JPH05182667A - Manufacture of positive electrode material - Google Patents

Manufacture of positive electrode material

Info

Publication number
JPH05182667A
JPH05182667A JP3359091A JP35909191A JPH05182667A JP H05182667 A JPH05182667 A JP H05182667A JP 3359091 A JP3359091 A JP 3359091A JP 35909191 A JP35909191 A JP 35909191A JP H05182667 A JPH05182667 A JP H05182667A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
lithium carbonate
lithium
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3359091A
Other languages
Japanese (ja)
Other versions
JP3318941B2 (en
Inventor
Yoshikatsu Yamamoto
佳克 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP35909191A priority Critical patent/JP3318941B2/en
Publication of JPH05182667A publication Critical patent/JPH05182667A/en
Application granted granted Critical
Publication of JP3318941B2 publication Critical patent/JP3318941B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To adjust a residual amount of lithium carbonate by synthesizing a material at least partly in the atmosphere of specific concentration of CO2 gas, in the case of synthesizing the positive electrode material mainly composed of specific lithium compound oxide to contain lithium carbonate. CONSTITUTION:In the case of synthesizing a positive electrode material mainly composed of lithium compound oxide, represented by a general formula LixMO2 (where, M shows a transition metal of one kind or more and X is 0.05<=X<=1.10), and formed by containing lithium carbonate, synthesizing is performed at least partly in the atmosphere with CO2 concentration 0.1vol.% or more and less than 100vol.%. In this way, a residual amount of lithium carbonate in the positive electrode material is increased, further when the CO2 gas concentration is increased, the residual amount of lithium carbonate is fixed, and accurate control can be performed. Accordingly, a desired effect of internal pressure rise of a battery is provided in the positive electrode material, and safety of the nonaqueous electrolyte secondary battery of explosionproof closed structure can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電流遮断装置を備えた非
水電解液二次電池において使用される正極材料の製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a positive electrode material used in a non-aqueous electrolyte secondary battery equipped with a current interruption device.

【0002】[0002]

【従来の技術】近年、電子技術の進歩により、電子機器
の高性能化、小型化、ポータブル化が進み、これら電子
機器に使用される高エネルギー密度の二次電池の要求が
強まっている。従来、これらの電子機器に使用される二
次電池としては、ニッケル・カドミウム電池や鉛電池等
が挙げられるが、これら電池では放電電位が低くエネル
ギー密度の高い電池を得るという点では未だ不十分であ
る。
2. Description of the Related Art In recent years, advances in electronic technology have led to advances in performance, miniaturization, and portability of electronic devices, and the demand for secondary batteries of high energy density used in these electronic devices is increasing. Conventionally, secondary batteries used in these electronic devices include nickel-cadmium batteries and lead batteries, but these batteries are still insufficient in terms of obtaining batteries with low discharge potential and high energy density. is there.

【0003】最近、リチウムやリチウム合金さらには炭
素材料のようなリチウムイオンをドープかつ脱ドープ可
能な物質を負極として使用し、また、正極にリチウムコ
バルト複合酸化物等のリチウム複合酸化物を使用する非
水電解液二次電池の研究・開発が盛んに行われている。
この電池は、電池電圧が高く、高エネルギー密度を有
し、自己放電も少なく、サイクル特性に優れている電池
である。
Recently, substances capable of doping and dedoping lithium ions such as lithium and lithium alloys and carbon materials have been used as negative electrodes, and lithium composite oxides such as lithium cobalt composite oxides have been used as positive electrodes. Research and development of non-aqueous electrolyte secondary batteries are being actively conducted.
This battery has a high battery voltage, a high energy density, little self-discharge, and excellent cycle characteristics.

【0004】ところが、上述のような非水電解液二次電
池は、何らかの原因で充電時に所定以上の電気量の電流
が流れて過充電状態になると、電池電圧が高くなり、電
解液等が分解してガスが発生し、電池内圧や電池温度が
上昇する。さらに、この過充電状態が続くと電解質や活
物質の急速な分解といった異常反応が起こり、温度上昇
を伴う発熱や比較的急速な破損といった損傷状態を呈す
る場合がある。
However, in the non-aqueous electrolyte secondary battery as described above, if an electric current of a predetermined amount or more flows at the time of charging for some reason and the battery is overcharged, the battery voltage increases and the electrolyte or the like decomposes. Then, gas is generated, and the battery internal pressure and battery temperature rise. Further, if this overcharged state continues, an abnormal reaction such as rapid decomposition of the electrolyte or active material may occur, resulting in a damage state such as heat generation accompanied by temperature rise or relatively rapid damage.

【0005】かかる問題についての対策として、本発明
者らは電池内圧の上昇に応じて作動する電流遮断装置を
備え、正極材料として電池内圧上昇剤となる炭酸リチウ
ム(Li2 CO3 )で表面が被われたリチウム複合酸化
物(LiX MO2 )を用いた電池を提案した。この電池
では、たとえば過充電状態が進むと正極中の炭酸リチウ
ムが電気化学的に分解されて炭酸ガスが発生し、このガ
ス発生により電池内圧が上昇して電流遮断装置が作動
し、充電電流が遮断される。したがって、過充電におけ
る電池内部の異常反応の進行が停止し、電池の急速な温
度上昇を伴う発熱や比較的急速な破損の防止が可能とな
る。
As a measure against such a problem, the inventors of the present invention are equipped with a current interrupting device which operates in response to an increase in the internal pressure of the battery, and use lithium carbonate (Li 2 CO 3 ) as a positive electrode material to increase the internal pressure of the battery. A battery using a covered lithium composite oxide (Li X MO 2 ) was proposed. In this battery, for example, when the overcharged state progresses, lithium carbonate in the positive electrode is electrochemically decomposed to generate carbon dioxide gas, and the gas generation raises the internal pressure of the battery to activate the current interrupting device to reduce the charging current. To be cut off. Therefore, the progress of the abnormal reaction inside the battery due to overcharging is stopped, and it is possible to prevent the heat generation accompanying the rapid temperature rise of the battery and the relatively rapid damage.

【0006】上記電池において、正極材料として使用さ
れる炭酸リチウムで被われたリチウム複合酸化物を合成
する方法としては、たとえばコバルト,ニッケル等の遷
移金属の炭酸塩と炭酸リチウムをLi/M(モル比)が
Xよりも大きくなるように量りとって焼成し、リチウム
複合酸化物を生成するとともに炭酸リチウムを残存させ
る方法、予めリチウム複合酸化物を合成しておき、この
リチウム複合酸化物に炭酸リチウムを添加して再溶融さ
せる方法がある。
In the above battery, as a method of synthesizing a lithium composite oxide covered with lithium carbonate used as a positive electrode material, for example, a carbonate of a transition metal such as cobalt or nickel and lithium carbonate are mixed with Li / M (mol). Ratio) is larger than X and calcined to form a lithium composite oxide and leave lithium carbonate. A lithium composite oxide is synthesized in advance, and lithium carbonate is added to the lithium carbonate. There is a method of adding and remelting.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記方法に
より、正極材料を合成した場合、正極材料中に残存する
炭酸リチウム量が理論値量よりも遙に下まわり、残存す
る炭酸リチウム量をコントロールすることができない。
このため、正極材料に所望の電池内圧上昇効果を持たせ
るのが困難である。
However, when the positive electrode material is synthesized by the above method, the amount of lithium carbonate remaining in the positive electrode material is much lower than the theoretical amount, and the amount of remaining lithium carbonate is controlled. I can't.
Therefore, it is difficult to give the positive electrode material a desired effect of increasing the internal pressure of the battery.

【0008】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、正極材料中に多量の炭酸
リチウムを残存させることができ、残存炭酸リチウム量
をコントロールすることが可能な正極材料の製造方法を
提供することを目的とする。
Therefore, the present invention has been proposed in view of such conventional circumstances, and a large amount of lithium carbonate can be left in the positive electrode material, and the amount of residual lithium carbonate can be controlled. It is an object to provide a method for producing a positive electrode material.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明者らが鋭意検討を重ねた結果、正極材料中
に残存する炭酸リチウム量は、合成雰囲気にCO2 を存
在させることにより増大し、コントロール可能となるこ
とを見い出すに至った。
As a result of intensive studies by the present inventors in order to achieve the above-mentioned object, the amount of lithium carbonate remaining in the positive electrode material is such that CO 2 is present in the synthetic atmosphere. It has been found that it is increased and becomes controllable.

【0010】本発明の正極材料の製造方法はこのような
知見に基づいて完成されたものであり、一般式Lix
2 (ただし、Mは1種以上の遷移金属を表し、0.0
5≦X≦1.10である)で表されるリチウム複合酸化
物を主体とし、炭酸リチウムを含有してなる正極材料を
合成するに際し、少なくとも合成の一部をCO2 濃度が
0.1容量%以上、100容量%未満の雰囲気中で行う
ことを特徴とするものである。
The method for producing a positive electrode material according to the present invention has been completed on the basis of such findings, and has the general formula Li x M
O 2 (where M represents one or more kinds of transition metals, and 0.0
5 ≦ X ≦ 1.10), when a positive electrode material mainly composed of a lithium composite oxide represented by the formula (5 ≦ X ≦ 1.10) and containing lithium carbonate is used, at least part of the synthesis has a CO 2 concentration of 0.1 vol. % Or more and less than 100% by volume in an atmosphere.

【0011】本発明の製造方法において製造される正極
材料は、正極活物質となるリチウム複合酸化物を主体と
し、電池内圧上昇剤となる炭酸リチウムを含有してなる
ものである。上記リチウム複合酸化物としては、LiX
MO2 (ただし、Mは1種以上の遷移金属を表し、0.
05≦X≦1.10である)で示されるリチウム複合酸
化物、たとえばLiCoO2 ,LiNiO2 ,LiX
Y Co(1-Y) 2 (ただし、0.05≦X1.10,
0<Y<1)等が挙げられる。
The positive electrode material produced by the production method of the present invention is mainly composed of a lithium composite oxide which serves as a positive electrode active material and contains lithium carbonate which serves as a battery internal pressure increasing agent. Examples of the lithium composite oxide include Li X
MO 2 (where M represents one or more transition metals, and 0.
05 ≦ X ≦ 1.10), for example, LiCoO 2 , LiNiO 2 , Li X N.
i Y Co (1-Y) O 2 (where 0.05 ≦ X1.10,
0 <Y <1) and the like.

【0012】このようなリチウム複合酸化物と炭酸リチ
ウムよりなる正極材料は、たとえばコバルト,ニッケル
等の遷移金属(M)の炭酸塩と炭酸リチウム(Li2
3 )を、Li/M(モル比)がXより大きくなるよう
に量り取って混合し、600℃〜1000℃の温度範囲
で焼成してリチウム複合酸化物を生成するとともに炭酸
リチウムを残存させる方法、あるいはリチウム複合酸化
物を予め合成しておき、このリチウム複合酸化物中に炭
酸リチウムを添加して再溶融する方法等により合成する
ことができる。また、上述の方法において遷移金属の炭
酸塩の代わりに水酸化物,酸化物を使用しても同様に合
成可能である。
A positive electrode material comprising such a lithium composite oxide and lithium carbonate is a carbonate of a transition metal (M) such as cobalt or nickel and lithium carbonate (Li 2 C).
O 3 ) is weighed out and mixed so that Li / M (molar ratio) is larger than X, and is burned in a temperature range of 600 ° C. to 1000 ° C. to form a lithium composite oxide and leave lithium carbonate. It can be synthesized by a method or by synthesizing a lithium composite oxide in advance and then adding lithium carbonate to the lithium composite oxide and remelting. Further, in the above-mentioned method, a hydroxide or an oxide may be used instead of the transition metal carbonate, and the same synthesis can be performed.

【0013】ここで、本発明では、正極材料中に多量の
炭酸リチウムを残存させ、残存炭酸リチウム量のコント
ロールを可能なものとするために、少なくとも正極材料
の合成の一部をCO2 ガス濃度が0.1容量%以上、1
00容量%未満の雰囲気中で行うこととする。
Here, in the present invention, in order to allow a large amount of lithium carbonate to remain in the positive electrode material and control the amount of residual lithium carbonate, at least a part of the synthesis of the positive electrode material is subjected to CO 2 gas concentration. Is 0.1% by volume or more, 1
It is performed in an atmosphere of less than 00% by volume.

【0014】すなわち、正極材料中に残存する炭酸リチ
ウム量は、合成雰囲気中にCO2 ガスを存在させること
により増大し、さらに合成雰囲気中のCO2 ガス濃度を
上昇させていくことにより、残存炭酸リチウム量が一定
となり、正確なコントロール可能となる。なお、合成雰
囲気中のCO2 ガス濃度を100容量%とすると、リチ
ウム複合酸化物の分解が起こり、正極材料としての機能
が劣化する。したがって、本発明においては、残存炭酸
リチウム量の増大を図るとともに正極材料の機能を維持
するために、合成雰囲気中のCO2 ガス濃度は0.1容
量%以上,100容量%未満とする。
[0014] That is, lithium carbonate amount remaining in the cathode material, by in the synthesis atmosphere increased by the presence of CO 2 gas, it will further increase the CO 2 gas concentration in the synthesis atmosphere, the residual carbonate The amount of lithium becomes constant and accurate control becomes possible. When the CO 2 gas concentration in the synthetic atmosphere is 100% by volume, the lithium composite oxide is decomposed and the function as the positive electrode material deteriorates. Therefore, in the present invention, in order to increase the amount of residual lithium carbonate and maintain the function of the positive electrode material, the CO 2 gas concentration in the synthetic atmosphere is set to 0.1% by volume or more and less than 100% by volume.

【0015】[0015]

【作用】リチウム複合酸化物を主体とし、炭酸リチウム
を含有してなる正極材料を合成するに際して、合成をC
2 ガス濃度を調整していない空気中で行った場合、正
極材料中に残存する炭酸リチウム量が理論値よりも遙に
低くなり、残存する炭酸リチウム量をコントロールする
ことができない。
[Function] When synthesizing a positive electrode material mainly composed of a lithium composite oxide and containing lithium carbonate, C
When it is performed in the air in which the O 2 gas concentration is not adjusted, the amount of lithium carbonate remaining in the positive electrode material becomes much lower than the theoretical value, and the amount of remaining lithium carbonate cannot be controlled.

【0016】これに対して、上記正極材料の合成の少な
くとも一部を、CO2 ガス濃度が所定濃度範囲とされた
雰囲気中で行うと、正極材料中の残存炭酸リチウム量が
増大し、さらに合成雰囲気中のCO2 ガス濃度を上昇さ
せていくと、残存炭酸リチウム量が一定となり、正確な
コントロール可能となる。これは以下の理由によるもの
と考えられる。
On the other hand, when at least a part of the synthesis of the positive electrode material is performed in an atmosphere in which the CO 2 gas concentration is within the predetermined concentration range, the amount of lithium carbonate remaining in the positive electrode material increases, and the positive electrode material is further synthesized. When the concentration of CO 2 gas in the atmosphere is increased, the amount of residual lithium carbonate becomes constant and accurate control becomes possible. This is considered to be due to the following reasons.

【0017】すなわち、正極材料の合成をCO2 ガス濃
度を調整していない空気中で行う場合には、焼成,再溶
融等の高温処理に際して、化1に示すように炭酸リチウ
ムの分解反応(化1においては、右向きの反応)が進行
する。
That is, when the positive electrode material is synthesized in air whose CO 2 gas concentration is not adjusted, during the high temperature treatment such as firing and remelting, as shown in Chemical formula 1, the decomposition reaction of lithium carbonate In the case of 1, the reaction toward the right) proceeds.

【0018】[0018]

【化1】 [Chemical 1]

【0019】一方、合成をCO2 ガス濃度が所定濃度範
囲の雰囲気中で行う場合には、高温処理に際する炭酸リ
チウムの分解反応が抑えられる。また、炭酸リチウムが
分解しても、分解生成物である酸化リチウムと合成雰囲
気中に存在させたCO2 ガスが反応して炭酸リチウムが
合成される。したがって、正極材料中の残存炭酸リチウ
ム量の増大が達成されることとなる。
On the other hand, when the synthesis is carried out in an atmosphere in which the CO 2 gas concentration is within a predetermined concentration range, the decomposition reaction of lithium carbonate during high temperature treatment can be suppressed. Even if lithium carbonate is decomposed, lithium oxide, which is a decomposition product, reacts with CO 2 gas present in the synthesis atmosphere to synthesize lithium carbonate. Therefore, an increase in the amount of residual lithium carbonate in the positive electrode material is achieved.

【0020】[0020]

【実施例】本発明の好適な実施例について実験結果に基
づいて説明する。
EXAMPLES Preferred examples of the present invention will be described based on experimental results.

【0021】実施例1 炭酸リチウムと炭酸コバルトをLi/Co(モル比)=
1.15となるように量り取って混合した後、CO2
度0.2容量%の酸素存在雰囲気中で900℃、24時
間焼成して正極材料(サンプル試料1)を合成した。
Example 1 Li / Co (molar ratio) of lithium carbonate and cobalt carbonate =
After weighing out and mixing so as to be 1.15, the positive electrode material (sample sample 1) was synthesized by firing at 900 ° C. for 24 hours in an oxygen existing atmosphere with a CO 2 concentration of 0.2% by volume.

【0022】実施例2〜実施例11 焼成雰囲気中のCO2 濃度を表1に示すように変えた以
外は実施例1と同様にして正極材料(サンプル試料2〜
サンプル試料11)を合成した。
Examples 2 to 11 Positive electrode materials (samples 2 to 5) were prepared in the same manner as in Example 1 except that the CO 2 concentration in the firing atmosphere was changed as shown in Table 1.
A sample sample 11) was synthesized.

【0023】実施例12 炭酸リチウムと炭酸コバルトをLi/Co(モル比)=
1.15となるように量り取って混合した後、空気中で
900℃、12時間焼成した後、さらにCO2 濃度5.
0容量%の雰囲気中で900℃、12時間焼成すること
により正極材料(サンプル試料12)を合成した。
Example 12 Li / Co (molar ratio) of lithium carbonate and cobalt carbonate =
After weighing and mixing so as to be 1.15, the mixture was calcined in air at 900 ° C. for 12 hours, and further, the CO 2 concentration was 5.
A positive electrode material (sample sample 12) was synthesized by firing at 900 ° C. for 12 hours in an atmosphere of 0% by volume.

【0024】比較例1 炭酸リチウムと炭酸コバルトをLi/Co(モル比)=
1.15となるように量り取って混合した後、空気中で
900℃、24時間焼成して正極材料(比較試料1)を
合成した。
Comparative Example 1 Li / Co (molar ratio) of lithium carbonate and cobalt carbonate =
After weighing and mixing so as to be 1.15, the positive electrode material (Comparative Sample 1) was synthesized by firing in air at 900 ° C. for 24 hours.

【0025】比較例2 焼成雰囲気中のCO2 濃度を100容量%としたこと以
外は実施例1と同様にして正極材料(比較試料2)を合
成した。
Comparative Example 2 A positive electrode material (Comparative Sample 2) was synthesized in the same manner as in Example 1 except that the CO 2 concentration in the firing atmosphere was 100% by volume.

【0026】このようして合成された各正極材料につい
て、X線回折を行ったところ、比較試料2を除いて、L
iCoO2 の合成が確認でき、いずれの正極材料におい
てもLi2 CO3 の回折ピークが存在していた。
X-ray diffraction was performed on each of the positive electrode materials synthesized in this manner.
Synthesis of iCoO 2 was confirmed, and a Li 2 CO 3 diffraction peak was present in all positive electrode materials.

【0027】次に、各正極材料中に残存する炭酸リチウ
ム量を調査した。その結果を表1及び図1に示す。な
お、正極材料中の炭酸リチウム量は、試料を硫酸によっ
て分解し、生成したCO2 を塩化バリウムと水酸化ナト
リウムを含有する溶液中に導入して吸収させ、この溶液
を塩酸標準溶液で滴定することによってCO2 濃度を定
量し、この定量値から換算した。
Next, the amount of lithium carbonate remaining in each positive electrode material was investigated. The results are shown in Table 1 and FIG. The amount of lithium carbonate in the positive electrode material was determined by decomposing the sample with sulfuric acid, introducing the generated CO 2 into a solution containing barium chloride and sodium hydroxide, and absorbing the solution, and titrating this solution with a hydrochloric acid standard solution. Then, the CO 2 concentration was quantified and converted from this quantified value.

【0028】[0028]

【表1】 [Table 1]

【0029】図1および表1から、正極材料中に残存す
る炭酸リチウム量は、合成雰囲気中にCO2 ガスを含有
させることにより増大し、CO2 濃度を0.5容量%以
上にすることにより、一定となることがわかる。このこ
とから、正極材料中にCO2 ガスを含有させることは、
残存炭酸リチウム量を増大させる上で有効であり、特
に、合成雰囲気中のCO2 濃度を0.5容量%以上とす
れば、残存炭酸リチウム量が一定となり残存炭酸リチウ
ム量の正確なコントロールが可能となることがわかっ
た。
[0029] From Figure 1 and Table 1, lithium carbonate amount remaining in the cathode material, increased by the inclusion of CO 2 gas in the synthesis atmosphere, the CO 2 concentration by more than 0.5% by volume , It turns out to be constant. From this, the inclusion of CO 2 gas in the positive electrode material is
It is effective in increasing the amount of residual lithium carbonate. Especially, if the CO 2 concentration in the synthetic atmosphere is 0.5% by volume or more, the amount of residual lithium carbonate becomes constant and the amount of residual lithium carbonate can be accurately controlled. I found out that

【0030】しかし、比較試料2のX線回折結果からわ
かるように、合成雰囲気中のCO2 濃度を100容量%
とすると、正極活物質であるLiCoO2 の分解が起こ
る。したがって、正極材料の機能を維持するためには、
合成雰囲気中のCO2 ガス濃度は100%未満とするこ
とが必要であることがわかった。
However, as can be seen from the X-ray diffraction results of Comparative Sample 2, the CO 2 concentration in the synthetic atmosphere was 100% by volume.
Then, decomposition of LiCoO 2 , which is the positive electrode active material, occurs. Therefore, in order to maintain the function of the positive electrode material,
It was found that the CO 2 gas concentration in the synthesis atmosphere needs to be less than 100%.

【0031】なお、本実施例では、出発原料として炭酸
リチウムと炭酸コバルトを用いたが、炭酸コバルトの代
わりに酸化物、水酸化物等を出発物質としても同様の効
果が得られることが確認された。また、合成する正極活
物質としてもLiCoO2 以外のリチウム複合酸化物
(たとえば、LiX NiY Co(1-Y) 2 (ただし、
0.05≦X≦1.10,0<Y≦1)を採用した場合
でも本発明は同様な効果を発揮した。
In this example, lithium carbonate and cobalt carbonate were used as starting materials, but it was confirmed that similar effects can be obtained by using oxides, hydroxides or the like as starting materials instead of cobalt carbonate. It was Further, as a positive electrode active material to be synthesized, lithium composite oxides other than LiCoO 2 (for example, Li X Ni Y Co (1-Y) O 2 (however,
Even when 0.05 ≦ X ≦ 1.10 and 0 <Y ≦ 1) are adopted, the present invention exhibits the same effect.

【0032】[0032]

【発明の効果】以上の説明からも明らかなように、本発
明の正極材料の製造方法は、リチウム複合酸化物を主体
とし、炭酸リチウムを含有してなる正極材料を合成する
に際して、合成の少なくとも一部をCO2 濃度が0.1
容量%以上、100容量%未満の雰囲気中で行うので、
正極材料中に残存する炭酸リチウム量を増大させること
が可能である。
As is apparent from the above description, the method for producing a positive electrode material according to the present invention is characterized in that at least the lithium composite oxide is mainly used in synthesizing a positive electrode material containing lithium carbonate. CO 2 concentration of 0.1
Since it is performed in an atmosphere of not less than 100% by volume and not less than 100% by volume,
It is possible to increase the amount of lithium carbonate remaining in the positive electrode material.

【0033】したがって、本発明によれば、正極材料に
所望の電池内圧上昇効果を持たせることが可能となり、
上記正極材料を使用する防爆密閉構造の非水電解液二次
電池の安全性をより向上させることが可能となる。
Therefore, according to the present invention, it becomes possible to give the positive electrode material a desired effect of increasing the internal pressure of the battery,
It is possible to further improve the safety of the non-aqueous electrolyte secondary battery having the explosion-proof closed structure using the positive electrode material.

【図面の簡単な説明】[Brief description of drawings]

【図1】合成雰囲気中のCO2 濃度と正極材料中に残存
する炭酸リチウム量の関係を示す特性図である。
FIG. 1 is a characteristic diagram showing the relationship between the CO 2 concentration in a synthetic atmosphere and the amount of lithium carbonate remaining in a positive electrode material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 一般式Lix MO2 (ただし、Mは1種
以上の遷移金属を表し、0.05≦X≦1.10であ
る)で表されるリチウム複合酸化物を主体とし、炭酸リ
チウムを含有してなる正極材料を合成するに際し、 少なくとも合成の一部をCO2 濃度が0.1容量%以
上、100容量%未満の雰囲気中で行うことを特徴とす
る正極材料の製造方法。
1. A lithium composite oxide represented by the general formula Li x MO 2 (wherein M represents one or more kinds of transition metals, and 0.05 ≦ X ≦ 1.10) is mainly used. A method for producing a positive electrode material, characterized in that, when synthesizing a positive electrode material containing lithium, at least part of the synthesis is performed in an atmosphere having a CO 2 concentration of 0.1% by volume or more and less than 100% by volume.
JP35909191A 1991-12-28 1991-12-28 Manufacturing method of cathode material Expired - Lifetime JP3318941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35909191A JP3318941B2 (en) 1991-12-28 1991-12-28 Manufacturing method of cathode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35909191A JP3318941B2 (en) 1991-12-28 1991-12-28 Manufacturing method of cathode material

Publications (2)

Publication Number Publication Date
JPH05182667A true JPH05182667A (en) 1993-07-23
JP3318941B2 JP3318941B2 (en) 2002-08-26

Family

ID=18462701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35909191A Expired - Lifetime JP3318941B2 (en) 1991-12-28 1991-12-28 Manufacturing method of cathode material

Country Status (1)

Country Link
JP (1) JP3318941B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006568A1 (en) * 1995-08-03 1997-02-20 Arthur D. Little, Inc. Electrochemical cell and electrochemical process within a carbon dioxide environment
JPH10302779A (en) * 1997-04-25 1998-11-13 Sony Corp Production of positive electrode active material
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001307773A (en) * 2000-04-19 2001-11-02 Gs-Melcotec Co Ltd Nonaqueous electrolyte battery
JP2001351690A (en) * 2000-06-09 2001-12-21 Gs-Melcotec Co Ltd Nonaqueous electrolyte cell
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US7332248B2 (en) 2002-12-20 2008-02-19 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode for non-aqueous electrolyte secondary battery and method of manufacturing the same
WO2011081216A1 (en) * 2009-12-28 2011-07-07 住友化学株式会社 Method for manufacturing a lithium complex metal oxide
WO2011121691A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Positive electrode for lithium ion battery, method for producing same, and lithium ion battery using the positive electrode
JP2012126631A (en) * 2009-12-28 2012-07-05 Sumitomo Chemical Co Ltd Method for producing lithium composite metal oxide
US9531033B2 (en) 2008-04-17 2016-12-27 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and manufacturing method therefor
JP2022095988A (en) * 2020-04-28 2022-06-28 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006568A1 (en) * 1995-08-03 1997-02-20 Arthur D. Little, Inc. Electrochemical cell and electrochemical process within a carbon dioxide environment
JPH10302779A (en) * 1997-04-25 1998-11-13 Sony Corp Production of positive electrode active material
JP2001307773A (en) * 2000-04-19 2001-11-02 Gs-Melcotec Co Ltd Nonaqueous electrolyte battery
JP2001307774A (en) * 2000-04-21 2001-11-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2001351690A (en) * 2000-06-09 2001-12-21 Gs-Melcotec Co Ltd Nonaqueous electrolyte cell
US7078128B2 (en) 2001-04-27 2006-07-18 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US7332248B2 (en) 2002-12-20 2008-02-19 Sumitomo Metal Mining Co., Ltd. Active material for positive electrode for non-aqueous electrolyte secondary battery and method of manufacturing the same
US9531033B2 (en) 2008-04-17 2016-12-27 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and manufacturing method therefor
US8591860B2 (en) 2009-12-28 2013-11-26 Sumitomo Chemical Company, Limited Method for manufacturing a lithium complex metal oxide
JP2012126631A (en) * 2009-12-28 2012-07-05 Sumitomo Chemical Co Ltd Method for producing lithium composite metal oxide
JP2012126633A (en) * 2009-12-28 2012-07-05 Sumitomo Chemical Co Ltd Method for producing lithium composite metal oxide
WO2011081216A1 (en) * 2009-12-28 2011-07-07 住友化学株式会社 Method for manufacturing a lithium complex metal oxide
KR101313437B1 (en) * 2010-03-31 2013-10-01 파나소닉 주식회사 Positive electrode for lithium ion battery, fabrication method thereof, and lithium ion battery using the same
WO2011121691A1 (en) * 2010-03-31 2011-10-06 パナソニック株式会社 Positive electrode for lithium ion battery, method for producing same, and lithium ion battery using the positive electrode
JP5391328B2 (en) * 2010-03-31 2014-01-15 パナソニック株式会社 Positive electrode for lithium ion battery, method for producing the same, and lithium ion battery using the positive electrode
US8658312B2 (en) 2010-03-31 2014-02-25 Panasonic Corporation Positive electrode for lithium ion battery, fabrication method thereof, and lithium ion battery using the same
JP2022095988A (en) * 2020-04-28 2022-06-28 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3318941B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
JP4637592B2 (en) Cathode active material for lithium secondary battery and lithium secondary battery using the same
JP5114998B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6986879B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JPH08203521A (en) Insertion compound based on manganese oxide useful for positive-electrode active substance of lithium battery
JPH0733443A (en) Lithium-containing metal-halogen oxide and its production
EP0809310A2 (en) Lithium battery and method producing positive electrode active material therefor
JPH08306360A (en) Manufacture of cathode active material for nonaqueous battery
KR100276053B1 (en) Manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP3318941B2 (en) Manufacturing method of cathode material
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
JPH09265984A (en) Nonaqueous electrolyte secondary battery
JP2001351624A (en) Non-aqueous secondary battery and method for using it
JP2019114454A (en) Method of manufacturing positive electrode material for non-aqueous secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH10321228A (en) Positive electrode active material for lithium battery, its manufacture, and lithium battery using it
US6333126B2 (en) Process for producing nickel compound containing lithium
JP2001068113A (en) Positive electrode active material for lithium battery, its manufacturing method, and lithium battery
JP3049892B2 (en) Positive electrode active material for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
JP3751133B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5036174B2 (en) Non-aqueous electrolyte secondary battery
JPH05251079A (en) Manufacture of positive electrode active material for nonaqueous electrolyte cell and nonaqueous electrolyte cell having same positive electrode active material
JP2000113907A (en) Lithium ion secondary battery
JPS63114065A (en) Organic electrolyte secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020521

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080621

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090621

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100621

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110621

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120621

Year of fee payment: 10