JP3089310B2 - Sealed nickel / metal hydride storage battery - Google Patents

Sealed nickel / metal hydride storage battery

Info

Publication number
JP3089310B2
JP3089310B2 JP03216273A JP21627391A JP3089310B2 JP 3089310 B2 JP3089310 B2 JP 3089310B2 JP 03216273 A JP03216273 A JP 03216273A JP 21627391 A JP21627391 A JP 21627391A JP 3089310 B2 JP3089310 B2 JP 3089310B2
Authority
JP
Japan
Prior art keywords
battery
safety valve
synthetic resin
nickel
metal hydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03216273A
Other languages
Japanese (ja)
Other versions
JPH0541204A (en
Inventor
利雄 村田
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP03216273A priority Critical patent/JP3089310B2/en
Publication of JPH0541204A publication Critical patent/JPH0541204A/en
Application granted granted Critical
Publication of JP3089310B2 publication Critical patent/JP3089310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水素吸蔵合金を坦持す
る負極板と、水酸化ニッケルを主活物質とする正極板と
を有する密閉形ニッケル・金属水素化物蓄電池に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed nickel-metal hydride storage battery having a negative electrode plate carrying a hydrogen storage alloy and a positive electrode plate containing nickel hydroxide as a main active material.

【0002】[0002]

【従来の技術】密閉形ニッケル・金属水素化物アルカリ
蓄電池の負極には、水素吸蔵電極が用いられる。
2. Description of the Related Art A hydrogen storage electrode is used as a negative electrode of a sealed nickel-metal hydride alkaline storage battery.

【0003】この水素吸蔵電極は、水素の可逆的な吸蔵
および放出が可能な水素吸蔵合金を電極に用いるもの
で、その水素の電気化学的な酸化還元反応をアルカリ蓄
電池の負極の起電反応に利用する。水素吸蔵電極に用い
られる水素吸蔵合金には、LaNi5 、TiNi、Ti2 Niおよび
TiMn2 などの金属間化合物や、これらの金属間化合物の
構成元素を他の元素で置換したものが用いられている。
これらの水素吸蔵合金は、その組成が異なると、水素吸
蔵量、平衡水素圧力、アルカリ電解液中で充放電を繰り
返す場合の保持容量特性などの性質が変化するので、合
金の組成を変えて、水素吸蔵電極の性能の改良が試みら
れている。
[0003] This hydrogen storage electrode uses a hydrogen storage alloy capable of reversibly storing and releasing hydrogen for the electrode, and converts the electrochemical oxidation-reduction reaction of the hydrogen to the electromotive reaction of the negative electrode of an alkaline storage battery. Use. Hydrogen storage alloys used for hydrogen storage electrodes include LaNi 5 , TiNi, Ti 2 Ni and
And intermetallic compounds such as TiMn 2, those with substitution of constituent elements of these intermetallic compounds with other elements are used.
If the composition of these hydrogen storage alloys is different, properties such as hydrogen storage capacity, equilibrium hydrogen pressure, and storage capacity characteristics when charging and discharging are repeated in an alkaline electrolyte change, so the alloy composition is changed. Attempts have been made to improve the performance of hydrogen storage electrodes.

【0004】この水素吸蔵電極は、これらの水素吸蔵合
金の粉末を耐アルカリ性高分子で結合したり、高温で焼
結したり、発泡メタルに充填する方法などで、多孔質の
ものを製作していた。
The hydrogen storage electrode is manufactured in a porous form by bonding the powder of the hydrogen storage alloy with an alkali-resistant polymer, sintering at a high temperature, or filling a foam metal. Was.

【0005】密閉形ニッケル・金属水素化物蓄電池で
は、これらの水素吸蔵電極からなる負極と、水酸化ニッ
ケルを主体とする活物質を焼結ニッケル基板やニッケル
の発泡体に充填した正極板とを、不織布等のガス透過性
の耐アルカリ性絶縁体からなるセパレータを介して、積
層したり、あるいは捲回し、これを耐圧性の密閉形の金
属製蓄電池容器に収納して製作していた。
In a sealed nickel-metal hydride storage battery, a negative electrode composed of these hydrogen storage electrodes and a positive electrode plate in which an active material mainly composed of nickel hydroxide is filled in a sintered nickel substrate or a nickel foam are used. Lamination or winding is performed via a separator made of a gas-permeable alkali-resistant insulator such as a non-woven fabric, and this is housed in a pressure-resistant sealed metal storage battery container.

【0006】この蓄電池で、耐圧製の容器を使用するの
は、過充電時に正極から発生する酸素ガスの分圧を高く
して、負極における酸素ガス還元反応の速度を大きく
し、このことによって、電池内へのガスの蓄積を防ぐた
めである。
In this storage battery, a pressure-resistant container is used because the partial pressure of oxygen gas generated from the positive electrode at the time of overcharging is increased to increase the rate of the oxygen gas reduction reaction at the negative electrode. This is to prevent gas from accumulating in the battery.

【0007】また、この耐圧性の蓄電池容器に金属性の
ものを用いる理由は、金属製のものは、合成樹脂製のも
のと比較して、容器壁が薄くても耐圧性が高いので、電
池内容積を大きくして、発電要素の体積を大きくし、電
池の電気容量を大きくできること、および、金属は合成
樹脂と比較して熱伝導度が高いので、大きい電流で放電
したり、過充電する際に、電池内で発生する熱を容易に
除去できることにある。
[0007] The reason for using a metal container for the pressure-resistant storage battery is that a metal-made storage container has a higher pressure resistance even when the container wall is thinner than a synthetic resin container. The inner volume can be increased, the volume of the power generating element can be increased, and the electric capacity of the battery can be increased.Moreover, since metal has higher thermal conductivity than synthetic resin, it can be discharged or overcharged with a large current. In this case, the heat generated in the battery can be easily removed.

【0008】そして、この密閉形ニッケル・金属水素化
物蓄電池では、たとえば10分率というような異常に大
きい電流で過充電する等の異常な使用方法によって、大
量のガスが発生し、そのガスを電池内で処理しきれずに
電池内圧が異常に上昇する場合に備えて、電池の破裂を
防止するために、電池内圧が数kg/cm2 から約20kg/cm
2 に到達すると作動して、電池内のガスを放出する安全
弁が用いられる。そして、この安全弁は、電池の内外を
連通する穴に載置してスプリングによって圧迫した合成
樹脂製の安全弁体や、それ自体がゴム弾性を有する合成
樹脂製の安全弁体が用いられる。
In this sealed nickel-metal hydride storage battery, a large amount of gas is generated due to abnormal usage such as overcharging with an abnormally large current, for example, at a rate of 10 minutes. In order to prevent the battery from bursting in case the battery internal pressure rises abnormally due to incomplete processing inside the battery, the battery internal pressure should be several kg / cm 2 to about 20 kg / cm 2
A safety valve is used that activates when it reaches 2 and releases gas in the battery. As the safety valve, a safety valve made of synthetic resin placed in a hole communicating between the inside and outside of the battery and pressed by a spring, or a safety valve made of synthetic resin having rubber elasticity itself is used.

【0009】また、金属製電池容器を用いる場合に、こ
の金属製電池容器を正極もしくは負極の一方の極性にす
る場合と、いずれの極性にもしない場合とがあるが、い
ずれの場合にも、少なくとも他方の極性の電極端子を電
気的に絶縁しておく必要がある。そして、この絶縁のた
めの部材は、電池容器の密閉性を保持するパッキングを
も兼ねている。このパッキング部材には、その機能を果
たすために適した合成樹脂が用いられる。
When a metal battery container is used, the metal battery container may have one polarity of a positive electrode or a negative electrode, and may not have any polarity. At least the other polarity electrode terminal must be electrically insulated. The insulating member also serves as a packing for maintaining the airtightness of the battery container. For this packing member, a synthetic resin suitable for performing its function is used.

【0010】[0010]

【発明が解決しようとする課題】上述した密閉形ニッケ
ル・金属水素化物電池は、充電状態のものを火の中に投
入すると爆発するものがある。このような電池は、その
使用者が電池を誤って火中に投入した場合に、爆発によ
って負傷する危険がある。そこで、充電状態で火中に投
入しても爆発しない密閉形ニッケル・金属水素化物蓄電
池が求められていた。
Some of the above-mentioned sealed nickel-metal hydride batteries explode when charged ones are put into a fire. Such batteries are at risk of being injured by an explosion if the user accidentally throws the battery into a fire. Therefore, a sealed nickel-metal hydride storage battery that does not explode when charged in a fire in a charged state has been demanded.

【0011】本発明は、上述の課題を解決するために、
水素吸蔵合金を主体とする負極板と、水酸化ニッケルを
主活物質とする正極板と、金属製蓄電池容器と、該蓄電
池容器の密閉性を保持しつつ該電池容器および端子の電
気的に正極の極性を有する部分と負極の極性を有する部
分とを電気的に絶縁する熱可塑性合成樹脂製パッキング
部材と、合成樹脂製安全弁体とを備える密閉形ニッケル
・金属水素化物蓄電池において、該安全弁体が熱可塑性
合成樹脂製である場合には、該パッキング部材の融点が
270℃以下であり、該安全弁体がゴム弾性体である場
合には、該パッキング部材の融点が270℃以下である
かもしくは該ゴム状弾性体の耐熱温度が230℃以下で
ある密閉形ニッケル・金属水素化物蓄電池を提供する。
The present invention has been made in order to solve the above-mentioned problems.
A negative electrode plate mainly composed of a hydrogen storage alloy, a positive electrode plate mainly composed of nickel hydroxide, a metal storage battery container, and a positive electrode electrically connected to the battery container and the terminal while maintaining the hermeticity of the storage battery container. In a sealed nickel-metal hydride storage battery comprising a thermoplastic synthetic resin packing member that electrically insulates a portion having a negative polarity and a portion having a negative polarity, and a synthetic resin safety valve body, the safety valve body is When made of a thermoplastic synthetic resin, the melting point of the packing member is 270 ° C. or less, and when the safety valve body is a rubber elastic body, the melting point of the packing member is 270 ° C. or less. A sealed nickel-metal hydride storage battery having a rubber-like elastic body having a heat-resistant temperature of 230 ° C. or lower.

【0012】[0012]

【作用】密閉形ニッケル・金属水素化物蓄電池の水素吸
蔵合金は、常温付近におけるその水素平衡圧−水素吸蔵
量等温線(PCT特性)の平坦部の平衡水素圧が約0.01
-0.5気圧程度のものを用いる。水素吸蔵合金の平衡水素
圧は、温度が高くなるほど高くなる。従って、電池を充
電して負極の水素吸蔵合金に吸蔵された水素は、電池の
温度が高くなると、水素吸蔵合金から放出されて電池内
の空間の水素分圧を高くする。そして、ニッケル・金属
水素化物蓄電池の充放電に関与する水素の大部分は、負
極の水素吸蔵合金の平衡水素圧が、100℃では1気圧
を越える水素吸蔵量の範囲で吸蔵されている。従って、
電池の温度が100℃を越えると、電池内の水素分圧は
1気圧を越えるようになる。
[Function] The hydrogen storage alloy of a sealed nickel-metal hydride storage battery has a hydrogen equilibrium pressure of about 0.01 at the flat part of the hydrogen equilibrium pressure-hydrogen storage isotherm (PCT characteristic) near room temperature.
Use the one of about -0.5 atm. The equilibrium hydrogen pressure of the hydrogen storage alloy increases as the temperature increases. Therefore, when the battery is charged, the hydrogen stored in the hydrogen storage alloy of the negative electrode is released from the hydrogen storage alloy when the temperature of the battery increases, and the hydrogen partial pressure in the space in the battery is increased. Most of the hydrogen involved in the charge / discharge of the nickel-metal hydride storage battery is stored in a range where the equilibrium hydrogen pressure of the hydrogen storage alloy of the negative electrode exceeds 1 atm at 100 ° C. Therefore,
When the temperature of the battery exceeds 100 ° C., the partial pressure of hydrogen in the battery exceeds 1 atm.

【0013】一方、密閉形ニッケル・金属水素化物蓄電
池の正極では、主たる充電生成物がβ相が好ましく、γ
相は好ましくない。その理由は、γ相が生成すると、こ
の結晶は層間距離がβ相よりも大きいので、活物質が膨
張して、正極板の膨潤による電解液の吸収や正極板の機
械的強度の低下を招くことにある。そこで、充電生成物
としてγ相の生成が抑制されるように、正極活物質や電
解液への添加物を用いたり、充電条件を工夫する。従っ
て、密閉形ニッケル・金属水素化物蓄電池では、正極の
充電生成物の主体はβ相のオキシ水酸化ニッケルであ
る。
On the other hand, in the positive electrode of the sealed nickel-metal hydride battery, the main charge product is preferably β phase, and γ
Phases are not preferred. The reason is that, when the γ phase is generated, since this crystal has a larger interlayer distance than the β phase, the active material expands, which causes absorption of the electrolytic solution due to swelling of the positive electrode plate and lowering of the mechanical strength of the positive electrode plate. It is in. Therefore, an additive to the positive electrode active material or the electrolytic solution is used or charging conditions are devised so as to suppress generation of the γ phase as a charging product. Therefore, in the sealed nickel-metal hydride storage battery, the main component of the charge product of the positive electrode is β-phase nickel oxyhydroxide.

【0014】β相のオキシ水酸化ニッケルを加熱する
と、約100−150℃の温度で結晶水の脱離が起こ
る。次に、150−300℃においてβ相オキシ水酸化
ニッケルの分解反応が起こって、酸素ガスが発生する。
この熱分解反応が最も盛んに起こるのは260℃付近で
ある。
When the β-phase nickel oxyhydroxide is heated, crystallization water is desorbed at a temperature of about 100-150 ° C. Next, a decomposition reaction of the β-phase nickel oxyhydroxide occurs at 150 to 300 ° C. to generate oxygen gas.
This pyrolysis reaction occurs most actively around 260 ° C.

【0015】さて、そこで、充電状態のニッケル・金属
水素化物蓄電池を密閉したまま温度を高くしていくと、
次のことが起こる。
Now, when the temperature of the nickel-metal hydride storage battery in a charged state is increased while keeping it sealed,
The following happens:

【0016】すなわち、電池の温度が100℃付近を越
えると、水素ガスが負極の水素吸蔵合金から盛んに放出
されて、電池内の水素分圧が高くなる。さらに温度が上
昇して、約150℃を越えると正極から酸素ガスが発生
しはじめて、電池内の気体は、酸素と水素との混合気に
なる。さらに温度が上昇すると、酸素の発生量が増加し
て、電池内の酸素と水素との混合気の水素濃度が爆発限
界に入る。電池の外部の炎によってこの電池を加熱して
いて、電池の密閉が破れて電池の内部ガスに着火する場
合には、電池の内部ガスが爆発限界にないときには電池
は爆発しないが、電池の内部ガスが爆発限界にあるとき
には電池は爆発する。
That is, when the temperature of the battery exceeds about 100 ° C., hydrogen gas is actively released from the hydrogen storage alloy of the negative electrode, and the hydrogen partial pressure in the battery increases. When the temperature further rises and exceeds about 150 ° C., oxygen gas starts to be generated from the positive electrode, and the gas in the battery becomes a mixture of oxygen and hydrogen. When the temperature further rises, the amount of generated oxygen increases, and the hydrogen concentration of the mixture of oxygen and hydrogen in the battery enters the explosion limit. When the battery is heated by the flame outside the battery and the battery seal is broken and the internal gas of the battery is ignited, the battery does not explode when the internal gas of the battery is not at the explosion limit. The battery explodes when the gas is at the explosion limit.

【0017】そして、負極の水素吸蔵合金に吸蔵された
水素ガスの発生反応、正極のβオキシ水酸化ニッケルの
熱分解による酸素ガス発生反応は、いずれも吸熱反応で
あり、また、正極の熱分解反応が起こる前にアルカリ電
解液の蒸発が起こり、これも吸熱過程である。従って、
充電状態のニッケル・金属水素化物蓄電池を外部から火
炎によって加熱すると、電池の極板群の部分は、電池の
外部に近い部分よりも昇温速度が遅い。
The reaction of generating hydrogen gas stored in the hydrogen storage alloy of the negative electrode and the reaction of generating oxygen gas by thermal decomposition of β-nickel oxyhydroxide of the positive electrode are both endothermic reactions. Evaporation of the alkaline electrolyte occurs before the reaction takes place, which is also an endothermic process. Therefore,
When a charged nickel-metal hydride storage battery is heated from the outside by a flame, the temperature of the electrode plate group is slower than that of the portion near the outside of the battery.

【0018】そして、この電池の合成樹脂製パッキング
および合成樹脂製安全弁体は、いずれも電池の外部その
もの、もしくは電池の外部に極めて近い部分にあるか
ら、これらの構成部材は、電池の極板群よりも早く昇温
する。
Since the synthetic resin packing and the synthetic resin safety valve element of this battery are both located outside the battery itself or in a portion very close to the outside of the battery, these constituent members are used as a battery electrode group. Temperature rises faster than

【0019】そこで、密閉形ニッケル・金属水素化物蓄
電池で、安全弁体の材質が熱可塑性合成樹脂であり、合
成樹脂製パッキング部材の融点が270℃よりも低い場
合には、この電池を火中に投入すると、電池の内部が加
熱されて極板群の温度が260℃以上になって正極から
最も盛んに酸素ガスが発生して電池内部のガスが爆発限
界に到達するよりも前に、合成樹脂製パッキング部材は
極板群よりも早く加熱されて270℃に到達し、このパ
ッキング部材が融解して、電池内の水素ガスが電池外に
放出される。
Therefore, in a sealed nickel-metal hydride storage battery, if the material of the safety valve body is a thermoplastic synthetic resin and the melting point of the synthetic resin packing member is lower than 270 ° C., the battery is placed in a fire. When the battery is turned on, the inside of the battery is heated, the temperature of the electrode group rises to 260 ° C. or more, and oxygen gas is generated from the positive electrode most actively. The packing member is heated earlier than the electrode plate group and reaches 270 ° C., the packing member is melted, and hydrogen gas in the battery is discharged out of the battery.

【0020】また、安全弁体の材質がゴム状弾性体であ
る場合には、熱可塑性エラストマを除く多くの場合に、
架橋されているので、このようなゴム状弾性体は、加熱
すると、融解しないで、熱によって劣化する。そして、
密閉形ニッケル・金属水素化物蓄電池においては、この
ゴム状弾性体の耐熱温度よりもやや高い温度で安全弁か
ら内部ガスが放出されるから、熱可塑性合成樹脂製のパ
ッキング部材の融点が270℃よりも高い場合には、こ
の安全弁体のゴム状弾性体の耐熱温度が230℃以下で
あれば、正極から酸素ガスが盛んに放出されて、電池の
内部ガスの組成が爆発限界に到達する前に、電池の内部
ガスが安全弁部から電池の外部へ放出される。パッキン
グ部材の融点が270℃以上の場合には、ゴム状弾性体
の安全弁の耐熱温度が230℃よりも高くても、昇温時
にはパッキング部材から電池の内部ガスが放出される。
When the material of the safety valve body is a rubber-like elastic body, in many cases except for a thermoplastic elastomer,
Since the rubber-like elastic body is crosslinked, it does not melt when heated, but deteriorates due to heat. And
In a sealed nickel-metal hydride storage battery, since the internal gas is released from the safety valve at a temperature slightly higher than the heat resistance temperature of the rubber-like elastic body, the melting point of the packing member made of thermoplastic synthetic resin is lower than 270 ° C. If the temperature is high, if the heat-resistant temperature of the rubber-like elastic body of this safety valve body is 230 ° C. or less, oxygen gas is actively released from the positive electrode, and before the composition of the internal gas of the battery reaches the explosion limit, Gas inside the battery is released from the safety valve to the outside of the battery. When the melting point of the packing member is 270 ° C. or more, the internal gas of the battery is released from the packing member when the temperature is raised, even if the heat-resistant temperature of the rubber-like elastic safety valve is higher than 230 ° C.

【0021】従って、電池内部の温度がさらに上昇し
て、酸素ガスが電池内で大量に発生する時点には、電池
内の水素ガスの大部分が外部に放出されているので、電
池内の気体の組成が爆発限界に到達して着火し爆発する
危険が著しく小さくなる。
Therefore, when the temperature inside the battery further rises and a large amount of oxygen gas is generated in the battery, most of the hydrogen gas in the battery has been discharged to the outside. When the composition reaches the explosion limit, the risk of ignition and explosion is significantly reduced.

【0022】この作用によって、本発明の電池は、充電
済みの状態で火中に投入しても爆発することがなく、電
池から放出される水素ガスが、電池の外部で安全に燃焼
するだけで済むのである。
By this action, the battery of the present invention does not explode even if it is charged into a fire in a charged state, and the hydrogen gas released from the battery simply burns safely outside the battery. That's it.

【0023】一方、本願発明の構成と異なって、安全弁
体の材質が熱可塑性合成樹脂で、合成樹脂製パッキング
部材および合成樹脂製安全弁体のいずれの融点も300
℃よりも高い場合には、充電済みの該電池を加熱する
と、負極から水素ガスが多量に発生し、正極から酸素ガ
スが多量に発生して、電池の内部ガスが爆発限界に到達
してから、合成樹脂製パッキングもしくは合成樹脂製安
全弁体が溶融して電池の密閉が破れる。
On the other hand, unlike the construction of the present invention, the material of the safety valve body is a thermoplastic synthetic resin, and the melting point of both the synthetic resin packing member and the synthetic resin safety valve body is 300.
If the temperature is higher than ℃, when the charged battery is heated, a large amount of hydrogen gas is generated from the negative electrode, a large amount of oxygen gas is generated from the positive electrode, and the internal gas of the battery reaches the explosion limit. As a result, the packing made of synthetic resin or the safety valve made of synthetic resin melts and the sealing of the battery is broken.

【0024】また、本願発明の構成と異なって、安全弁
体の材質がゴム状弾性体であり、合成樹脂製パッキング
部材の融点が300℃よりも高く、かつゴム状弾性体か
らなる安全弁体の耐熱温度が230℃よりも高い場合に
も、充電済みの該電池を加熱すると、負極から水素ガス
が多量に発生し、正極から酸素ガスが多量に発生して、
電池の内部ガスが爆発限界に到達してから、合成樹脂製
パッキングの劣化もしくは合成樹脂製安全弁体の溶融が
起こって電池の密閉が破れる。
Also, unlike the construction of the present invention, the material of the safety valve body is a rubber-like elastic body, the melting point of the synthetic resin packing member is higher than 300 ° C., and the heat resistance of the safety valve body made of the rubber-like elastic body is high. Even when the temperature is higher than 230 ° C., when the charged battery is heated, a large amount of hydrogen gas is generated from the negative electrode, and a large amount of oxygen gas is generated from the positive electrode,
After the internal gas of the battery reaches the explosion limit, the sealing of the battery is broken due to deterioration of the synthetic resin packing or melting of the synthetic resin safety valve element.

【0025】従って、本願発明の構成と異なるこれらの
電池を火中に投入すると、加熱によって電池の内部のガ
スが爆発限界に入ってから、電池の密閉が破れて電池の
内部ガスに着火し、電池が爆発する。
Therefore, when these batteries different from the configuration of the present invention are thrown into a fire, the gas inside the batteries enters the explosion limit due to heating, and then the seal of the batteries is broken to ignite the gas inside the batteries, Battery explodes.

【0026】[0026]

【実施例】本発明を好適な実施例によって説明する。 [実験1]実験は、図1に縦断面構造の模式図を示すC
sub 形の大きさ(直径23mm×高さ43mm)の円筒
密閉形ニッケル・金属水素化物蓄電池を用いておこなっ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described by way of preferred embodiments. [Experiment 1] In the experiment, FIG. 1 shows a schematic diagram of a longitudinal sectional structure.
The test was performed using a cylindrical nickel-metal hydride storage battery having a sub shape (diameter 23 mm × height 43 mm).

【0027】図1において、Fは水素吸蔵合金を主体と
する帯状負極板であり、Hは水酸化ニッケルを活物質の
主体とする帯状の焼結式正極板であり、Gはスルフォン
化して親水性を賦与したポリスチレンを含有するポリプ
ロピレン製不織布からなる厚さ0.15mmのセパレー
タである。負極板Fおよび正極板Hは、セパレータGを
介して捲回されている。Iは厚さが0.4mmの鉄にニ
ッケルメッキを施した負極端子を兼ねる電池容器であ
る。負極板Fは、負極のリードKによって電池容器Iに
電気的に結合されている。
In FIG. 1, F is a band-shaped negative electrode plate mainly composed of a hydrogen storage alloy, H is a band-shaped sintered positive electrode plate mainly composed of nickel hydroxide as an active material, and G is a sulfonated hydrophilic plate. This is a separator having a thickness of 0.15 mm and made of a nonwoven fabric made of polypropylene containing polystyrene imparted with properties. The negative electrode plate F and the positive electrode plate H are wound via a separator G. I is a battery container which also serves as a negative electrode terminal obtained by plating nickel having a thickness of 0.4 mm on iron. The negative electrode plate F is electrically connected to the battery container I by a negative electrode lead K.

【0028】正極板Hは、正極リードJによって、穴あ
き蓋板Eに電気的に結合されている。穴あき蓋板Eは、
その周縁部において、電気的絶縁および気密の保持の役
目を果たす合成樹脂製パッキング部材Aを介して、電池
容器の上端部においてカシメにより封口されている。穴
あき蓋板Eの中央部の穴には、熱可塑性合成樹脂製安全
弁体Dが載置されていて、この安全弁体Dは、スプリン
グCを介して、正極端子を兼ねるキャップBによって穴
あき蓋板Eに圧迫されている。このキャップBは、排気
孔B1を有し、穴あき蓋板Eに溶接して結合されてい
る。安全弁体Dが溶融しないうちは、電池の内圧が10kg
/cm2 よりも高くなると、安全弁体Dが持ち上げられ
て、電池内部のガスは、穴あき蓋板Eの中央部の穴か
ら、排気孔B1を通って、電池系外へ放出される構造に
なっている。
The positive electrode plate H is electrically connected to a perforated lid plate E by a positive electrode lead J. The perforated lid plate E is
At the periphery, the upper end of the battery container is sealed by caulking via a synthetic resin packing member A that plays a role of electrical insulation and airtightness. A safety valve body D made of a thermoplastic synthetic resin is placed in a central hole of the perforated lid plate E. The safety valve body D is provided with a cap B serving as a positive electrode terminal via a spring C. Plate E is pressed. The cap B has an exhaust hole B1 and is welded and connected to a perforated lid plate E. Before the safety valve D is melted, the internal pressure of the battery is 10kg.
/ Cm 2 , the safety valve body D is lifted, and the gas inside the battery is discharged from the hole at the center of the perforated lid plate E through the exhaust hole B1 to the outside of the battery system. Has become.

【0029】正極の水酸化ニッケル電極Hに含まれる水
酸化ニッケルの合計の重量は、1セル当たり8.7gで
ある。従って、水酸化ニッケルが1電子反応に従うこと
を仮定すると、電池1個の正極の理論容量は約2.5A
hである。この電極には、水酸化ニッケル1グラム当た
り水酸化コバルト0.04グラムを添加してある。この
正極の理論容量を定格容量と呼ぶことにする。
The total weight of nickel hydroxide contained in the nickel hydroxide electrode H of the positive electrode is 8.7 g per cell. Therefore, assuming that nickel hydroxide follows a one-electron reaction, the theoretical capacity of one battery positive electrode is about 2.5 A
h. To this electrode was added 0.04 grams of cobalt hydroxide per gram of nickel hydroxide. The theoretical capacity of this positive electrode will be referred to as the rated capacity.

【0030】負極板Cは次のようにして製作した。The negative electrode plate C was manufactured as follows.

【0031】水素吸蔵合金は、その組成が原子比でLmNi
3.8 Co0.7 Al0.5 になるように、その構成元素を金属の
状態で真空にした高周波誘導炉中で溶解し、鋳造してか
ら粉砕した。ここでLmは、Laを約90重量% 含有する稀土
類金属の混合物であるランタンリッチミッシュメタルで
ある。この合金粉末を、増粘剤かつ結着剤の機能を果た
すポリビニルアルコールの水溶液に分散してペースト状
にした。そしてニッケルメッキを施した鉄製のパンチン
グメタルの両面にこのペーストを塗着し、乾燥し、プレ
スし、切断して水素吸蔵電極を製作した。この電池1個
の負極板に含まれる水素吸蔵合金の重量は、約12.5
gである。
The composition of the hydrogen storage alloy is LmNi in atomic ratio.
The constituent elements were melted in a vacuum in a high-frequency induction furnace in a metal state so as to obtain 3.8 Co 0.7 Al 0.5 , cast, and then pulverized. Here, Lm is a lanthanum-rich misch metal which is a mixture of rare earth metals containing about 90% by weight of La. This alloy powder was dispersed in an aqueous solution of polyvinyl alcohol which functions as a thickener and a binder to form a paste. The paste was applied to both surfaces of a nickel-plated iron punching metal, dried, pressed, and cut to produce a hydrogen storage electrode. The weight of the hydrogen storage alloy contained in one negative electrode plate of this battery is about 12.5
g.

【0032】電解液は、10g/l のLiOHおよび0.6Mの亜鉛
を添加した7M KOH水溶液3.8mlを注入した。
As an electrolyte, 3.8 ml of a 7 M KOH aqueous solution to which 10 g / l of LiOH and 0.6 M of zinc were added was injected.

【0033】パッキング部材Aおよび安全弁体Dに種種
の材質の合成樹脂を用いて上記の構造の電池をそれぞれ
1000個製作し、それらの電池を化成のために、下記
の条件で充放電した。
Each of the packing member A and the safety valve body D was manufactured using a synthetic resin of various materials to produce 1,000 batteries each having the above-described structure, and these batteries were charged and discharged under the following conditions for formation.

【0034】<通電条件>化成は、次の条件で2サイク
ルの充放電を行う。
<Electrification Conditions> In the formation, two cycles of charging and discharging are performed under the following conditions.

【0035】充電:定格容量を基準として10時間率の
電流で15時間充電する。
Charging: The battery is charged for 15 hours at a current rate of 10 hours based on the rated capacity.

【0036】放電:定格容量を基準として5時間率の電
流で端子電圧が1Vになるまで放電する。
Discharge: Discharge is performed at a rate of 5 hours based on the rated capacity until the terminal voltage becomes 1 V.

【0037】そして、この電池を、次の条件で充電して
から、この充電状態の電池を宙づりにして、下方からブ
ンゼンバーナーを用いて都市ガスの炎によって加熱し、
電池の爆発のおこる個数を調べるという火中投入実験を
おこなった。
After charging the battery under the following conditions, the charged battery is suspended and heated from below using a Bunsen burner by the flame of city gas.
An in-fire test was conducted to determine the number of battery explosions.

【0038】<火中に投入する前の充電条件>定格容量
を基準として10時間率の電流で15時間充電し、24
時間放置する。 この実験に用いた電池のパッキング部
材の材質および融点、安全弁体の材質および融点、加熱
による爆発の発生頻度(実験に供したそれぞれ1000
個の電池のうちの爆発が起こった電池の個数。単位:
%)を表1に示す。
<Charging Condition Before Putting into Fire> The battery is charged for 15 hours at a current of 10 hours based on the rated capacity,
Leave for a time. The material and melting point of the packing member of the battery used in this experiment, the material and melting point of the safety valve body, and the frequency of explosion due to heating (each 1000
The number of batteries that exploded out of the batteries. unit:
%) Are shown in Table 1.

【0039】[0039]

【表1】 表1から、水素吸蔵合金を主体とする負極板と、水酸化
ニッケルを主活物質とする正極板と、金属製蓄電池容器
と、該蓄電池容器の密閉性を保持しつつ該電池容器およ
び端子の電気的に正極の極性を有する部分と負極の極性
を有する部分とを電気的に絶縁する熱可塑性合成樹脂製
パッキング部材と、合成樹脂製安全弁体とを備える密閉
形ニッケル・金属水素化物蓄電池において、該安全弁体
が熱可塑性合成樹脂製である場合には、該パッキング部
材もしくは該安全弁体のうちで、少なくとも一方の融点
が270℃以下であれば、充電済みの密閉形ニッケル・
金属水素化物蓄電池の爆発が起こらず、パッキング部材
および安全弁体のいずれの融点も270℃よりも高い場
合には、電池の爆発が起こることがわかる。 [実験2]実験1に用いた電池における熱可塑性安全弁
体DおよびスプリングCの代わりに、図2に示すよう
に、ゴム弾性を有する合成樹脂からなる安全弁体D’を
用い、そのほかは、安全弁の作動圧の値を含めて、実験
1の電池と同じ構成の電池を製作した。
[Table 1] From Table 1, the negative electrode plate mainly composed of a hydrogen storage alloy, the positive electrode plate mainly composed of nickel hydroxide, a metal storage battery container, and the battery container and the terminals of the battery container while maintaining the hermeticity of the storage battery container In a sealed nickel-metal hydride storage battery including a thermoplastic synthetic resin packing member that electrically insulates a portion having a polarity of a positive electrode and a portion having a polarity of a negative electrode, and a synthetic resin safety valve body, When the safety valve body is made of a thermoplastic synthetic resin, if at least one of the packing member and the safety valve body has a melting point of 270 ° C. or less, the charged sealed nickel alloy
When the explosion of the metal hydride storage battery does not occur and the melting points of both the packing member and the safety valve body are higher than 270 ° C., it is understood that the explosion of the battery occurs. [Experiment 2] In place of the thermoplastic safety valve element D and the spring C in the battery used in Experiment 1, as shown in FIG. 2, a safety valve element D ′ made of a synthetic resin having rubber elasticity was used. A battery having the same configuration as that of the battery of Experiment 1 including the value of the operating pressure was manufactured.

【0040】安全弁体には、材質が異なって耐熱温度が
異なる種種のフッ素ゴム、オレフィン系熱可塑性エラス
トマ、およびニトリルゴムを用いた。なお、オレフィン
系熱可塑性エラストマを除く安全弁体のゴム状弾性体
は、架橋されているので、融点が存在しない。そして、
オレフィン系熱可塑性エラストマは、硬質相にポリプロ
ピレンを用い、軟質相にエチレンプロピレンゴムを用い
たもので、加硫をおこなっておらず、熱可塑性がある。
As the safety valve element, various kinds of fluorine rubber, olefin thermoplastic elastomer, and nitrile rubber having different materials and different heat resistance temperatures were used. Note that the rubber-like elastic body of the safety valve body excluding the olefin-based thermoplastic elastomer has no melting point because it is crosslinked. And
The olefin-based thermoplastic elastomer uses polypropylene for the hard phase and ethylene propylene rubber for the soft phase, and is not vulcanized and has thermoplasticity.

【0041】これらの電池を用いて、実験1と同じ条件
で火中投入実験をおこなった。
Using these batteries, an in-fire experiment was performed under the same conditions as in Experiment 1.

【0042】この実験に用いた電池のパッキング部材の
材質および融点、安全弁体の材質および融点、加熱によ
る爆発の発生頻度(実験に供したそれぞれ1000個の
電池のうちの爆発が起こった電池の個数。単位:%)を
表2に示す。
The material and melting point of the packing member of the battery used in this experiment, the material and melting point of the safety valve body, and the frequency of explosion due to heating (the number of batteries that exploded out of 1000 batteries used in the experiment) (Unit:%) is shown in Table 2.

【0043】[0043]

【表2】 表2から、水素吸蔵合金を主体とする負極板と、水酸化
ニッケルを主活物質とする正極板と、金属製蓄電池容器
と、該蓄電池容器の密閉性を保持しつつ該電池容器およ
び端子の電気的に正極の極性を有する部分と負極の極性
を有する部分とを電気的に絶縁する熱可塑性合成樹脂製
パッキング部材と、合成樹脂製安全弁体とを備える密閉
形ニッケル・金属水素化物蓄電池において、該安全弁体
がゴム弾性体である場合には、該パッキング部材の融点
が270℃以下であるかもしくは該ゴム状弾性体の耐熱
温度が230℃以下である場合には、充電状態の電池を
火中に投入しても爆発が起こらないことがわかる。
[Table 2] From Table 2, the negative electrode plate mainly composed of a hydrogen storage alloy, the positive electrode plate mainly composed of nickel hydroxide, a metal storage battery container, and the battery container and terminals of the battery container while maintaining the hermeticity of the storage battery container In a sealed nickel-metal hydride storage battery including a thermoplastic synthetic resin packing member that electrically insulates a portion having a polarity of a positive electrode and a portion having a polarity of a negative electrode, and a synthetic resin safety valve body, When the safety valve element is a rubber elastic body, if the melting point of the packing member is 270 ° C. or less or the heat resistant temperature of the rubber elastic body is 230 ° C. or less, the charged battery is fired. It turns out that there is no explosion when thrown in.

【0044】なお、実験1においては、スプリングCで
圧迫する安全弁体Dとして、ゴム状弾性を有していない
熱可塑性合成樹脂を用いたが、この材質の代わりに、実
験2に用いたようなゴム状弾性体を用いる場合にも、実
験2と同様の結果が得られる。
In the experiment 1, a thermoplastic synthetic resin having no rubber-like elasticity was used as the safety valve body D pressed by the spring C. However, instead of this material, the safety valve D used in the experiment 2 was used. When a rubber-like elastic body is used, the same result as in Experiment 2 is obtained.

【0045】また、実験1および実験2は、円筒形の密
閉形ニッケル・金属水素化物蓄電池を用いた場合につい
て説明したが、円筒形の電池の代わりに、角柱形のニッ
ケル・金属水素化物蓄電池を用いても、上記の実施例と
同様の作用効果が得られる。
In Experiments 1 and 2, the case where a cylindrical nickel-metal hydride storage battery was used was described, but a prismatic nickel-metal hydride storage battery was used instead of the cylindrical battery. Even if it is used, the same operation and effect as the above embodiment can be obtained.

【0046】さらに、上記の実施例では、特定の組成の
水素吸蔵合金を負極に用いた場合について説明したが、
そのほかに、上記の合金の成分元素の配合比を変えた合
金や、異種元素を添加した合金、あるいは、Laves 相合
金など、正極のβオキシ水酸化ニッケルの熱分解による
酸素ガスの発生が盛んに起こるよりも低い温度で、大部
分の吸蔵水素が放出される水素吸蔵合金であれば、上記
の実施例と同様の作用効果が得られる。
Further, in the above embodiment, the case where a hydrogen storage alloy having a specific composition is used for the negative electrode has been described.
In addition, the generation of oxygen gas due to the thermal decomposition of β-nickel oxyhydroxide on the positive electrode, such as alloys in which the mixing ratio of the constituent elements of the above alloys has been changed, alloys containing different elements, or Laves phase alloys, has been actively promoted. If the hydrogen storage alloy releases most of the stored hydrogen at a temperature lower than the temperature at which it occurs, the same operation and effect as in the above embodiment can be obtained.

【0047】[0047]

【発明の効果】本発明によれば、充電状態の密閉形ニッ
ケル・金属水素化物蓄電池を火中に投入しても爆発が起
こらない。
According to the present invention, an explosion does not occur even if a charged sealed nickel-metal hydride storage battery is put into a fire.

【図面の簡単な説明】[Brief description of the drawings]

【図1】スプリングによって安全弁体を加圧した円筒形
密閉形ニッケル・金属水素化物蓄電池の樹断面の模式
図。
FIG. 1 is a schematic diagram of a cross section of a cylindrical sealed nickel-metal hydride storage battery in which a safety valve body is pressurized by a spring.

【図2】それ自体がゴム弾性を有する安全弁体を有する
円筒形密閉形ニッケル・金属水素化物蓄電池の縦断面の
模式図。
FIG. 2 is a schematic view of a vertical section of a cylindrical nickel-metal hydride storage battery having a safety valve body having rubber elasticity itself.

【符号の説明】[Explanation of symbols]

A 熱可塑性合成樹脂製パッキング部材 D,D’ 合成樹脂製安全弁体 F 負極板 G セパレータ H 正極板 A packing member made of thermoplastic synthetic resin D, D 'safety valve body made of synthetic resin F negative electrode plate G separator H positive electrode plate

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水素吸蔵合金を主体とする負極板と、水酸
化ニッケルを主活物質とする正極板と、金属製蓄電池容
器と、該蓄電池容器の密閉性を保持しつつ該電池容器お
よび端子の電気的に正極の極性を有する部分と負極の極
性を有する部分とを電気的に絶縁する熱可塑性合成樹脂
製パッキング部材と、合成樹脂製安全弁体とを備える密
閉形ニッケル・金属水素化物電池において、該安全弁体
が熱可塑性合成樹脂製である場合には、該パッキング部
材の融点が270℃以下であり、該安全弁体がゴム弾性
体である場合には、該パッキング部材の融点が270℃
以下であるかもしくは該ゴム状弾性体の耐熱温度が23
0℃以下であることを特徴とする密閉形ニッケル・金属
水素化物蓄電池。
1. A negative electrode plate mainly composed of a hydrogen storage alloy, a positive electrode plate mainly composed of nickel hydroxide, a metal storage battery container, and a battery container and a terminal while maintaining the hermeticity of the storage battery container. A sealed nickel-metal hydride battery comprising a thermoplastic synthetic resin packing member that electrically insulates a portion having the polarity of the positive electrode and a portion having the polarity of the negative electrode, and a safety valve body made of the synthetic resin. When the safety valve body is made of a thermoplastic synthetic resin, the packing portion
When the melting point of the material is 270 ° C. or less and the safety valve body is a rubber elastic body, the melting point of the packing member is 270 ° C.
Or the heat-resistant temperature of the rubber-like elastic body is 23
A sealed nickel-metal hydride storage battery characterized by a temperature of 0 ° C. or lower.
JP03216273A 1991-08-01 1991-08-01 Sealed nickel / metal hydride storage battery Expired - Lifetime JP3089310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03216273A JP3089310B2 (en) 1991-08-01 1991-08-01 Sealed nickel / metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03216273A JP3089310B2 (en) 1991-08-01 1991-08-01 Sealed nickel / metal hydride storage battery

Publications (2)

Publication Number Publication Date
JPH0541204A JPH0541204A (en) 1993-02-19
JP3089310B2 true JP3089310B2 (en) 2000-09-18

Family

ID=16685961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03216273A Expired - Lifetime JP3089310B2 (en) 1991-08-01 1991-08-01 Sealed nickel / metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP3089310B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815401B2 (en) * 1987-08-28 1996-02-21 株式会社クボタ Remote-controlled rice transplanter transmitter
EP0793283B1 (en) * 1996-02-28 2002-07-24 Matsushita Electric Industrial Co., Ltd. Sealed battery
JP4701636B2 (en) * 2004-06-03 2011-06-15 株式会社Gsユアサ Sealed storage battery exhaust valve, sealed storage battery using the same, sealed nickel metal hydride storage battery

Also Published As

Publication number Publication date
JPH0541204A (en) 1993-02-19

Similar Documents

Publication Publication Date Title
JP3438142B2 (en) Medium / large capacity sealed metal oxide / hydrogen storage battery
EP0862231A1 (en) Lithium secondary battery having thermal switch
JP3089310B2 (en) Sealed nickel / metal hydride storage battery
JPH0797504B2 (en) Sealed alkaline storage battery
JP4979178B2 (en) Hydrogen storage alloy powder for sealed alkaline storage battery and sealed alkaline storage battery using the same
JP6105389B2 (en) Alkaline storage battery
JPS60258870A (en) Organic electrolyte lithium secondary battery
JP2808679B2 (en) Formation method of sealed alkaline storage battery using hydrogen storage alloy negative electrode
JP2792938B2 (en) Hydrogen storage alloy electrode for alkaline storage batteries
WO1998054775A9 (en) Hydrogen storage alloy
JP3168623B2 (en) Prismatic metal hydride storage battery
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3192694B2 (en) Alkaline storage battery
JPH0763004B2 (en) Sealed alkaline storage battery
JP4236399B2 (en) Alkaline storage battery
JP2642144B2 (en) Method for producing hydrogen storage electrode
JPS60220556A (en) Manufacturing method of hydrogen occluding electrode for enclosed storage battery
JPS6332856A (en) Closed nickel-hydrogen storage battery
JPH05211069A (en) Square type sealed alkaline battery using hydrogen storage alloy negative electrode
JPH05144432A (en) Electrode with hydrogen storage alloy
JP2002280057A (en) Alkaline secondary battery
JP2513456B2 (en) Metal-hydrogen alkaline battery
JPH0963635A (en) Alkaline secondary battery
JPH0690922B2 (en) Sealed alkaline storage battery
JP3742149B2 (en) Alkaline secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080721

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 12