JPS5832749B2 - Manufacturing method for positive electrode active material for organic electrolyte batteries - Google Patents

Manufacturing method for positive electrode active material for organic electrolyte batteries

Info

Publication number
JPS5832749B2
JPS5832749B2 JP52073963A JP7396377A JPS5832749B2 JP S5832749 B2 JPS5832749 B2 JP S5832749B2 JP 52073963 A JP52073963 A JP 52073963A JP 7396377 A JP7396377 A JP 7396377A JP S5832749 B2 JPS5832749 B2 JP S5832749B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
electrode active
organic electrolyte
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52073963A
Other languages
Japanese (ja)
Other versions
JPS548835A (en
Inventor
彰克 守田
孝志 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP52073963A priority Critical patent/JPS5832749B2/en
Publication of JPS548835A publication Critical patent/JPS548835A/en
Publication of JPS5832749B2 publication Critical patent/JPS5832749B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、リチウムなどの軽金属を負極活物質とし、有
機電解質を用いる電池のフッ化炭素正極活物質の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a fluorocarbon positive electrode active material for a battery using a light metal such as lithium as a negative electrode active material and an organic electrolyte.

負極にリチウム、正極にフッ化炭素を用いる有機電解質
電池は高エネルギー密度電池として知られており、広く
実用化が進められている。
Organic electrolyte batteries that use lithium for the negative electrode and carbon fluoride for the positive electrode are known as high-energy density batteries, and are being widely put into practical use.

しかし、この電池系を厳密に検討すると、正極活物質の
フッ化炭素の性質により、放電特性および保存特性にか
なり大きな影響をおよぼすことが判かった。
However, when this battery system was strictly examined, it was found that the properties of the fluorinated carbon in the positive electrode active material had a considerable effect on the discharge characteristics and storage characteristics.

すなわち、炭素粉末をフッ素化する過程で生成フッ化炭
素中に残る不純物、特に高次のフッ化物など不安定なフ
ッ化物あるいは吸着フッ素などが電池の開路電圧あるい
は放電初期電圧のばらつきを生じさせるなど、不安定な
影響をおよぼし、さらに保存特性に関しては腐食反応を
伴う自己放電の増大などの悪影響を与えることが明らか
となった。
In other words, impurities remaining in the fluorinated carbon produced during the process of fluorinating carbon powder, especially unstable fluorides such as higher-order fluorides, or adsorbed fluorine, can cause variations in the open circuit voltage or initial discharge voltage of the battery. It has been found that this has an unstable effect, and that it also has an adverse effect on storage properties, such as an increase in self-discharge accompanied by corrosion reactions.

本発明は以上のような従来の欠点を除去し、性能の優れ
た有機電解質電池を与えるフッ化炭素活物質の製造法に
関する。
The present invention relates to a method for producing a fluorocarbon active material that eliminates the above-mentioned conventional drawbacks and provides an organic electrolyte battery with excellent performance.

従来、フッ化炭素は炭素粉末と低歪の純フッ素カスある
いは不活性気体、たとえばアルゴン、窒素などで希釈さ
れたフッ素ガスとを反応させることによって製造されて
いた。
Conventionally, fluorocarbon has been produced by reacting carbon powder with low-strain pure fluorine scum or fluorine gas diluted with an inert gas, such as argon or nitrogen.

このフッ化炭素のなかにはフッ素ガスの高い反応性から
当然不安定な高次フッ化物あるいは吸着フッ素が含誉れ
でいる。
This fluorocarbon naturally contains unstable higher order fluorides or adsorbed fluorine due to the high reactivity of fluorine gas.

これを除く方法としては、フッ化炭素を酸寸たはアルカ
リ溶液などで洗滌する方法が考えられるが、製造工数が
増加する不都合がある。
A possible method for removing this problem is to wash the fluorocarbon with an acidic or alkaline solution, but this method has the disadvantage of increasing the number of manufacturing steps.

本発明は、フッ化炭素製造において、炭素粉末ニ反応す
せるフッ素ガス中に酸素を存在させることにより、生成
されたフッ化炭素中の電池に悪影響を及ぼすような高次
のフッ化物などの含有量が著しく低酸することを見出し
たことに基づくものである。
In the production of fluorocarbon, the present invention involves the presence of oxygen in the fluorine gas that reacts with the carbon powder, thereby containing high-order fluorides, etc., which may have an adverse effect on batteries, in the fluorocarbon produced. This is based on the discovery that the amount of acid is significantly lower.

すなわち、このように酸素を含むフッ素ガスと炭素粉末
の反応で得られたフッ化炭素を正極活物質とした電池は
、開路電圧も一定しており、また放電初期における電圧
の不安定さもなかった。
In other words, a battery using fluorinated carbon obtained through the reaction of oxygen-containing fluorine gas and carbon powder as a positive electrode active material had a constant open circuit voltage, and there was no instability in the voltage at the initial stage of discharge. .

さらに−次電池で非常に重要な保存特性についても、保
存期間に伴う放電容量の低下ならびに電池内部抵抗の増
大も従来電池に比較して大きく改良された。
Furthermore, regarding the storage characteristics, which are very important for secondary batteries, the decrease in discharge capacity and increase in battery internal resistance over the storage period have been greatly improved compared to conventional batteries.

事実、従来のフッ化炭素を有機電解液中に浸漬すると、
電池内部材料の腐食を促進したり、有機電解質の重合な
どを引き起こすフッ素イオンがかなりの量で検出される
が、本発明によるフッ化炭素からは、はとんど検出され
ない。
In fact, when conventional fluorocarbon is immersed in an organic electrolyte,
Fluorine ions, which promote corrosion of battery internal materials and cause polymerization of organic electrolytes, are detected in considerable amounts, but are hardly detected in the fluorinated carbon according to the present invention.

このフッ素イオンは高次のフッ化物あるいは吸着フッ素
に起因するものであるが、これらが生成しないようにす
るためには、本発明者らの実験によれば、フッ素ガス中
に少なくとも酸素ガスが体積比で3係以上あることが望
ましい。
This fluorine ion is caused by higher-order fluoride or adsorbed fluorine, but in order to prevent these from being generated, the inventors' experiments have shown that at least a volume of oxygen gas is added to the fluorine gas. It is desirable that the ratio is 3 or more.

この理由は、従来法で作られたフッ化炭素のフッ素含有
率(1ooxF/(C+F ))は62〜65重量係で
あり、理論的に考えられるフッ化炭素(CF)nのフッ
素含有率61,4重量係に比べ数係多いフッ素が含捷れ
でいることになる。
The reason for this is that the fluorine content (1ooxF/(C+F)) of fluorocarbon produced by the conventional method is 62 to 65 by weight, and the theoretical fluorine content of fluorocarbon (CF)n is 61 , 4. This means that the fluorine content is several factors larger than that of the four weight factors.

これが高次フッ化物あるいは吸着フッ素に相当している
と考えられ、したがって、これを抑制するために3係以
上の酸素ガスが必要であったと思われる。
It is thought that this corresponds to higher-order fluoride or adsorbed fluorine, and therefore, it seems that an oxygen gas of 3 or higher was necessary to suppress this.

上限については、酸素含有量が多くなりフッ素ガスの分
圧が小さくなると反応速度(時間)が遅くなるため、生
産性からは適当な値が採用されるが、本発明の目的とす
る効果については特に制限がなかった。
Regarding the upper limit, as the oxygen content increases and the partial pressure of fluorine gas decreases, the reaction rate (time) slows down, so an appropriate value is adopted from the viewpoint of productivity, but the desired effect of the present invention cannot be determined. There were no particular restrictions.

実用においては、経済性などから純粋の酸素を用いるの
ではなく、空気を用いることができる。
In practical use, air can be used instead of pure oxygen for economical reasons.

空気を用いた場合、フッ素ガスに対して体積比で15係
〜90%加えることが実用的に有効である。
When air is used, it is practically effective to add 15% to 90% by volume of the fluorine gas.

この場合、フッ素ガスに対する酸素ガスの割合は、はぼ
3係から180係に相当する。
In this case, the ratio of oxygen gas to fluorine gas corresponds to about 3 parts to 180 parts.

以下本発明をその実施例により説明する。The present invention will be explained below with reference to Examples.

石油コークス製炭素粉末で200メツシユのふるいを通
過する粒径のものを十分に乾燥させる。
Petroleum coke carbon powder with a particle size that can pass through a 200 mesh sieve is thoroughly dried.

この炭素粉末に 空気で希釈したフッ素ガス(空気:フ
ッ素=5=1(体積比))を400℃の温度で2時間反
応させてフッ化炭素を得た。
This carbon powder was reacted with fluorine gas diluted with air (air:fluorine=5=1 (volume ratio)) at a temperature of 400° C. for 2 hours to obtain fluorinated carbon.

これをAとする。Let this be A.

この場合、酸素のフッ素に対する割合は体積比で100
%である。
In this case, the ratio of oxygen to fluorine is 100 by volume.
%.

比較のために従来法による窒素ガスで希釈したフッ素ガ
スを反応させて得たフッ化炭素Bと、さらにこのフッ化
炭素Bを30重量係のか性カリ水溶液で洗滌したものC
を用いた。
For comparison, fluorocarbon B obtained by reacting fluorine gas diluted with nitrogen gas according to the conventional method, and fluorocarbon B obtained by washing with a caustic potassium aqueous solution of 30% by weight C
was used.

これら3種のフッ化炭素を用いて、次のように電池を組
み立てた。
A battery was assembled using these three types of fluorocarbons as follows.

フッ化炭素、導電材であるアセチレンブラック、結着剤
である四フッ化エチレン樹脂粉末を重量比で75 :1
5 :10の割合で混合し、これを所定の網状チタン集
電体に加圧成型して正極とした。
Fluoride carbon, acetylene black as a conductive material, and tetrafluoroethylene resin powder as a binder in a weight ratio of 75:1.
The mixture was mixed at a ratio of 5:10, and this was pressure-molded into a predetermined reticulated titanium current collector to form a positive electrode.

負極はリチウム金属をニッケルネット集電体に圧着して
作った。
The negative electrode was made by crimping lithium metal onto a nickel net current collector.

電解液ばr−ブチロラクトンに1モル/lのホウフッ化
リチウム(LiBF4J を溶解させたものを用いた
An electrolytic solution containing 1 mol/l of lithium borofluoride (LiBF4J) dissolved in r-butyrolactone was used.

正負極間にポリプロピレン製不織布を介して電池ケース
へ挿入し密封して電池とした。
The battery was inserted into a battery case with a polypropylene nonwoven fabric interposed between the positive and negative electrodes and sealed.

図面に上記フッ化炭素A、B、Cを用いて作った電池a
/ 、 S / 、 C/の特性を示した。
The drawing shows battery a made using the above fluorocarbons A, B, and C.
It showed the characteristics of /, S/, and C/.

実線は0.5A(10時間率)で放電した試作直後の放
電曲線である。
The solid line is a discharge curve immediately after the prototype was produced, which was discharged at 0.5 A (10 hour rate).

点線は70℃で3力月というかなり過酷な条件で保存し
た後に同じ条件で放電した放電曲線である。
The dotted line is a discharge curve obtained by discharging under the same conditions after being stored at 70° C. for 3 months, which is a fairly harsh condition.

この図からも判かるように、本発明による活物質を用い
た電池A′は放電開始後すみやかに平坦な電圧を示し、
また保存後の劣化もわずかである。
As can be seen from this figure, battery A' using the active material according to the present invention shows a flat voltage immediately after the start of discharge,
In addition, there is only slight deterioration after storage.

これに対し、従来の電池B′は放電開始後、高次のフッ
化物が原因と思われるゆるやかな電圧低下を示し、また
電圧の平坦性も劣る。
On the other hand, the conventional battery B' shows a gradual voltage drop after the start of discharge, which is thought to be caused by high-order fluoride, and the voltage flatness is also poor.

さらに高温保存後の劣化はかなり大きい。Moreover, the deterioration after high temperature storage is quite large.

またアルカリ処理を行ったフッ化炭素Cを用いた電池C
′はB′に比べると、特性は大きく改良されているが、
Aにはおよばない。
In addition, battery C using fluorocarbon C that has been treated with alkali
′ has greatly improved characteristics compared to B′, but
It doesn't reach A.

これはオだ十分に高次のフッ化物などが除かれていない
ためと思われるが、この操作で完全に除くことは困難で
あり、操作も非常に繁雑である。
This is probably because high-level fluorides are not removed sufficiently, but it is difficult to completely remove them with this operation, and the operation is also very complicated.

次表にはフッ化炭素A、B、Cをそれぞれ前記の電解液
に浸漬したとき、電解液中から検出されたフッ素イ第4
を示した。
The table below shows the amount of fluorine detected in the electrolyte when fluorocarbons A, B, and C were immersed in the electrolyte.
showed that.

予想されたようにAは非常に少なくなっている。As expected, A is very small.

以上のように、本発明によれば有機電解質電池の性能向
上が図れる。
As described above, according to the present invention, the performance of an organic electrolyte battery can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

図面は各種フッ化炭素を用いた電池の放電特性の比較を
示す。
The drawing shows a comparison of the discharge characteristics of batteries using various fluorocarbons.

Claims (1)

【特許請求の範囲】 1 酸素ガスの共存下でフッ素ガスと炭素粉末とを反応
させてフッ化炭素を得ることを特徴とする有機電解質電
池の正極活物質製造法。 2 前記酸素ガスの量が、体積比でフッ素ガスの少なく
とも3%である特許請求の範囲第1項記載の有機電解質
電池の正極活物質製造法。
[Claims] 1. A method for producing a positive electrode active material for an organic electrolyte battery, characterized in that fluorocarbon is obtained by reacting fluorine gas and carbon powder in the presence of oxygen gas. 2. The method for producing a positive electrode active material for an organic electrolyte battery according to claim 1, wherein the amount of the oxygen gas is at least 3% by volume of the fluorine gas.
JP52073963A 1977-06-21 1977-06-21 Manufacturing method for positive electrode active material for organic electrolyte batteries Expired JPS5832749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52073963A JPS5832749B2 (en) 1977-06-21 1977-06-21 Manufacturing method for positive electrode active material for organic electrolyte batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52073963A JPS5832749B2 (en) 1977-06-21 1977-06-21 Manufacturing method for positive electrode active material for organic electrolyte batteries

Publications (2)

Publication Number Publication Date
JPS548835A JPS548835A (en) 1979-01-23
JPS5832749B2 true JPS5832749B2 (en) 1983-07-14

Family

ID=13533229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52073963A Expired JPS5832749B2 (en) 1977-06-21 1977-06-21 Manufacturing method for positive electrode active material for organic electrolyte batteries

Country Status (1)

Country Link
JP (1) JPS5832749B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184750U (en) * 1983-05-25 1984-12-08 タイガー魔法瓶株式会社 pump type liquid container
JPS602439U (en) * 1983-06-16 1985-01-10 タイガー魔法瓶株式会社 Pump injection type liquid container lid lock structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299100A (en) * 1992-04-17 1993-11-12 Matsushita Electric Ind Co Ltd Organic electrolyte battery and manufacture of fluoric carbon positive electrode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190430A (en) * 1975-02-04 1976-08-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5190430A (en) * 1975-02-04 1976-08-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184750U (en) * 1983-05-25 1984-12-08 タイガー魔法瓶株式会社 pump type liquid container
JPS602439U (en) * 1983-06-16 1985-01-10 タイガー魔法瓶株式会社 Pump injection type liquid container lid lock structure

Also Published As

Publication number Publication date
JPS548835A (en) 1979-01-23

Similar Documents

Publication Publication Date Title
JP5208353B2 (en) Positive electrode active material and manufacturing method thereof
JP6347776B2 (en) Method for treating positive electrode active material for lithium ion secondary battery
JPH0349178B2 (en)
JPH08250117A (en) Carbon material for lithium secondary battery negative electrode, and manufacture thereof
KR102220491B1 (en) Positive active materials for rechargable lithium battery, method of preparing the same and rechargable lithium battery using the same
JPH05315006A (en) Noaqueous electrolyte cell and manufacture thereof
US4737423A (en) Cathode active material for metal of CFX battery
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JPS5832749B2 (en) Manufacturing method for positive electrode active material for organic electrolyte batteries
JPH061698B2 (en) Lithium primary battery, anode active material thereof, and method for producing manganese dioxide used in the anode active material
US5871864A (en) Lithium secondary cells and methods for preparing active materials for negative electrodes
JPH1064592A (en) Lithium secondary battery
JP3132671B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP4803867B2 (en) Method for producing lithium manganate for positive electrode of lithium battery
JPS6090827A (en) Permanganic acid process for manufacturing manganese dioxide from manganous salt
JPS60131768A (en) Organic electrolyte battery
JPH04319259A (en) Non-aqueous electrolyte secondary battery
JPH09245793A (en) Lithium secondary battery and manufacture thereof
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JPH0711967B2 (en) Non-aqueous electrolyte battery
JP3344638B2 (en) Method for producing lithium manganate for lithium secondary battery
JPS5887766A (en) Manufacture of organic electrolyte battery
JPS5826457A (en) Manufacture of positive pole active substance for non-acqueous electrolytic cell
JPH0644958A (en) Manufacture of negative electrode for lithium secondary battery
JPH0374061A (en) Nonaqueous electrolyte secondary battery