JPS60131758A - Manufacture of nonaqueous electrolyte battery - Google Patents

Manufacture of nonaqueous electrolyte battery

Info

Publication number
JPS60131758A
JPS60131758A JP23913883A JP23913883A JPS60131758A JP S60131758 A JPS60131758 A JP S60131758A JP 23913883 A JP23913883 A JP 23913883A JP 23913883 A JP23913883 A JP 23913883A JP S60131758 A JPS60131758 A JP S60131758A
Authority
JP
Japan
Prior art keywords
oxygen
mixture
battery
nonaqueous electrolyte
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23913883A
Other languages
Japanese (ja)
Inventor
Masaki Nakai
中井 正樹
Koichi Sato
公一 佐藤
Toshio Shigematsu
重松 敏雄
Kiyoto Watanabe
清人 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23913883A priority Critical patent/JPS60131758A/en
Publication of JPS60131758A publication Critical patent/JPS60131758A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • H01M4/08Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase the discharge capacity of a nonaqueous electrolyte battery, which is constituted by using an alkali metal as the negative active material and nonaqueous electrolyte as the electrolyte, by subjecting a molded positive mixture to heat treatment performed in an atmosphere of a high concentration of oxygen. CONSTITUTION:After 100pts.wt. of manganese dioxide, 6pts.wt. of carbon and 5pts.wt. of a fluorine resin binder are mixed together, the mixture is molded into a disk-like pellet. The thus formed pellet is then put in an electric furnace the internal oxygen concentration of which is adjusted to 50-60% by feeding a given amount of oxygen from an oxygen bombe, and heated at 250 deg.C for 1hr before being cooled to make a positive mixture 4. Next, metallic lithium 2 is placed over the mixture 4 with a separator 3 interposed before nonaqueous electrolyte is poured, thereby constituting a coin-type battery. Therefore it is possible to increase the discharge capacity of the battery by heating the positive mixture 4 in an atmosphere of a high concentration of oxygen so as to cause oxygen to be absorbed by the mixture 4 in a short time and causing the oxygen absorbed to contribute to electric discharge reaction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非水電解液電池の製造法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a non-aqueous electrolyte battery.

従来例の構成とその問題点 負極活物質にアルカリ金属を用いた非水電解液電池の代
表的なものとして、負極活物質にリチウム、正極活物質
に二酸化マンガンやフッ化炭素を用いた電池がある。こ
れらは主にコイン形リチウム電池として、電子ウォッチ
、電卓をはじめとする電子機器に多く用いられてきた。
Structures of conventional examples and their problems Typical non-aqueous electrolyte batteries that use alkali metals as negative electrode active materials include batteries that use lithium as the negative electrode active material and manganese dioxide or carbon fluoride as the positive electrode active material. be. These have been mainly used as coin-shaped lithium batteries in electronic devices such as electronic watches and calculators.

この系のコイン型電池のこれまでの構成は、リチウムを
圧着した負極封口蓋内に、七ノくレータを介して円板状
に成型した正極合剤を載置し、有機溶媒と無機電解質と
からなる非水電解液を所定量注入し、正極端子を兼ねた
ケースをかぶせ封口して形成していた。
The conventional structure of this type of coin-type battery is to place a positive electrode mixture molded into a disk shape through a seven-layer plate inside a negative electrode sealing lid to which lithium is pressed, and an organic solvent and an inorganic electrolyte. A predetermined amount of a non-aqueous electrolyte was injected into the electrode, and a case that also served as a positive electrode terminal was placed over and sealed.

これら負極活物質にリチウムのようなアルカリ金属を用
いた電池は、負極活物質と水との反応性が激しいだめ、
電解液に水分が除去された有機溶媒を用い、この他の電
池部材も十分乾燥がな5され゛ 電池組立も水分除却さ
れた空気又は不活性ガス雰囲気中で行なわれている。こ
の中で成型された正極合剤の乾燥輪、用いる正極活物質
によってその条件に異なるが、通常は減圧下又は空気中
にお諭て100〜380℃の温度で加熱乾燥したものが
用いられた。
Batteries that use alkali metals such as lithium as negative electrode active materials have a strong reactivity with water, so
An organic solvent from which moisture has been removed is used as the electrolyte, and other battery components are also sufficiently dried.Battery assembly is also carried out in an air or inert gas atmosphere from which moisture has been removed. The drying ring for the positive electrode mixture molded in this device varies depending on the positive electrode active material used, but it is usually dried under reduced pressure or in the air at a temperature of 100 to 380°C. .

このようにして形成された電池は、電子ウオ・ソチ、電
卓に作表される小型電子機器に多く用いられてきた。し
かし近年、これら電子機器の小型軽量化の傾向は一段と
進み、これら電子機器に用いられる電池においても小型
でかつ電気容量の太きいものが要望されるようになって
いる。
Batteries formed in this manner have been widely used in small electronic devices such as electronic watches, electronic calculators, and calculators. However, in recent years, the trend towards making these electronic devices smaller and lighter has progressed further, and there has been a demand for batteries used in these electronic devices to be smaller and have a larger electric capacity.

電池の電気容量を増加するためには、正、負極活物質を
多くすることが最も容易な方法ではあるが、電池の大き
さは限定・されたものであシ、一定容積内の電池内容物
を増加させることにはおのずと限度があり、また電池製
造条件からみても、むやみに内容物の量を増加すること
は、電池組立及困難になシ、歩留りの低下をまねいて、
電池コストの増加の要因となる問題点があった。
The easiest way to increase the electric capacity of a battery is to increase the amount of positive and negative active materials, but the size of the battery is limited and the battery contents within a certain volume are limited. There is a natural limit to the amount of content that can be increased, and considering the battery manufacturing conditions, increasing the amount of content unnecessarily will make battery assembly difficult and lead to a decrease in yield.
There was a problem that caused an increase in battery cost.

発明の目的 本発明は、成型された正!合剤をこ、れまでょシも高い
酸素濃度雰囲気のもとて加熱処理することによシ、電池
内容物、特に正極合剤の充填量を増加させることなく電
池の電気容量を増加させることを目的としだものである
OBJECTS OF THE INVENTION The present invention provides a molded positive! By heating the mixture in an atmosphere with a high oxygen concentration, the electric capacity of the battery can be increased without increasing the filling amount of the battery contents, especially the positive electrode mixture. The purpose is to

発明の構成 本発明は活物質と導電材及びバインダーからなる正極合
剤を電池サイズにあわせて成型した後、度雰囲気下での
加熱処理によシ、正極合剤に酸素を短時間に吸着させ、
吸着した酸素を放電反応に寄与さ門ることにより、放電
容量の増加を計・たものである。
Structure of the Invention The present invention involves molding a positive electrode mixture consisting of an active material, a conductive material, and a binder according to the battery size, and then heat-treating the mixture in a temperature atmosphere to adsorb oxygen to the positive electrode mixture in a short period of time. ,
The discharge capacity is increased by contributing the absorbed oxygen to the discharge reaction.

実施例の説明 以下、本発明を実施例により詳述する。Description of examples Hereinafter, the present invention will be explained in detail with reference to Examples.

第1図に示すとおり、金属リチウム2を圧着した封口蓋
1に皿形セパレータ3を位置させ、プロピレンカーボネ
イト、ジメトキシエタン、過塩、素酸リチウムからなる
電解液を注液した後、正極合剤ベレット4をリチウム2
と対向させる。合剤は重量比で二酸化マンガン100部
、カーボン6部。
As shown in Fig. 1, a dish-shaped separator 3 is placed on a sealing lid 1 to which metal lithium 2 is crimped, and after pouring an electrolyte consisting of propylene carbonate, dimethoxyethane, persalt, and lithium dioxide, a positive electrode mixture is prepared. Beret 4 to Lithium 2
to face. The mixture contains 100 parts of manganese dioxide and 6 parts of carbon by weight.

フッ素樹脂バインダー5部を混合し、直後14.6朋、
厚さo、esMllIの円板状ベレットに成型した後、
これを酸素ボンベよシ一定量の酸素を流入し、内部の酸
素濃度を50〜60%に調整した電気炉中に入れ、温度
260℃で1時間加熱後冷却させた。
Immediately after mixing 5 parts of fluororesin binder,
After molding into a disc-shaped pellet with thickness o and esMllI,
This was placed in an electric furnace into which a certain amount of oxygen was introduced from an oxygen cylinder and the oxygen concentration inside was adjusted to 50 to 60%, heated at a temperature of 260° C. for 1 hour, and then cooled.

この合剤ベレット4は皿形セパレータ3に収容された状
態でリチウム2と対向している。この後ケース5を封口
蓋1にかぶせ、ケー75の端部を内方へカールしてガス
ケット6を締付けるように封口して、直径20snl、
厚さ1.6闘のコイン形電池を形成した。
This mixture pellet 4 is housed in the dish-shaped separator 3 and faces the lithium 2 . After that, the case 5 is placed over the sealing lid 1, the end of the case 75 is curled inward, and the gasket 6 is tightened to seal the case.
A coin-shaped battery with a thickness of 1.6 mm was formed.

酸素濃度は0%(減圧)、20〜26%(大気中)30
〜40%、60〜60%、70〜80%。
Oxygen concentration is 0% (reduced pressure), 20-26% (atmosphere) 30
~40%, 60-60%, 70-80%.

100%とし、加熱温度は160℃、200℃。The heating temperature is 160°C and 200°C.

260℃、 3o o ℃*加熱時間は全て1時間とし
て調査した。
260° C., 30° C. *Heating time was 1 hour for all investigations.

第2図に本発明の酸素濃度50〜60%、250℃で1
時間加熱処理の合剤を使用した電池aと従来の減圧下2
60℃で1時間加熱処理した合剤を使用した電池すの負
荷抵抗30にΩの20℃における放電曲線を示す。本発
明の電池は放電持続時間が長く、かつ電池電圧が高くな
っておシ、放電容量の大きな電池となっている。
Figure 2 shows the oxygen concentration of the present invention at 50-60% and 1 at 250°C.
Battery a using time heat treated mixture and conventional battery 2 under reduced pressure
The discharge curve at 20°C of a load resistance of 30Ω for a battery using a mixture heat-treated at 60°C for 1 hour is shown. The battery of the present invention has a long discharge duration, a high battery voltage, and a large discharge capacity.

各酸素濃度及び加熱温度での30に、G負荷での20°
Cにおける放電持続時間は第3図に示すように酸素濃度
30%以上の場□合持続時間が長くなってお沙、加熱温
度の影響も酸素濃度0〜20%の領域より小さくなって
□いる。酸素濃度30%以上の場合、加熱温度は200
〜300℃が適切である。
30° at each oxygen concentration and heating temperature, and 20° at G load.
As shown in Figure 3, the discharge duration at C is longer when the oxygen concentration is 30% or more, and the influence of heating temperature is smaller than when the oxygen concentration is 0 to 20%. . When the oxygen concentration is 30% or more, the heating temperature is 200%
~300°C is suitable.

300℃を超えると高酸素濃度雰囲気下では正極合剤中
の電材であるカーボンの燃焼が起こることがあり好まし
くない。
If the temperature exceeds 300° C., combustion of carbon, which is an electric material in the positive electrode mixture, may occur in a high oxygen concentration atmosphere, which is not preferable.

この高酸素濃度雰囲気下での加熱処理によって放電容量
が増加するメカニズムは明確ではないが。
The mechanism by which the discharge capacity increases due to heat treatment in this high oxygen concentration atmosphere is not clear.

酸素雰囲気下で加熱することにより、合剤へ酸素が吸着
し、との吸着された酸素が電池放電時に正極活物質とし
て作用するのではないかと考え、られる。つまり通常の
正極活物質と負極活物質との反応以外に吸着酸素と負極
活物質の反応、たとえば02+ 4Li → 2L12
0 の反応が起こるものと考えられる。
It is thought that by heating in an oxygen atmosphere, oxygen is adsorbed to the mixture, and that the adsorbed oxygen acts as a positive electrode active material during battery discharge. In other words, in addition to the normal reaction between the positive electrode active material and the negative electrode active material, there is a reaction between the adsorbed oxygen and the negative electrode active material, for example, 02+ 4Li → 2L12
It is considered that 0 reactions occur.

合剤への酸素の吸着は大気中(酸素濃度20〜26%)
で加熱した場合でも起こるが、人工的に酸素を供給し3
0%以上の濃度にすることにより、酸素吸着が容易にl
)、加熱温度による影響も小さく、比較的低い加熱温度
でも放電容量の向上が計れる。
Oxygen adsorption to the mixture is in the atmosphere (oxygen concentration 20-26%)
This occurs even when heated with water, but if oxygen is supplied artificially,
By setting the concentration to 0% or more, oxygen adsorption becomes easier.
), the effect of heating temperature is small, and discharge capacity can be improved even at relatively low heating temperatures.

また加熱時間は1時間としたが、酸素濃度30%以上の
雰囲気下であれば、10分以上の加熱そ十分な効果が得
られた。
Although the heating time was set to 1 hour, a sufficient effect could be obtained by heating for 10 minutes or more in an atmosphere with an oxygen concentration of 30% or more.

また実施例においては二酸化マンガンを正極活物質とし
た電池について説明したが、フッ化黒鉛を正極活物質と
した電池においても同様の効果が得られた。
Further, in the examples, a battery using manganese dioxide as a positive electrode active material was described, but similar effects were obtained in a battery using fluorinated graphite as a positive electrode active material.

発明の効果 このように本発明は非水電解質電池の正極合剤を、酸素
濃度30%以上の高酸素濃度雰囲気下で加熱処理するこ
とによシ、電池の放電容量の増加が計れるものである。
Effects of the Invention As described above, the present invention is capable of increasing the discharge capacity of a battery by heat-treating the positive electrode mixture of a non-aqueous electrolyte battery in an atmosphere with a high oxygen concentration of 30% or more. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例によシ得た扁平型非水電解液電
池の縦断面図、第2図は本発明の電池と従来の電池との
放電曲線を示す図、第3図は正極合剤の種々の温度での
熱処理における酸素濃度とそれぞれの電池を放電させた
時の放電持続時間との関係を示す図である。 1・・・・・・封口蓋、2・・・・・・負極リチウム、
3・・・・・・セパレーク、4・・・・・・正極合剤、
 5・・・・・・ケ−7,,6・・・・・・ガスケット
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 持訛將閘(h) 第3図 駿豫軒(旬
FIG. 1 is a longitudinal cross-sectional view of a flat non-aqueous electrolyte battery obtained according to an embodiment of the present invention, FIG. 2 is a diagram showing discharge curves of the battery of the present invention and a conventional battery, and FIG. FIG. 3 is a diagram showing the relationship between the oxygen concentration during heat treatment of the positive electrode mixture at various temperatures and the discharge duration when each battery is discharged. 1...Sealing lid, 2...Negative electrode lithium,
3...Separate lake, 4...Positive electrode mixture,
5...K-7,,6...Gasket. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2: Diagonal Gate (h) Figure 3: Shunyuxuan (Shunyuxuan)

Claims (1)

【特許請求の範囲】[Claims] 負極活物質にアルカリ金属、電解液に非水電解液を用い
た電池の製造法であって、成型した正極合剤を酸素濃度
30%以上の雰囲気中で加熱処理することを特徴とした
非水電解液電池の製造法。
A method of manufacturing a battery using an alkali metal as the negative electrode active material and a non-aqueous electrolyte as the electrolyte, the method comprising heating a molded positive electrode mixture in an atmosphere with an oxygen concentration of 30% or more. Method of manufacturing electrolyte batteries.
JP23913883A 1983-12-19 1983-12-19 Manufacture of nonaqueous electrolyte battery Pending JPS60131758A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23913883A JPS60131758A (en) 1983-12-19 1983-12-19 Manufacture of nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23913883A JPS60131758A (en) 1983-12-19 1983-12-19 Manufacture of nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS60131758A true JPS60131758A (en) 1985-07-13

Family

ID=17040331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23913883A Pending JPS60131758A (en) 1983-12-19 1983-12-19 Manufacture of nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS60131758A (en)

Similar Documents

Publication Publication Date Title
JPH07245105A (en) Nonaqueous electrolyte secondary battery and positive electrode active material thereof
JPS6310466A (en) Nonaqueous electrolyte battery
JPS60131758A (en) Manufacture of nonaqueous electrolyte battery
US5514497A (en) Paste nickel electrode plate and a storage battery including an electroconductive material
JPS6335069B2 (en)
JPS61135056A (en) Manufacture of organic electrolyte cell
JPS59217946A (en) Manufacture of nonaqueous electrolyte battery
JPS5856463B2 (en) Manufacturing method of non-aqueous electrolyte battery
JPH08273669A (en) Manufacture of positive electrode for nonaqueous electrolyte battery
JPH0261095B2 (en)
JPS6160540B2 (en)
JPS58220367A (en) Nonaqueous electrolyte battery
JPH02168562A (en) Manufacture of organic electrolyte battery
JPS5861572A (en) Production method of nonaqueous electrolyte cell
JPS6155739B2 (en)
JPH03214562A (en) Manufacture of positive electrode for secondary battery with non-aqueous electrolyte
JPH02299163A (en) Manufacture of positive electrode mix for thermal battery and thermal battery using it
JPH0251218B2 (en)
JPS56156669A (en) Manufacture of positive electrode for organic solvent battery
JPS599859A (en) Solid electrolyte battery
JPS5814468A (en) Organic electrolyte battery
JPH04282569A (en) Manufacture for metal hydride storage battery
JPS58220366A (en) Nonaqueous electrolyte battery
JPS60198058A (en) Nonaqueous electrolyte battery
JPS59128773A (en) Nonaqueous solvent battery