JPS59217946A - Manufacture of nonaqueous electrolyte battery - Google Patents

Manufacture of nonaqueous electrolyte battery

Info

Publication number
JPS59217946A
JPS59217946A JP58092721A JP9272183A JPS59217946A JP S59217946 A JPS59217946 A JP S59217946A JP 58092721 A JP58092721 A JP 58092721A JP 9272183 A JP9272183 A JP 9272183A JP S59217946 A JPS59217946 A JP S59217946A
Authority
JP
Japan
Prior art keywords
battery
heat treatment
active material
atmosphere
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58092721A
Other languages
Japanese (ja)
Inventor
Masaki Nakai
中井 正樹
Koichi Sato
公一 佐藤
Kiyoto Watanabe
清人 渡辺
Makoto Watabe
信 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58092721A priority Critical patent/JPS59217946A/en
Publication of JPS59217946A publication Critical patent/JPS59217946A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a nonaqueous electrolyte battery having an increased discharge capacity by subjecting a molded positive mixture containing carbon fluoride as an active material to heat treatment at high temperature and in the atmosphere. CONSTITUTION:In assembling a battery in which an alkali metal such as metallic fluoride is used as a positive active material and nonaqueous electrolyte is used, a molded positive mixture 4 is subjected to heat treatment carried out at 200-380 deg.C in the atmosphere. After the positive mixture pellet 4 is installed in a plate-like separator 3, the separator 3 is brought into contact with the negative lithium electrode 2 before the battery is sealed, thereby constituting a coin- type battery. By thus subjecting the positive mixture 4 to heat treatment in the atmosphere, low discharge voltage which is disadvantage of the conventional battery is eliminated and an increased discharge capacity is realized.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液電池の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a non-aqueous electrolyte battery.

従来例の構成とその問題点 陰極活物質にアルカリ金りを用いた非水電解液電池の代
表的なものとして、陽極活物質にフン化炭素、陰極活物
質にリチウムを用いたフッ化炭Vリチウム電池がある。
Structure of conventional examples and their problems Typical non-aqueous electrolyte batteries that use alkaline gold as the cathode active material are fluorinated carbon V that uses fluorinated carbon as the anode active material and lithium as the cathode active material. There is a lithium battery.

この系のコイン型電池のこれまでの構成は、リチウムを
圧着した陰極封口蓋内に、セパレータを介して円板状に
成型した陽極合剤を載置し、有機溶媒と無機電解質から
なる非水電解液を所定鼠注入し、陽極端子を兼ねたケー
スをかぶせ封口して形成していた。
The conventional structure of this type of coin-type battery was to place an anode mixture formed into a disc shape with a separator in between a cathode sealing lid to which lithium was crimped, and a non-aqueous non-aqueous battery consisting of an organic solvent and an inorganic electrolyte. A predetermined amount of electrolyte was injected, and a case that also served as an anode terminal was placed over and sealed.

これら陰極活物質にリチウムのようなアルカリ金属を用
いた電池は、陰極活物質と水との反応性が激しいため、
電解液に水分が除去された有機溶媒を用い、この他の電
池を構成する各部層も十分な乾燥がなされ、電池組立も
水分が除去された空気又は不活性ガス雰囲気中で行なわ
れている。
Batteries that use alkali metals such as lithium as the cathode active material have strong reactivity with water, so
An organic solvent from which water has been removed is used as the electrolyte, and each of the other layers constituting the battery is sufficiently dried, and the battery assembly is also carried out in air or an inert gas atmosphere from which water has been removed.

7ノ化炭素を陽極活物質に用いたリチウム電池は、もう
一方の代表的なリチウム電池であるマンガン/リチウム
電池に用いられている二酸化マンガンと異なり、フン化
炭素自体が撥水性であるだめ、陽極合剤の乾燥は、15
0℃以下の温度、通常は6o〜100℃程度の温度で行
なわれ、この条件の乾燥で、電池特性上問題のない程度
の水分にまで乾燥することができた。このようにして構
成された電池は、保存性に優れ、放電電圧も平坦である
ことから、電子ウォッチを中ノしとした′電子機器に多
く使用されてきた。しかしその作動電圧が2.7〜2.
9 ■と二酸化マンガンを陽極活物質としたマンガノリ
チウム電池の2.9〜3.1vに比較して0.2V程度
低いため、IC,LSI等の使用限度幅が狭く、電池の
使用分野が限られてしまったり、この電圧にあうように
選別されたIC。
Lithium batteries that use carbon heptadide as the anode active material differ from manganese dioxide used in manganese/lithium batteries, which are the other typical lithium battery, because carbon fluoride itself is water repellent. Drying the anode mixture takes 15 minutes.
Drying was carried out at a temperature of 0° C. or lower, usually about 6° C. to 100° C. Under these conditions, it was possible to dry the battery to a level of moisture that did not cause problems in terms of battery characteristics. Batteries constructed in this manner have excellent storage stability and a flat discharge voltage, so they have been widely used in electronic devices such as electronic watches. However, the operating voltage is 2.7~2.
9. Since it is about 0.2V lower than the 2.9 to 3.1V of a manganolithium battery using manganese dioxide as anode active material, the range of usage limits for ICs, LSIs, etc. is narrow, and the field of use of batteries is ICs that are limited or selected to match this voltage.

LSIを用いなければならないため、−面で機器のコス
ト上昇を招く要因となるという問題点を有していた。
Since LSI must be used, there is a problem in that it causes an increase in the cost of the equipment.

発明の目的 本発明は、フッ化炭素を活物質とした陽極合剤を、その
成型後、これまでよりも高温の大気中で加熱処理をする
ことによシ、これまでのフン化炭制リチウム電池の作動
電圧が低いという欠点を解消するとともに、放電容量を
増加させることを目的としたものである。
Purpose of the Invention The present invention has been developed by heat-treating an anode mixture containing fluorocarbon as an active material in the atmosphere at a higher temperature than ever before. The purpose is to eliminate the drawback of low battery operating voltage and to increase discharge capacity.

発明の構成 本発明は、活物質であるフッ化炭素と導電材及びバイン
ダーからなる陽極合剤を電池サイズにあわせて成型した
後、大気中において200〜380℃の温度で加熱処理
することを特徴としだものである。この熱処理により、
陽極合剤に酸素を吸着させ、吸着した酸素をも放電反応
に寄与さぜることによシ、放電電圧の上昇及び放電容量
のJX7加を図ったものである。
Structure of the Invention The present invention is characterized in that an anode mixture consisting of fluorocarbon as an active material, a conductive material, and a binder is molded according to the battery size, and then heat-treated in the atmosphere at a temperature of 200 to 380°C. It's an old thing. With this heat treatment,
By adsorbing oxygen to the anode mixture and making the adsorbed oxygen contribute to the discharge reaction, it is possible to increase the discharge voltage and increase the discharge capacity.

実施例の説明 以下、本発明を実施例により詳述する。Description of examples Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図に示すとおり、金属リチウム2を圧涜した封口蓋
1に皿形セパレータ3を位置させ、グロビレンカーボネ
イト、ジメトキ/エタン、ホウフッ化リチウムからなる
電解液を注液した後、陽極合剤ペレット4をリチウム2
と対向させる。合剤は重量比で7ノ化炭素100部、ア
セチレンブラック10部、フッ素樹脂バインダル5部を
混合し直径14.0vm 、厚さ0.6trrrnの円
板状ベレットVC成型した後、これを260℃の温度の
電気炉中で3時間加熱後冷却させた。この合剤ベレット
4は皿形セパレータ3に収容された状態でリチウム2と
対句している。この後ケース5を封口蓋1にかぶせ、ケ
ースの端部を内方ヘカールしてガスケット6を締付ける
ように封口して、直径20朝、厚さ1.6胴のコイン形
電池を形成した。合剤の加熱処理については80℃、1
40℃、200℃、260’C,320℃、380℃、
440℃の各加熱温度において実験を行った。また加熱
処理時間は全て3時間とした。
As shown in Fig. 1, a dish-shaped separator 3 is placed on a sealing lid 1 that has been pressurized with metallic lithium 2, and after pouring an electrolyte consisting of globylene carbonate, dimethoxy/ethane, and lithium borofluoride, an anode mixture is prepared. pellet 4 to lithium 2
to face. The mixture was made by mixing 100 parts of carbon heptanoide, 10 parts of acetylene black, and 5 parts of fluororesin binder in a weight ratio, forming a disc-shaped pellet VC with a diameter of 14.0 vm and a thickness of 0.6 trrrn, and then heating it at 260°C. The mixture was heated in an electric furnace at a temperature of 3 hours and then cooled. This mixture pellet 4 is housed in a dish-shaped separator 3 and is paired with lithium 2. Thereafter, the case 5 was placed on the sealing lid 1, and the end of the case was curled inward and sealed by tightening the gasket 6 to form a coin-shaped battery having a diameter of 20 mm and a thickness of 1.6 mm. For heat treatment of the mixture, 80℃, 1
40℃, 200℃, 260'C, 320℃, 380℃,
Experiments were conducted at each heating temperature of 440°C. Moreover, the heat treatment time was 3 hours in all cases.

第2図に本発明の260℃加熱処理の合剤を使用した電
池aと、従来の80℃で乾燥した合剤を用いた電池すの
負荷抵抗3oKΩの20℃における放電曲線を示す。こ
の第2図から明らかなように、本発明の電池は放電中の
電池電圧が高く保たれ、かつ放電持続時間も伸びている
FIG. 2 shows the discharge curves at 20° C. with a load resistance of 3 kΩ for a battery a using a mixture heated at 260° C. of the present invention and a battery A using a conventional mixture dried at 80° C. As is clear from FIG. 2, in the battery of the present invention, the battery voltage during discharging is kept high and the discharge duration is also extended.

各熱処理温度での30にΩ負荷での20℃における放電
電圧(50%放電時)及び放電持続時間は第3図、第4
図に示すように、200〜380℃で加熱処理した陽極
合剤を用いた電池は放電電圧が高く、放電持続時間も長
くなっている。これは陽極合剤を空気中で高温に加熱す
ることによシ、空気中の酸素が陽極合剤に吸着され、こ
の吸着酸素が陽極活物質として働らくためと考えられる
The discharge voltage (at 50% discharge) and discharge duration at 20°C with a 30Ω load at each heat treatment temperature are shown in Figures 3 and 4.
As shown in the figure, a battery using an anode mixture heat-treated at 200 to 380°C has a high discharge voltage and a long discharge duration. This is thought to be because oxygen in the air is adsorbed by the anode mixture by heating the anode mixture to a high temperature in the air, and this adsorbed oxygen acts as an anode active material.

その放電反応のメカニズムについては明確ではないが、
一般的に言われているフッ化炭素とリチウムとの電池反
応は、 (CF)n+ nLi −+ nC+ nLiFであり
、実除の電池においての作動電圧は2.7〜2、9V、
放電容量はフッ化炭素の理論容量864mAh/qの約
90%の利用率で得られる。高温加熱処理をした陽極合
剤を用いた電池においては前記反応に加えて吸着酸素と
リチウムの反応02+ 4Li−+ 2Li20  (
E’  2.9’V)が起こる。すなわち、吸着酸素が
陽極活物質として作用し、結果として作動電圧2.8〜
3.Oqと高くな9、放電容量もフッ化炭素の充填量以
上のものが得られることになったと考えられる。
Although the mechanism of the discharge reaction is not clear,
Generally speaking, the battery reaction between carbon fluoride and lithium is (CF)n+ nLi −+ nC+ nLiF, and the actual operating voltage in the battery is 2.7 to 2.9V,
The discharge capacity is obtained at a utilization rate of approximately 90% of the theoretical capacity of fluorocarbon of 864 mAh/q. In a battery using an anode mixture subjected to high-temperature heat treatment, in addition to the above reaction, the reaction between adsorbed oxygen and lithium 02+ 4Li-+ 2Li20 (
E'2.9'V) occurs. That is, adsorbed oxygen acts as an anode active material, resulting in an operating voltage of 2.8~
3. It is thought that the discharge capacity was higher than the filling amount of fluorocarbon.

温度200℃以下の加熱処理では、陽極合剤と酸素の吸
着反応が十分におこなわれず、フッ化炭素のみの放電反
応しか呈さない。寸だ380℃を超える高温になると、
フッ化炭素や合剤中のバインダーの分解が起こり始め、
かえって放電電圧や放電容量の低下をまねく結果となっ
た。
In the heat treatment at a temperature of 200° C. or lower, the adsorption reaction between the anode mixture and oxygen does not take place sufficiently, and only a discharge reaction of fluorocarbon occurs. When the temperature reaches over 380℃,
The fluorocarbon and the binder in the mixture begin to decompose,
On the contrary, this resulted in a decrease in discharge voltage and discharge capacity.

このことから、陽極合剤に酸素を吸着させて、放電電圧
の上昇や容量増加を安定的に図るには、200〜380
℃の温度で陽極合剤を加熱処理をすることが適すノであ
ると言える。加熱時間については10分以上であれば効
果はあるが、酸素吸着の確実性及び長時10]加熱によ
るフッ化炭素やバインダーの分解からみて、1〜6時間
が適切である。
From this, in order to make the anode mixture adsorb oxygen and stably increase the discharge voltage and capacity, it is necessary to
It can be said that heat treatment of the anode mixture at a temperature of °C is suitable. Regarding the heating time, a heating time of 10 minutes or more is effective, but 1 to 6 hours is appropriate in view of the reliability of oxygen adsorption and the decomposition of fluorocarbon and binder due to long heating.

発明の効果 このように本発明は、フッ化炭素を活物質とする非水電
解液電池の陽極合剤を、大気中において200〜380
℃の温度で加熱処理することにより、従来の電池の欠点
の1つであった放電電圧が低いという問題を解消すると
ともに、放電容量の増加が図れるものである。
Effects of the Invention As described above, the present invention provides an anode mixture for a non-aqueous electrolyte battery containing fluorocarbon as an active material at a temperature of 200 to 380% in the atmosphere.
By heat-treating at a temperature of .degree. C., one of the drawbacks of conventional batteries, that is, the discharge voltage is low, can be solved, and the discharge capacity can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例により得た扁平型非水電解液電
池の縦断面図、第2図は本発明の電池と従来の電池の放
電曲線を示す図、第3図は陽極合剤の熱処理温度と、そ
れぞれの電池を60%放電と させたときの放電維持電圧冷関係を示す図、第4図は陽
極合剤の熱処理温度と、それぞれの電池を放電させた時
の放電持続時間との関係を示す図である。 1・・・・・月口蓋、2・・・・・・陰極リチウム、3
・・・・・・セパレータ、4・・・・・・陽極合剤、5
・・・・・・ケース、6−・・・・ガスケット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 4.5 第2図 o  zoo  4oo  6θo  ao。 持続U弁間 (h) 43図 10θ  200  300 40゜ 1麿(°0)
Figure 1 is a longitudinal cross-sectional view of a flat non-aqueous electrolyte battery obtained according to an example of the present invention, Figure 2 is a diagram showing the discharge curves of the battery of the present invention and a conventional battery, and Figure 3 is a diagram showing the anode mixture. Figure 4 shows the relationship between the heat treatment temperature of the anode mixture and the discharge sustaining voltage when each battery is discharged at 60%. Figure 4 shows the heat treatment temperature of the anode mixture and the discharge duration when each battery is discharged. FIG. 1...lunar palate, 2...cathode lithium, 3
... Separator, 4 ... Anode mixture, 5
・・・・・・Case, 6-・・・Gasket. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4.5 Figure 2 o zoo 4oo 6θo ao. Continuous U valve interval (h) 43Fig. 10θ 200 300 40゜1 mark (°0)

Claims (1)

【特許請求の範囲】[Claims] 陽極活物質にフン化炭素、陰極活物質にアルカリ金属、
電解液に非水電解液をそれぞれ用いた電池の製造法であ
って、成型した陽極合剤を大気中ニオイて200〜38
0℃の温度で加熱処理することを特徴とした非水電解液
電池の製造法。
Fluorinated carbon is used as the anode active material, alkali metal is used as the cathode active material,
A method for manufacturing batteries using non-aqueous electrolytes as the electrolyte, in which a molded anode mixture is exposed to an odor of 200 to 38
A method for manufacturing a non-aqueous electrolyte battery characterized by heat treatment at a temperature of 0°C.
JP58092721A 1983-05-26 1983-05-26 Manufacture of nonaqueous electrolyte battery Pending JPS59217946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58092721A JPS59217946A (en) 1983-05-26 1983-05-26 Manufacture of nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58092721A JPS59217946A (en) 1983-05-26 1983-05-26 Manufacture of nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS59217946A true JPS59217946A (en) 1984-12-08

Family

ID=14062310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58092721A Pending JPS59217946A (en) 1983-05-26 1983-05-26 Manufacture of nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS59217946A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094504A (en) * 2010-09-28 2012-05-17 Daikin Ind Ltd Positive electrode active material for lithium primary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094504A (en) * 2010-09-28 2012-05-17 Daikin Ind Ltd Positive electrode active material for lithium primary battery

Similar Documents

Publication Publication Date Title
JPH0368507B2 (en)
JPH0368506B2 (en)
EP0834202A1 (en) Lithium-ion rechargeable battery with carbon-based anode
JPH07245105A (en) Nonaqueous electrolyte secondary battery and positive electrode active material thereof
JPH10284079A (en) Manufacture of host material and nonaqueous electrolyte secondary battery
JP4052695B2 (en) Lithium secondary battery
US5441833A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
US5514497A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
JPS59217946A (en) Manufacture of nonaqueous electrolyte battery
JPS61135056A (en) Manufacture of organic electrolyte cell
JPS5856463B2 (en) Manufacturing method of non-aqueous electrolyte battery
JPH07312216A (en) Lithium secondary battery
JPH02168562A (en) Manufacture of organic electrolyte battery
JPH0251218B2 (en)
JPS6191865A (en) Nonaqueous electrolyte secondary battery
JPS60131758A (en) Manufacture of nonaqueous electrolyte battery
JPH0554913A (en) Nonaqueous electrolytic secondary battery
JPS61264679A (en) Organic electrolyte battery
JPS63158761A (en) Solid hydrogen battery
JPS58220367A (en) Nonaqueous electrolyte battery
JPS6151749A (en) Nonaqueous electrolyte battery
JPS5968175A (en) Nonaqueous electrolyte battery
JPH0864232A (en) Manufacture of nonaqueous electrolyte secondary battery
JPS63307662A (en) Organic electrolyte battery
JPS5814468A (en) Organic electrolyte battery