negative electrodes due to dendrite-like precipitated lithium) during charging.

とくに、最後のリチウムのデンドライト状析出リチウム
の問題については、リチウム吸蔵合金全使用するか、添
加剤の使用により、あるいは負極容量を正極容量より大
きくすることによりこれ全低減化させる方法などが検討
されている。
In particular, regarding the final problem of lithium precipitated in the form of dendrites, methods are being considered to completely reduce this by using all lithium storage alloys, by using additives, or by making the negative electrode capacity larger than the positive electrode capacity. ing.

リチウム電池は、基本原則として非水であることが要求
されるが、電池発電要素中に吸着あるいは内蔵されてい
る水分や電池組立で雰囲気から持込まれる水分は避けら
れない。リチウム−次電池では、負極リチウム表面は、
電解液溶媒との熱力3 \ 学的反応により生じた不働態被膜、例えばL12CO3
で覆われているので、電解液中に11000pp程度の
水分があっても、これ以上リチウムと反応することかな
く、電池特性に大きな差はみられない。
Although lithium batteries are required to be non-aqueous as a basic principle, moisture that is adsorbed or built into the battery power generation element or moisture that is brought in from the atmosphere during battery assembly is unavoidable. In lithium-secondary batteries, the negative lithium surface is
Thermal force 3 \ Passive film formed by chemical reaction with electrolyte solvent, e.g. L12CO3
Even if there is about 11,000 pp of water in the electrolyte, it will not react any further with lithium, and there will be no major difference in battery characteristics.

ところが、リチウム二次電池においては、次式により、
充電時には、活性な原子状のリチウムが生じるので、こ
の時に原子状リチウムの付近に水分子が存在すると、次
式により水素ガスが発生Li +H20→LiOH−1
−V2H2+する。このことは、ガスクロマトグラフ分
析により水素ガスの存在を確認されている。この水素ガ
スの発生は、電池中にある水分が消費される丑で続く。
However, in lithium secondary batteries, according to the following formula,
During charging, active atomic lithium is generated, so if water molecules are present near the atomic lithium at this time, hydrogen gas is generated according to the following formula: Li + H20 → LiOH-1
-V2H2+. The presence of hydrogen gas was confirmed by gas chromatography analysis. This generation of hydrogen gas continues as the water present in the battery is consumed.

この他に、電池の封口部から大気中の水分も微量ずつで
あるが侵入してくる。この水分も同じようにガス発生の
原因となる。この発生した水4(素”′に1り電池0内
圧が高くなる・内圧が高くなると電池のふくれが生じ、
場合によっては破袋という問題がおこる。これと同時に
、内圧が高くなると水素ガスが正負両極間に滞留して内
部抵抗を高くするという問題もおこってくる。その他に
ぶり一ド線の部分では、リード線自身の電気抵抗により
ジュール熱が生じリード線が赤熱される状況も生じる。
In addition, a small amount of moisture from the atmosphere also enters through the battery seal. This moisture also causes gas generation. This generated water increases the internal pressure of the battery.When the internal pressure increases, the battery bulges.
In some cases, the problem of bag breakage occurs. At the same time, when the internal pressure increases, a problem arises in that hydrogen gas remains between the positive and negative electrodes, increasing the internal resistance. In addition, in the case of a red wire, Joule heat is generated due to the electrical resistance of the lead wire itself, causing the lead wire to become red hot.

この場合は水素ガスが燃焼したり、電解液に有機溶媒を
用いているので、この有機溶媒への引火、ひいてはリチ
ウム負極の溶融など安全性に重要な問題も内圧している
In this case, hydrogen gas burns, and since an organic solvent is used in the electrolyte, there are internal pressures that are important for safety, such as ignition of the organic solvent and melting of the lithium negative electrode.

そこで、本発明者らは、リチウム二次電池が有するこれ
らの・問題を解消、あるいは軽減化する方法を見出した
ものである。
Therefore, the present inventors have discovered a method to eliminate or alleviate these problems that lithium secondary batteries have.

発明の目的 本発明は、リチウム二次電池において、水素吸蔵合金全
電池内に設置することにより、発生する水素ガスで電油
内圧が上昇すると、ある圧力以上でこの合金が水素を吸
蔵して金属水素化物になるとともに電池内圧は下がり、
上記の危険性が解消され、電池の特性を適切に確保でき
るものである。
Purpose of the Invention The present invention provides a lithium secondary battery in which a hydrogen-absorbing alloy is installed inside the battery, and when the internal pressure of the electric oil increases due to the generated hydrogen gas, the alloy absorbs hydrogen at a certain pressure or higher, causing the metal to absorb hydrogen. As it becomes a hydride, the internal pressure of the battery decreases,
The above-mentioned dangers are eliminated and the characteristics of the battery can be appropriately ensured.

5八。58.

発明の構成 本発明は、リチウム二次電池において、常温付近での水
素吸収臨界圧が比較的低く、吸収能力も大きいカルシウ
ムニッケル(CaN15) 、ランタンニッケル(La
N15) モしくはチタンジルコニウムマンガン銅(T
io6Zro4Mn、、Cuo、 )合金を電池内に、
発電要素とは非接触状態で設置したものである。
Structure of the Invention The present invention uses calcium nickel (CaN15), lanthanum nickel (La
N15) or titanium zirconium manganese copper (T
io6Zro4Mn, Cuo, ) alloy in the battery,
The power generation element is installed in a non-contact manner.

実施例の説明 図は本発明の実施例に用いた電池の断面図を示す。Description of examples The figure shows a cross-sectional view of a battery used in an example of the present invention.

図中、1はニッケルメッキを施した厚さO,ellJl
l外径17.0朋の負極端子を兼ねたケース、2は負極
リチウムで厚さ0.38NII+、長さ105ff。
In the figure, 1 is the thickness of the nickel plated O, ellJl
1 Case that also serves as a negative electrode terminal with an outer diameter of 17.0mm, 2 is a negative electrode lithium with a thickness of 0.38NII+ and a length of 105ff.

巾23朋のリチウムシート’tニッケルのエキスパンデ
ッドメタルに圧着してあり、更にこれをケース1に溶接
している。3は正極で市販五酸化バナジウム(v205
)ヲ800°Cで6時間熱処理したもの100重量部に
アセチレンブラック11重量部およびフッ素樹脂結着剤
20重量部を混合し、ナタニウム製エキスパンデッド集
電体を中・bにその6.0gを厚さ0.68問、長さ1
00酎、巾25朋に充填したものである。この負極2と
正極3をポリプロピレン製不織布セパレータ4を間に介
在して渦巻状に捲回し、ケース1内に収納している。
A lithium sheet with a width of 23 mm is crimped onto a nickel expanded metal, and this is further welded to the case 1. 3 is a positive electrode made of commercially available vanadium pentoxide (v205
) 100 parts by weight of the product heat-treated at 800°C for 6 hours, mixed with 11 parts by weight of acetylene black and 20 parts by weight of a fluororesin binder, and 6.0 g of the expanded current collector made of natanium was mixed into medium and b. Thickness: 0.68, length: 1
00 sake, filled to a width of 25 mm. The negative electrode 2 and positive electrode 3 are spirally wound with a polypropylene nonwoven fabric separator 4 interposed therebetween, and are housed in a case 1.

5は水素吸蔵合金を含む成型体であり、ランタンニッケ
ル合金(LaN15) 0.5 gを活性炭粉末0.2
g、ポリプロピレン粉末0.16gとともに厚さ1.5
111111 、外径24朋で中・U部に直径6間の孔
をもった有孔円板状に成型している。この成型体は発電
要素とは接しないよ、うその上方に配置されている。6
はチタニウム製の正極接続体でリベット状になっており
、7のポリプロピレン製絶縁ガスケットの中心部の孔を
通して、ニッケルメッキを施した正極端子8を兼ねたリ
ングとともにカシメにより一体化している。9はポリ塩
化ビニル製のジャケットである。電解液は六フッ化ヒ酸
リチウム(Li1sF6)の1.5モル/e濃度のギ酸
メチル溶液を用い、その2.5 fi f電池内に注入
している。この電池を人とする。
5 is a molded body containing a hydrogen storage alloy, in which 0.5 g of lanthanum nickel alloy (LaN15) is mixed with 0.2 g of activated carbon powder.
g, thickness 1.5 with 0.16 g of polypropylene powder
111111, is molded into a perforated disk shape with an outer diameter of 24 mm and a hole of 6 mm in diameter in the middle and U portion. This molded body is placed above the power generation element so that it does not come into contact with it. 6
is a rivet-shaped positive electrode connector made of titanium, and is integrated by caulking with a nickel-plated ring that also serves as a positive electrode terminal 8 through a hole in the center of the polypropylene insulating gasket 7. 9 is a jacket made of polyvinyl chloride. As the electrolyte, a methyl formate solution of lithium hexafluoroarsenate (Li1sF6) with a concentration of 1.5 mol/e is used and is injected into the 2.5 fi f battery. Let's say this battery is a person.

7 \ なお、電解液には、水素ガス吸収能力を確認するため、
600および11000ppになるように水を添加して
いる。寸だ、比較のため水素吸蔵合金だけを除いた組成
で同じ厚きに作成した有孔円板5を用いた電池(他の条
件はAと全く同じ)Bを試作した。電池A、Bは理論容
量560 mAhであり、最大総高は33馴である。
7 \ In addition, in order to confirm the hydrogen gas absorption ability of the electrolyte,
Water was added to give 600 and 11000 pp. For comparison, we prototyped a battery B using a perforated disk 5 of the same thickness and composition except for the hydrogen storage alloy (other conditions were exactly the same as A). Batteries A and B have a theoretical capacity of 560 mAh and a maximum total height of 33 mm.

電油A 、B(z20°Cにて25mi (0,5v、
/cA )の定電流にて14時間放電(約62%深さ)
し、その後1o mi (0,2mA/C+J )にて
30時間充電した。これを1ザイクルとして6サイクル
の充放電を行なった。これらの電池A、Hには充放電に
先だって内圧測定器を設置してあり、充電終了時の電池
特性、圧力もしくは電池の様子を第1表および第2表に
示した。なお、内部抵抗は20’Cで交I#IKHzに
てl’l!II定した。
Electro-oil A, B (z25mi at 20°C (0,5v,
Discharge for 14 hours at a constant current of /cA (approximately 62% depth)
Then, the battery was charged at 1o mi (0.2 mA/C+J) for 30 hours. This was regarded as one cycle, and six cycles of charging and discharging were performed. These batteries A and H were equipped with an internal pressure measuring device prior to charging and discharging, and Tables 1 and 2 show the battery characteristics, pressure, and behavior of the batteries at the end of charging. In addition, the internal resistance is 20'C and l'l! at AC I#IKHz! II was determined.

(以下余白) 置 イ 9ノ・−−7 以上のことから、リチウム二次電池において水素吸蔵合
金を用いると、電池特性の確保および電池に与える影9
1低減化できるものである。
(Leaving space below) Placement I9--7 From the above, using a hydrogen storage alloy in a lithium secondary battery will ensure the battery characteristics and the impact it will have on the battery9.
This can be reduced by 1.

実施例では、水素吸蔵合金としてランタンニッケル(L
aNi5 ) ’r:用いたが、カルシウムニッケル(
CaN15)ヤチタンジルコニウムマンガン銅(Tio
6Zro4Mn19Cuo1)合金でもよい。
In the example, lanthanum nickel (L
aNi5)'r: Calcium nickel (
CaN15) Yatitan zirconium manganese copper (Tio
6Zro4Mn19Cuo1) alloy may be used.

発明の効果 以上のように、本発明によれば、リチウム二次電池にお
いて、水素吸蔵合金を用いることで充放電において、電
池特性の確保および電池に与える影響を低減化できる。
Effects of the Invention As described above, according to the present invention, by using a hydrogen storage alloy in a lithium secondary battery, battery characteristics can be ensured and the influence on the battery can be reduced during charging and discharging.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例に用いた電池の断面図を示す。 2・・・・・負極、3・・・・・・正極、5 ・・・・
水素吸蔵合金。
The figure shows a cross-sectional view of a battery used in an example of the present invention. 2...Negative electrode, 3...Positive electrode, 5...
Hydrogen storage alloy.

Claims (1)

【特許請求の範囲】[Claims] (1)電池内に、発電要素とは非接触状態で水素吸蔵合
金寸たけこの合金を含んだ部品を内蔵したことを特徴と
する有機電解液リチウム二次電池。 ?)水素吸蔵合金は、カルシウムニッケル(CaNi5
)、ランタンニッケル(LaN15)およびチタンジル
コニウムマンガン銅(71662184Mn1.Cuo
、)からなる群の合金のうち少なくとも1つを有する特
許請求の範囲第1項記載の有機電解液リチウム二次電池
(1) An organic electrolyte lithium secondary battery characterized in that a component containing a hydrogen-absorbing alloy, such as Takeko, is built into the battery in a non-contact state with a power generation element. ? ) The hydrogen storage alloy is calcium nickel (CaNi5
), lanthanum nickel (LaN15) and titanium zirconium manganese copper (71662184Mn1.Cuo
The organic electrolyte lithium secondary battery according to claim 1, comprising at least one alloy of the group consisting of , ).
JP59114950A 1984-06-04 1984-06-04 Organic electrolyte lithium secondary battery Pending JPS60258870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59114950A JPS60258870A (en) 1984-06-04 1984-06-04 Organic electrolyte lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59114950A JPS60258870A (en) 1984-06-04 1984-06-04 Organic electrolyte lithium secondary battery

Publications (1)

Publication Number Publication Date
JPS60258870A true JPS60258870A (en) 1985-12-20

Family

ID=14650663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59114950A Pending JPS60258870A (en) 1984-06-04 1984-06-04 Organic electrolyte lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS60258870A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462363A (en) * 1985-04-12 1989-03-08 Ensain Bitsukufuoode Ind Inc Paint and optical article and optical fiber using the same
JPH03500708A (en) * 1987-10-15 1991-02-14 イギリス国 Charge balancing of rechargeable storage batteries
EP0605734A1 (en) * 1992-06-30 1994-07-13 Yuasa Corporation Battery
US5523178A (en) * 1992-12-14 1996-06-04 Nippondenso Co., Ltd. Chemical cell
JP2013171732A (en) * 2012-02-21 2013-09-02 Toyota Industries Corp Power storage device and vehicle mounting the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6462363A (en) * 1985-04-12 1989-03-08 Ensain Bitsukufuoode Ind Inc Paint and optical article and optical fiber using the same
JPH03500708A (en) * 1987-10-15 1991-02-14 イギリス国 Charge balancing of rechargeable storage batteries
EP0605734A1 (en) * 1992-06-30 1994-07-13 Yuasa Corporation Battery
EP0605734A4 (en) * 1992-06-30 1996-03-27 Yuasa Battery Co Ltd Battery.
US5523178A (en) * 1992-12-14 1996-06-04 Nippondenso Co., Ltd. Chemical cell
JP2013171732A (en) * 2012-02-21 2013-09-02 Toyota Industries Corp Power storage device and vehicle mounting the same

Similar Documents

Publication Publication Date Title
EP0354966B1 (en) Alkaline secondary battery and process for its production
EP0271043A1 (en) Sealed storage battery and method for making its electrode
JPH11191417A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JPS62287568A (en) Manufacture of alkaline storage battery
JPS60258870A (en) Organic electrolyte lithium secondary battery
JP4979178B2 (en) Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same
JPH04212269A (en) Alkaline storage battery
US6197448B1 (en) Hydrogen storage alloy
JP3089310B2 (en) Sealed nickel / metal hydride storage battery
JPH08138743A (en) Nonaqeuous electrolyte secondary battery
HU208596B (en) Rechargeable electrochemical cell
JP3113345B2 (en) Hydrogen storage alloy electrode
KR102533562B1 (en) Positive electrode for alkaline secondary battery and alkaline secondary battery provided with this positive electrode
JPH04109556A (en) Closed-type secondary battery
JP2861057B2 (en) Alkaline secondary battery
JPS58123675A (en) Button-type air cell
JP2797440B2 (en) Alkaline secondary battery
JPH028419B2 (en)
JP3913412B2 (en) Sealed alkaline storage battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JPS6346957B2 (en)
JPH0690922B2 (en) Sealed alkaline storage battery
JPH05263171A (en) Hydrogen-occluding alloy and its electrode as well as hydrogen storage alloy battery
JPS62243252A (en) Sealed alkaline manganese secondary battery
JPS62295353A (en) Enclosed type nickel-hydrogen storage battery