JPH0864232A - Manufacture of nonaqueous electrolyte secondary battery - Google Patents

Manufacture of nonaqueous electrolyte secondary battery

Info

Publication number
JPH0864232A
JPH0864232A JP6193328A JP19332894A JPH0864232A JP H0864232 A JPH0864232 A JP H0864232A JP 6193328 A JP6193328 A JP 6193328A JP 19332894 A JP19332894 A JP 19332894A JP H0864232 A JPH0864232 A JP H0864232A
Authority
JP
Japan
Prior art keywords
battery
electrolyte secondary
secondary battery
fluoride resin
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6193328A
Other languages
Japanese (ja)
Inventor
Masanori Endo
正則 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP6193328A priority Critical patent/JPH0864232A/en
Publication of JPH0864232A publication Critical patent/JPH0864232A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE: To provide a nonaqueous electrolyte secondary battery having a high cycle life characteristic by using a required resin as the binder of a battery active material to assemble the battery, then heat-treating it. CONSTITUTION: A vinyl fluoride resin or a vinylidene fluoride resin is used as the binder of a battery active material to assemble a nonaqueous electrolyte secondary battery. The battery is left at the temperature of 40-60 deg.C for 5hr in the opened state, then it is left at the room temperature for 12hr for heat treatment. Part of the vinylidene fluoride resin or vinyl fluoride resin is dissolved in an electrolyte, it is gelatinized when it is returned to the room temperature, and it is not dissolved in the electrolyte when it is again heated. The small, lightweight nonaqueous electrolyte secondary battery capable of holding battery characteristics including a high cycle life characteristic, a high energy density, and a high output over a long period is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解液2次電池の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】非水電解液2次電池は、水系電解液2次
電池と比較して、高エネルギー密度、小型軽量といった
性能面では優れているが、出力特性に難点を有してい
る。これは、一般に、非水電解液のイオン導電率が水系
電解液のそれと比較して、1〜2桁低いことによるもの
である。そこで、薄膜、大面積の電極を用いて、この問
題を解決して出力特性を向上させる方法が行なわれてい
る。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries are superior to water-based electrolyte secondary batteries in terms of high energy density, small size and light weight, but have drawbacks in output characteristics. This is because the ionic conductivity of the non-aqueous electrolytic solution is generally lower by one to two orders of magnitude than that of the aqueous electrolytic solution. Therefore, a method of solving this problem and improving the output characteristics by using a thin film and a large-area electrode is performed.

【0003】そして、従来、非水電解液2次電池の電極
の成形方法としては、ブタジエンゴム系樹脂をバインダ
として溶解した有機溶媒溶液に電極活物質を分散させた
後、塗工乾燥することにより行なわれていた。この方法
によれば薄膜、大面積の電極が容易に得られ好都合であ
る反面、絶縁物質であるバインダの電極活物質に対する
影響が著しく大きく、この主の電極を電池に組み立てた
場合、例えば著しい過電圧の上昇が見られ実用的ではな
かった。
Conventionally, as a method of molding an electrode of a non-aqueous electrolyte secondary battery, an electrode active material is dispersed in an organic solvent solution in which a butadiene rubber resin is dissolved as a binder, and then coating and drying are performed. It was being done. According to this method, a thin film and a large-area electrode can be easily obtained, but on the other hand, the influence of the binder, which is an insulating material, on the electrode active material is significantly large. It was not practical because the rise in the value was seen.

【0004】このような問題を解決するために、イオン
導電体として作用するフッ化ビニル樹脂、フッ化ビニリ
デン樹脂等のフッ素系高分子材料をバインダに用いるこ
とが提案されている。
In order to solve such a problem, it has been proposed to use a fluorine-based polymer material such as vinyl fluoride resin or vinylidene fluoride resin, which acts as an ionic conductor, as a binder.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このフ
ッ素系高分子であるフッ化ビニル樹脂、フッ化ビニリデ
ン樹脂は極性溶媒を用いた電解液に部分的に溶解するた
め、電池に組み立てた後、バインダ成分が電解液中に移
動し、電極から活物質が脱落し、寿命特性が悪くなると
いう欠点があった。特に、リチウムイオンのインターカ
レーション−脱インターカレーション反応を利用する活
物質では、反応に伴う膨脹−収縮があるため、活物質は
脱落しやすかった。また、高温になるとバインダ成分の
溶解が加速され、活物質の脱落も著しかった。
However, since the fluoropolymer vinyl fluoride resin and vinylidene fluoride resin, which are the fluoropolymers, are partially dissolved in the electrolytic solution using a polar solvent, after being assembled into a battery, the binder is not used. There is a drawback that the components move into the electrolytic solution, the active material falls off from the electrode, and the life characteristics deteriorate. In particular, in an active material that utilizes a lithium ion intercalation-deintercalation reaction, there is expansion and contraction associated with the reaction, and thus the active material was easily removed. Further, at high temperatures, the dissolution of the binder component was accelerated, and the active material was also dropped off.

【0006】そこで、本発明の目的は、サイクル寿命特
性が向上し、これにより高エネルギー密度、小型軽量、
高出力の電池性能を長期にわたって保持することができ
る非水電解液2次電池の製造方法を提供することにあ
る。
Therefore, an object of the present invention is to improve cycle life characteristics, which results in high energy density, small size and light weight,
It is an object of the present invention to provide a method for producing a non-aqueous electrolyte secondary battery that can maintain high-output battery performance for a long period of time.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の非水電解液2次電池の製造方法は、電池活
物質のバインダとしてフッ化ビニル樹脂またはフッ化ビ
ニリデン樹脂を用いた非水電解液2次電池の製造におい
て、電池を組み立てた後、該電池を熱処理することを特
徴とする。
In order to achieve the above object, the method for producing a non-aqueous electrolyte secondary battery of the present invention uses a vinyl fluoride resin or vinylidene fluoride resin as a binder of a battery active material. In manufacturing the water electrolyte secondary battery, the battery is heat-treated after the battery is assembled.

【0008】また、電池の熱処理は、開回路状態で温度
40〜60℃中に放置し、その後開回路状態で室温に放
置するものであることを特徴とする。
Further, the heat treatment of the battery is characterized in that the battery is left in an open circuit state at a temperature of 40 to 60 ° C. and then left in an open circuit state at room temperature.

【0009】さらに、電池の熱処理は、温度40〜60
℃で定格0.5C以下の電流で充放電し、その後開回路
状態で室温に放置するものであることを特徴とする。
Further, the heat treatment of the battery is performed at a temperature of 40-60.
It is characterized in that it is charged / discharged at a rated current of 0.5 C or less at 0 ° C. and then left at room temperature in an open circuit state.

【0010】[0010]

【作用】フッ化ビニル樹脂およびフッ化ビニリデン樹脂
は、電池内で電解液に触れた状態で40〜60℃に加熱
すると一部溶解するが、室温に戻すとゲル化し、再度4
0℃以上に加熱してももはや電解液に溶解することはな
い。
[Function] The vinyl fluoride resin and vinylidene fluoride resin are partially dissolved when heated to 40 to 60 ° C. in a state where they are in contact with the electrolytic solution in the battery, but when they are returned to room temperature, they are gelled and again
It is no longer dissolved in the electrolytic solution even when heated to 0 ° C or higher.

【0011】したがって、電池を組み立てた後、上記熱
処理を行なうことにより、その後電池内でバインダが電
解液に再度溶解し、電極から活物質が脱落することはな
い。
Therefore, after the battery is assembled, the heat treatment described above prevents the binder from being redissolved in the electrolytic solution in the battery and the active material from falling off from the electrode.

【0012】また、定格0.5C以下の電流で充放電し
ながら熱処理しても、同様の作用を示す。
Further, the same effect can be obtained by heat treatment while charging / discharging at a rated current of 0.5 C or less.

【0013】[0013]

【実施例】以下、本発明の非水電解液2次電池の製造方
法について、その実施例を説明する。
EXAMPLES Examples of the method for producing a non-aqueous electrolyte secondary battery of the present invention will be described below.

【0014】(実施例l)まず、LiCoO2 粉末10
0重量部にアセチレンブラックを7重量部混ぜ、バイン
ダとしてフッ化ビニリデン樹脂のジメチルホルムアミド
溶液(濃度4wt%)を100重量部加え、混合攪拌し
塗工液とした。その後、アルミ箔(厚さ30μm)を基
材として、この塗工液をアルミ箔の両面に塗布乾燥し、
厚さ0.18mm、幅40mm、長さ260mmの正極
とした。
(Example 1) First, LiCoO 2 powder 10
7 parts by weight of acetylene black was mixed with 0 parts by weight, 100 parts by weight of a dimethylformamide solution of vinylidene fluoride resin (concentration 4 wt%) was added as a binder, and the mixture was stirred to prepare a coating liquid. Then, using aluminum foil (thickness 30 μm) as a base material, this coating solution is applied to both surfaces of the aluminum foil and dried,
The positive electrode had a thickness of 0.18 mm, a width of 40 mm, and a length of 260 mm.

【0015】次に、マダガスカル産天然黒鉛100重量
部に対し、フッ化ビニリデン樹脂のジメチルホルムアミ
ド溶液(濃度5wt%)を100重量部加え、混合攪拌
し塗工液とした。その後、銅箔(厚さ20μm)を基材
として、この塗工液を塗布乾燥し、厚さ0.18mm、
幅40mm、長さ280mmの負極とした。さらに、プ
ロピレンカーボネート液中にLiClO4 を1モル濃度
溶解させたものを電解液として、定格500mAhの電
池を組み立てた。
Next, 100 parts by weight of a dimethylformamide solution of vinylidene fluoride resin (concentration 5 wt%) was added to 100 parts by weight of natural graphite produced in Madagascar, and mixed and stirred to obtain a coating liquid. Then, using a copper foil (thickness 20 μm) as a base material, this coating solution is applied and dried to have a thickness of 0.18 mm,
The negative electrode had a width of 40 mm and a length of 280 mm. Further, a battery having a rated value of 500 mAh was assembled by using a solution obtained by dissolving LiClO 4 in a propylene carbonate solution at a concentration of 1 mol.

【0016】図1は、本実施例で組み立てた円筒型電池
の部分断面図である。同図において、1はステンレス鋼
板を加工した耐非水有機電解液性の電池ケース、2は安
全弁を設けた封口板、3は絶縁パッキングを示す。ま
た、4は極板群であり、正極4aおよび負極4bがセパ
レータ4cを介して複数回渦巻状に巻回されて、ケース
1内に収納されている。そして、上記正極4aからは正
極リード5が引き出され封口板2に接続され、負極4b
からは負極リード6が引き出されて電池ケース1の底部
に接続されている。また、7は絶縁リングで極板群4の
上下部に各々設けられている。
FIG. 1 is a partial cross-sectional view of the cylindrical battery assembled in this embodiment. In the figure, 1 is a non-aqueous organic electrolyte resistant battery case made by processing a stainless steel plate, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode 4a and the negative electrode 4b are spirally wound a plurality of times via the separator 4c and are housed in the case 1. The positive electrode lead 5 is drawn out from the positive electrode 4a and connected to the sealing plate 2, and the negative electrode 4b
A negative electrode lead 6 is drawn out from the above and is connected to the bottom of the battery case 1. Further, 7 is an insulating ring provided on the upper and lower portions of the electrode plate group 4, respectively.

【0017】このようにして電池を組み立てた後、開回
路状態、60℃で5時間放置して熱処理を行ない、続い
て室温で12時間放置した。その後、充放電電流500
mA、充電終止電圧4.1V、放電終止電圧3.0Vの
条件で定電流充放電試験を行なった。
After the battery was assembled in this manner, it was left in an open circuit state at 60 ° C. for 5 hours for heat treatment, and then left at room temperature for 12 hours. Then, charge / discharge current 500
A constant current charge / discharge test was performed under the conditions of mA, end-of-charge voltage 4.1V, and end-of-discharge voltage 3.0V.

【0018】(実施例2)実施例1と同様にして電池を
組み立てた後、60℃にて充放電電流250mA(即ち
定格0.5Cの電流)、充電終止電圧4.1V、放電終
止電圧3.0Vの条件で5サイクル充放電を行ない、次
いで室温、開回路で12時間放置した。その後実施例1
と同じ条件で定電流充放電試験を行なった。
(Example 2) After assembling a battery in the same manner as in Example 1, the charging / discharging current was 250 mA at 60 ° C (that is, a current having a rating of 0.5 C), the charge end voltage was 4.1 V, and the discharge end voltage was 3. The battery was charged and discharged for 5 cycles under the condition of 0.0 V and then left at room temperature for 12 hours in an open circuit. Then Example 1
A constant current charge / discharge test was carried out under the same conditions as above.

【0019】(比較例1)実施例1と同様にして電池を
組み立てた。その後、特に熱処理を行なわずに、実施例
1と同じ条件で定電流充放電試験を行なった。
Comparative Example 1 A battery was assembled in the same manner as in Example 1. Then, a constant current charge / discharge test was performed under the same conditions as in Example 1 without performing heat treatment.

【0020】(比較例2)実施例1と同様にして電池を
組み立てた後、60℃にて充放電電流500mA(即ち
定格1Cの電流)、充電終止電圧4.1V、放電終止電
圧3.0Vの条件で5サイクル充放電を行ない、次いで
室温、開回路で12時間放置した。その後実施例1と同
じ条件で定電流充放電試験を行なった。
(Comparative Example 2) After assembling a battery in the same manner as in Example 1, a charge / discharge current of 500 mA (that is, a current of rated 1C) at 60 ° C, a charge end voltage of 4.1V, and a discharge end voltage of 3.0V. The battery was charged and discharged for 5 cycles under the above conditions, and then left at room temperature for 12 hours in an open circuit. Thereafter, a constant current charge / discharge test was conducted under the same conditions as in Example 1.

【0021】実施例1、実施例2、比較例1および比較
例2について、定電流充放電試験前の初期容量および定
電流充放電試験200サイクル目の容量を表1に示す。
また、上記4種類の別の電池について同一条件で充放電
試験を行ない、50サイクル目の充電時に試験を中止
し、電池を分解して内部の電極を観察した。その結果を
表1に合わせて示す。
Table 1 shows the initial capacity before the constant current charge / discharge test and the capacity at the 200th cycle of the constant current charge / discharge test for Example 1, Example 2, Comparative Example 1 and Comparative Example 2.
In addition, a charge / discharge test was performed under the same conditions for the above-mentioned four different types of batteries, the test was stopped at the time of charging at the 50th cycle, the batteries were disassembled, and the internal electrodes were observed. The results are also shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】なお、表1における分解電池の電極状態の
欄の記号は、それぞれ次のような状態を示す。○印は、
活物質層の膨潤、脱落といった目立った変化は認められ
なかったもの。△印は、部分的な活物質層の膨潤、脱落
はあるが、電極状態は保持されていたもの。×印は、活
物質層の膨潤、脱落が目立ち、電極として元の状態を保
っていなかったものである。
The symbols in the electrode state column of the decomposition battery in Table 1 indicate the following states, respectively. ○ indicates
No significant changes such as swelling or falling of the active material layer were observed. The symbol Δ indicates that the electrode state was maintained although the active material layer partially swelled and fell off. The symbol X indicates that the active material layer was swelled and dropped, and the electrode did not maintain its original state.

【0024】表1の実施例1に示す通り、本発明の熱処
理を行なったものは、初期容量が大きく、充放電サイク
ル試験後の容量の減少はほとんどなく、電極に目立った
変化は認められず、充放電サイクル特性に優れている。
これに対し、熱処理を行なわなかったものは、比較例1
に示す通り、初期容量は熱処理を行なったものと比較し
て若干低下する程度であるが、充放電試験後の容量が大
幅に減少し、電極は活物質層が膨潤、脱落して劣化して
いる。
As shown in Example 1 of Table 1, the heat-treated product of the present invention had a large initial capacity, and the capacity after the charge-discharge cycle test hardly decreased, and no noticeable change was observed in the electrode. Excellent charge / discharge cycle characteristics.
On the other hand, in the case where the heat treatment was not performed, Comparative Example 1
As shown in, the initial capacity is slightly lower than that of the heat-treated one, but the capacity after the charge / discharge test is significantly reduced, and the electrode is deteriorated by swelling, falling off of the active material layer. There is.

【0025】また、定格0.5Cの電流で充放電しなが
ら熱処理したものも、実施例2に示す通り、充放電サイ
クル試験後の容量の減少はほとんどなく、電極に目立っ
た変化は認められず、充放電サイクル特性に優れてい
る。これに対し、定格0.5Cを超える電流で充放電し
ながら熱処理したものは、比較例2に示す通り、充放電
試験後の容量が大幅に減少し、電極は活物質層が膨潤、
脱落して劣化している。
Also, as shown in Example 2, there was almost no decrease in the capacity after the charge / discharge cycle test, and no noticeable change was observed in the electrode, even when heat-treated while being charged / discharged at a rated current of 0.5C. Excellent charge / discharge cycle characteristics. On the other hand, in the case of heat treatment while charging / discharging at a current exceeding 0.5 C as rated, as shown in Comparative Example 2, the capacity after the charging / discharging test was significantly reduced, and the active material layer of the electrode swelled,
It has fallen off and deteriorated.

【0026】なお、上記実施例においては、電解液の溶
媒としてプロピレンカーボネートを用いているが、これ
のみに限定されるものではない。即ち、非水電解液電池
に一般に用いられるエーテル類、ケトン類、ラクトン
類、ニトリル類、アミン類、アミド類、硫黄化合物、エ
ステル類、カーボネート類、ニトロ化合物、スルホラン
化合物等を適宜用いることができる。
Although propylene carbonate is used as the solvent of the electrolytic solution in the above embodiment, the solvent is not limited to this. That is, ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, esters, carbonates, nitro compounds, sulfolane compounds and the like generally used for non-aqueous electrolyte batteries can be appropriately used. .

【0027】また、電池活物質のバインダとしてフッ化
ビニリデン樹脂(−CH2 −CF2−)n を用いている
が、フッ化ビニル樹脂(−CH2 −CHF−)n を用い
ても同様の効果が得られる。さらに、−CF(CF3
−CF2 −、−CF2 −CF2 −、−CH(CH3 )−
CH2 −で表されるようなモノマーユニットを含んだフ
ッ素系高分子共重合体も適宜用いることができる。
Although vinylidene fluoride resin (--CH 2 --CF 2- ) n is used as the binder of the battery active material, vinyl fluoride resin (--CH 2 --CHF--) n is also used. The effect is obtained. Furthermore, -CF (CF 3)
-CF 2 -, - CF 2 -CF 2 -, - CH (CH 3) -
A fluoropolymer copolymer containing a monomer unit represented by CH 2 — can also be appropriately used.

【0028】また、上記実施例においては、電池を組み
立てた後の熱処理を、60℃、5時間の条件で行なって
いるが、本発明はこの条件に限定されるものではない。
即ち、温度は、40〜60℃の範囲が好ましい。これ
は、40℃未満ではバインダのゲル化反応がほとんど進
まず、他方60℃を超えると他の電池構成成分等に熱劣
化等の悪影響を起こさせる可能性があるためである。ま
た、時間は、5〜48時間、そのうちでも特に5〜12
時間が好ましい。これは5時間未満ではバインダのゲル
化反応が十分進まず、他方12時間を超えるとゲル化反
応が飽和し初め、48時間を超えるとそれ以上のゲル化
反応がほとんど起こらないためである。
Further, in the above-mentioned embodiment, the heat treatment after assembling the battery is carried out at 60 ° C. for 5 hours, but the present invention is not limited to this condition.
That is, the temperature is preferably in the range of 40 to 60 ° C. This is because the gelling reaction of the binder hardly progresses below 40 ° C., and on the other hand, when it exceeds 60 ° C., other battery constituent components may have an adverse effect such as thermal deterioration. Also, the time is 5 to 48 hours, and especially 5 to 12 hours.
Time is preferred. This is because the gelling reaction of the binder does not proceed sufficiently in less than 5 hours, while the gelling reaction begins to saturate in more than 12 hours, and further gelation reaction hardly occurs in more than 48 hours.

【0029】[0029]

【発明の効果】以上の説明で明らかなように、本発明の
非水電解液2次電池の製造方法によれば、フッ化ビニル
樹脂、フッ化ビニリデン樹脂をバインダに用いた電極を
電池に組み立てた後、熱処理を行なう本発明によって、
非水電解液2次電池の充放電サイクル特性は向上し、高
エネルギー密度、小型軽量、高出力の電池性能を長期に
わたって保持できる。
As is apparent from the above description, according to the method for producing a non-aqueous electrolyte secondary battery of the present invention, an electrode using a vinyl fluoride resin or vinylidene fluoride resin as a binder is assembled in a battery. According to the present invention, after heat treatment,
The charge / discharge cycle characteristics of the non-aqueous electrolyte secondary battery are improved, and high energy density, small size and light weight, and high output battery performance can be maintained for a long period of time.

【0030】また、定格0.5C以下の電流で充放電し
ながら熱処理しても、同様の効果が得られる。
The same effect can be obtained by heat treatment while charging / discharging at a rated current of 0.5 C or less.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例により得られる電池の部分断
面図である。
FIG. 1 is a partial cross-sectional view of a battery obtained according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 4a 正極 4b 負極 4c セパレータ 5 正極リード 6 負極リード 7 絶縁リング 1 Battery Case 2 Sealing Plate 3 Insulating Packing 4 Electrode Plate Group 4a Positive Electrode 4b Negative Electrode 4c Separator 5 Positive Electrode Lead 6 Negative Lead 7 Insulating Ring

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電池活物質のバインダとしてフッ化ビニ
ル樹脂またはフッ化ビニリデン樹脂を用いた非水電解液
2次電池の製造において、電池を組み立てた後、該電池
を熱処理することを特徴とする非水電解液2次電池の製
造方法。
1. A method for producing a non-aqueous electrolyte secondary battery using a vinyl fluoride resin or a vinylidene fluoride resin as a binder of a battery active material, wherein the battery is assembled and then heat treated. Manufacturing method of non-aqueous electrolyte secondary battery.
【請求項2】 電池の熱処理は、開回路状態で温度40
〜60℃中に放置し、その後開回路状態で室温に放置す
るものであることを特徴とする請求項1記載の非水電解
液2次電池の製造方法。
2. The heat treatment of a battery is carried out at a temperature of 40 at an open circuit state.
The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the method is left in a temperature range of -60 ° C and then left in an open circuit state at room temperature.
【請求項3】 電池の熱処理は、温度40〜60℃で定
格0.5C以下の電流で充放電し、その後開回路状態で
室温に放置するものであることを特徴とする請求項1記
載の非水電解液2次電池の製造方法。
3. The heat treatment of the battery is performed by charging / discharging at a temperature of 40 to 60 ° C. at a rated current of 0.5 C or less, and then leaving the battery at room temperature in an open circuit state. Manufacturing method of non-aqueous electrolyte secondary battery.
JP6193328A 1994-08-17 1994-08-17 Manufacture of nonaqueous electrolyte secondary battery Pending JPH0864232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6193328A JPH0864232A (en) 1994-08-17 1994-08-17 Manufacture of nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6193328A JPH0864232A (en) 1994-08-17 1994-08-17 Manufacture of nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH0864232A true JPH0864232A (en) 1996-03-08

Family

ID=16306074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6193328A Pending JPH0864232A (en) 1994-08-17 1994-08-17 Manufacture of nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH0864232A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070060708A1 (en) * 2005-09-13 2007-03-15 Jian Wang Vinyl fluoride-based copolymer binder for battery electrodes
JP2014149988A (en) * 2013-02-01 2014-08-21 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070060708A1 (en) * 2005-09-13 2007-03-15 Jian Wang Vinyl fluoride-based copolymer binder for battery electrodes
JP2014149988A (en) * 2013-02-01 2014-08-21 Toyota Motor Corp Method for manufacturing nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP4231411B2 (en) Electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
KR101105342B1 (en) Surface-modified cathode active materials by chemically crosslinkable polymer electrolytes and lithium ion rechargeable batteries comprising the same
JPH0652887A (en) Lithium secondary battery
JP2010135329A (en) Cathode and lithium battery adopting this
KR101882975B1 (en) Method for menufacturing a cathode of lithium primary battery
JPH0982325A (en) Manufacture of positive active material
JP2008277309A (en) Positive electrode active material for lithium secondary battery, and manufacturing method thereof
TW201539845A (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPH06251764A (en) Lithium secondary battery
JP4187653B2 (en) Nonaqueous electrolyte secondary battery
JP4649696B2 (en) Method for producing electrode for non-aqueous electrolyte secondary battery
JPH0864232A (en) Manufacture of nonaqueous electrolyte secondary battery
JPH11214036A (en) Polymer electrolyte separator, lithium secondary battery and manufacture thereof
JP2003109662A (en) Method of manufacturing secondary battery
JP4795509B2 (en) Non-aqueous electrolyte battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4474717B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JPH09147864A (en) Nonaqueous electrolyte battery and its manufacture
JP2002141059A (en) Manufacturing method of battery electrode and non- aqueous electrolyte secondary battery using the same
JP2002033132A (en) Nonaqueous secondary battery
KR20150045833A (en) Method for fabricating positive electrode material absorbed with binder, positive electrode material absorbed with binder and positive electrode comprising the same
JP2003077478A (en) Lithium ion secondary battery
JP2001307773A (en) Nonaqueous electrolyte battery
JPH09161770A (en) Nonaqueous electrolyte secondary battery and manufacture of its positive electrode