JPS62136299A - Method for liquefying treatment of sewage sludge - Google Patents

Method for liquefying treatment of sewage sludge

Info

Publication number
JPS62136299A
JPS62136299A JP60279679A JP27967985A JPS62136299A JP S62136299 A JPS62136299 A JP S62136299A JP 60279679 A JP60279679 A JP 60279679A JP 27967985 A JP27967985 A JP 27967985A JP S62136299 A JPS62136299 A JP S62136299A
Authority
JP
Japan
Prior art keywords
sewage sludge
reaction
treatment
phase
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60279679A
Other languages
Japanese (ja)
Other versions
JPH055560B2 (en
Inventor
Shinya Yokoyama
横山 伸也
Etsuro Nakamura
悦郎 中村
Katsuya Oguchi
小口 勝也
Tomoko Ogi
知子 小木
Akira Suzuki
明 鈴木
Masanori Murakami
村上 雅教
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Organo Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Ebara Corp
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Ebara Corp, Organo Corp, Japan Organo Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP60279679A priority Critical patent/JPS62136299A/en
Publication of JPS62136299A publication Critical patent/JPS62136299A/en
Publication of JPH055560B2 publication Critical patent/JPH055560B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce running cost, by a method wherein sewage sludge is subjected to reaction treatment under an alkaline condition and under pressure equal to or more than saturation steam pressure at predetermined temp. and the reaction product is cooled. CONSTITUTION:Sewage sludge is supplied to a dehydrator 1 through a line 20 to receive dehydration treatment and the dehydrated sludge is introduced into a heat exchange type reaction apparatus 2 through a line 7 while receives the alkaline substance added from a line 8. The sewage sludge is reacted with the alkaline substance at 300-350 deg.C in the reaction apparatus 2 and liquefied to form an oily substance which is, in turn, withdrawn from a line 11. This reaction treatment product is introduced into a cooling apparatus 3 to be cooled to 100 deg.C or less and subsequently introduced into a first separator 4 through a line 12 and a high density slurry is introduced into a second separator 5 to be separated into a solid and an oily substance. By this method, economical treatment can be performed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、下水汚泥の液化処理方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for liquefying sewage sludge.

〔従来技術〕[Prior art]

下水処理場から排出される汚泥(下水汚泥)は、全国で
年間約5000万rr?7年(含水率98%)という真
人な量であり1年々増加の傾向にある。従来、このよう
な下水汚泥の処理に関しては、その80%前後が脱水後
埋立処分されているが、しかし、この場合には埋立地確
保の間層があり、都市化の発展により、その埋立地確保
は年々困難になってきている。また、下水汚泥は焼却処
理することも可能であり、この方法は、その処理生成物
が、被処理原料である下水汚泥の量に比して著し−く減
容化された焼却灰であり、被処理原料の減容化という点
からは非常に有効な方法である。しかしながら。
The amount of sludge discharged from sewage treatment plants (sewage sludge) is approximately 50 million rr annually nationwide. It is a true amount of 7 years (98% moisture content), and it is increasing year by year. Conventionally, about 80% of such sewage sludge is disposed of in a landfill after dewatering, but in this case, there is a need to secure a landfill site, and with the development of urbanization, the landfill site is increasing. Securing it is becoming more difficult every year. In addition, sewage sludge can also be incinerated, and in this method, the treated product is incinerated ash whose volume is significantly reduced compared to the amount of sewage sludge that is the raw material to be treated. This is a very effective method from the point of view of reducing the volume of the raw material to be treated. however.

この方法の場合、下水汚泥中の水分の蒸発に多大の熱エ
ネルギーを要するために、ランニングコストが高く、経
済的ではないという問題を有している。
In the case of this method, since a large amount of thermal energy is required to evaporate water in the sewage sludge, the running cost is high and it is not economical.

〔目   的〕〔the purpose〕

本発明は、従来の下水汚泥処理に見られる前記問題を解
決することを目的とする。
The present invention aims to solve the above-mentioned problems found in conventional sewage sludge treatment.

〔構  成〕〔composition〕

本発明によれば、下水汚泥を、アルカリ他条件下1反塔
部度250〜350℃において、該反応温度の飽和水蒸
気圧以上の加圧下で反応処理した後、得られた反応処理
生成物を冷却処理することを特徴とする下水汚泥の液化
処理方法が提供される。
According to the present invention, after sewage sludge is subjected to a reaction treatment under alkaline conditions and other conditions at a temperature of 250 to 350° C. under pressure equal to or higher than the saturated water vapor pressure of the reaction temperature, the obtained reaction treatment product is Provided is a method for liquefying sewage sludge, which is characterized by performing cooling treatment.

本発明において被処理原料として用いる下水汚泥として
は、通常の下水処理場から排出される各種の汚泥があり
、このようなものには、例えば、最初沈殿池汚泥や、余
剰汚泥及びそれらの混合汚泥等が包含される。また、下
水汚泥は、消化処理後のものでもよいが、好ましくは消
化処理を受けていない生汚泥の使用が有利である。
The sewage sludge used as the raw material to be treated in the present invention includes various types of sludge discharged from ordinary sewage treatment plants, such as primary sedimentation tank sludge, surplus sludge, and mixed sludge thereof. etc. are included. The sewage sludge may be one that has been subjected to digestion treatment, but it is advantageous to use raw sludge that has not undergone digestion treatment.

本発明の方法を実施するには、下水汚泥を、アルカリ性
条件下で高温高圧条件に保持すればよい。
To carry out the method of the present invention, sewage sludge may be maintained at high temperature and high pressure conditions under alkaline conditions.

この場合、アルカリ性条件の形成には1通常、アルカリ
性物質が用いられるが、このアルカリ性物質としては、
例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナト
リウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素
カリウム、ギ酸ナトリウム、ギ酸カリウム等のアルカリ
全屈化合物や。
In this case, an alkaline substance is usually used to create alkaline conditions;
For example, alkaline compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, sodium formate, and potassium formate.

酸化カルシウム、水酸化カルシウム、水酸化マグネシウ
ム等のアルカリ土類金属化合物等が挙げられる。このよ
うなアルカリ性物質の使用量は、下水汚泥1重量部(乾
燥物基準)に対し、0.001〜0.5重量部、好まし
くは0.01〜0.2重量部の割合である。下水汚泥の
含水率は、60〜85重量%、好ましくは70〜80重
量%である。
Examples include alkaline earth metal compounds such as calcium oxide, calcium hydroxide, and magnesium hydroxide. The amount of such an alkaline substance used is 0.001 to 0.5 part by weight, preferably 0.01 to 0.2 part by weight, per 1 part by weight of sewage sludge (dry basis). The water content of sewage sludge is 60-85% by weight, preferably 70-80% by weight.

本発明における反応処理は高温高圧下で実施されるが、
この場合、反応温度は一般には250〜350℃、好ま
しくは300〜320℃であり、反応圧力は、その反応
温度における飽和水蒸気圧以上であればよい。反応時間
は、通常5〜180分である。
Although the reaction treatment in the present invention is carried out at high temperature and high pressure,
In this case, the reaction temperature is generally 250 to 350°C, preferably 300 to 320°C, and the reaction pressure may be at least the saturated water vapor pressure at the reaction temperature. The reaction time is usually 5 to 180 minutes.

本発明において、圧力は、下水汚泥からの水蒸気発生に
よる自己発生圧を利用することができるが、必要に応じ
、例えば、窒素ガス、炭酸ガス、アルゴンガス等を用い
て加圧することもできる。
In the present invention, self-generated pressure due to water vapor generation from sewage sludge can be used as the pressure, but if necessary, it can also be pressurized using, for example, nitrogen gas, carbon dioxide gas, argon gas, etc.

本発明においては、前記のようにして得られた反応処理
生成物は、これを冷却処理する。冷却処理は1通常、反
応器から抜出された高温の反応処理生成物を、100℃
以下の温度まで可及的迅速に冷却することが好ましい。
In the present invention, the reaction product obtained as described above is subjected to a cooling treatment. Cooling treatment 1 Usually, the high temperature reaction product extracted from the reactor is heated to 100°C.
It is preferable to cool as quickly as possible to a temperature below.

前記で得られた冷却処理生成物は、通常、水相と、スラ
リー相とからなり、水相に対し、スラリー相が上部相を
形成する。そして、下水汚泥の液化処理により生成した
油状物質は、スラリー相に含まれる。
The cooled product obtained above usually consists of an aqueous phase and a slurry phase, with the slurry phase forming an upper phase with respect to the aqueous phase. The oily substances produced by the liquefaction treatment of sewage sludge are included in the slurry phase.

冷却処理生成物は、相分離性の良好なもので、静置によ
り、スラリー相と水相とに容易に分離させることができ
る。この生成物の相分離性の良いことは1本発明の大き
な特徴の1つである。冷却処理生成物の分離処理には、
通常の固液分離手段が適用されるが、一般には、スラリ
ー相と水相との間の密度差を利用した分離手段、例えば
、前記e置による重力分離の他、遠心分離等を採用する
ことができる。本発明において、相分離性の良好な反応
処理生成物を得るには、分離された水相のPllが4〜
11.好ましくは6〜10になるようにアルカリ性物質
の添加量や1反応条件を調節するのがよい。
The cooling treatment product has good phase separation properties and can be easily separated into a slurry phase and an aqueous phase by standing still. The good phase separation property of this product is one of the major features of the present invention. Separation of cooling products requires
Ordinary solid-liquid separation means are applied, but in general, separation means that utilize the density difference between the slurry phase and the aqueous phase, such as centrifugal separation, in addition to the above-mentioned gravity separation by e-placement, may be employed. I can do it. In the present invention, in order to obtain a reaction product with good phase separation, the Pll of the separated aqueous phase is 4 to 4.
11. It is preferable to adjust the amount of the alkaline substance added and the reaction conditions so that the amount is preferably 6 to 10.

本発明において、下水汚泥の液化処理により生成された
油状物質は、スラリー相において、固形分に対する分散
媒として存在する。このスラリー相から液状の油状物質
を分離回収するには、通常の固−液分離手段が用いられ
るが、固形分中に残存する油状物質量を減少させ、油状
物質の回収率を高めるためには、スラリー相を、スクリ
ュープレスや加圧濾過等の加圧を伴った固液分離処理や
、遠心分離等の加重を伴った固液分離処理に付すのがよ
い。この場合、必要に応じ、温度50〜100’C程度
の加熱を併用することができる。スラリー相からの油状
物質の回収は、抽出や蒸留処理によっても可能であるが
、この場合、多量の熱エネルギーを要することから、余
り好ましい方法とはいうことができない。
In the present invention, the oily substance produced by the liquefaction treatment of sewage sludge exists as a dispersion medium for the solid content in the slurry phase. Normal solid-liquid separation means are used to separate and recover liquid oily substances from this slurry phase, but in order to reduce the amount of oily substances remaining in the solid content and increase the recovery rate of oily substances, It is preferable to subject the slurry phase to a solid-liquid separation process that involves pressurization, such as a screw press or pressure filtration, or a solid-liquid separation process that involves a load, such as centrifugation. In this case, heating at a temperature of about 50 to 100'C can be used in combination, if necessary. Recovery of the oily substance from the slurry phase is also possible by extraction or distillation, but this is not a very preferable method since it requires a large amount of thermal energy.

本発明を実施する場合、反応条件を調節することによっ
て、水相の上に、さらに油状物質相が存在する、スラリ
ー相、水相及び油状物質相からなる3相構成の冷却処理
生成物を得ることができる。
When carrying out the present invention, by adjusting the reaction conditions, a three-phase cooling treatment product consisting of a slurry phase, an aqueous phase and an oil phase is obtained, in which an oil phase is further present on top of the aqueous phase. be able to.

本発明者らの研究によれば、このような3相構成の冷却
処理生成物は、反応処理温度と反応処理時間を調節する
ことにより生成させることが可能であることが見出され
た。例えば、このような生成物は、下水汚泥を昇温速度
5〜b 〜350°Cに昇温させ、この温度にO〜30分間程度
保持した後、冷却処理することにより、生成させること
ができる。このような3相構成の生成物の分離処理は1
種々の方法によって行うことができ、例えば、前記のよ
うにして、先ず、固液分離手段により、液相とスラリー
相とを分離した後、次に液相を形成する水相と油状物質
相とを密度差を利用した分離手段、例えば、静置分離や
、遠心分離等によって分離することによって実施できる
し、また、逆に、最初に油状物質相を水相とスラリ一層
から分離した後1次に残存する水相とスラリー相をそれ
ぞれ分離することによっても実施できる。
According to research conducted by the present inventors, it has been found that such a three-phase cooling treatment product can be produced by adjusting the reaction treatment temperature and reaction treatment time. For example, such a product can be produced by raising the temperature of sewage sludge to a temperature increase rate of 5 to 350°C, maintaining this temperature for about 30 minutes, and then cooling it. . The separation process for such a three-phase product is 1
This can be carried out by various methods, for example, as described above, first, the liquid phase and the slurry phase are separated by a solid-liquid separation means, and then the aqueous phase and the oily substance phase forming the liquid phase are separated. This can be carried out by separation means that utilize density differences, such as static separation or centrifugation, or conversely, the oily substance phase is first separated from the aqueous phase and the slurry layer, and then the primary It can also be carried out by separately separating the aqueous phase and slurry phase remaining in the solution.

本発明方法を好まし〈実施する場合1反応装置としては
、外部加熱型又は熱交換型反応装置、即ち、外部に電熱
ヒータや、熱媒体による加熱機構を備えた流通反応器を
用いるのが有利である。このような反応装置では、下水
汚泥は、その反応器を流通する間に所定の反応温度に加
熱されると共に、その反応温度に所定時間保持された後
、反応器から抜出される。
The method of the present invention is preferably carried out (1) As the reaction apparatus, it is advantageous to use an external heating type or heat exchange type reaction apparatus, that is, a flow reactor equipped with an external electric heater or a heating mechanism using a heat medium. It is. In such a reactor, sewage sludge is heated to a predetermined reaction temperature while flowing through the reactor, and is held at that reaction temperature for a predetermined period of time before being extracted from the reactor.

次に、本発明の好ましい実施態様について、図面にその
フローシートを示す。図面において、1は脱水装置、2
は反応装置、3は冷却装置、4は第1分離装置、5は第
2分離装置を各示す。
Next, a flow sheet of a preferred embodiment of the present invention is shown in the drawings. In the drawing, 1 is a dehydration device, 2
3 indicates a reaction device, 3 indicates a cooling device, 4 indicates a first separation device, and 5 indicates a second separation device.

水分90重量%以上の下水汚泥はライン20を介して脱
水装置1に供給され、ここで脱水処理され、得られた分
離水はライン6により除去される。この脱水処理には高
分子凝集剤の併用が好ましい。
Sewage sludge with a water content of 90% by weight or more is supplied to the dewatering device 1 via a line 20, where it is dehydrated, and the resulting separated water is removed via a line 6. It is preferable to use a polymer flocculant in combination with this dehydration treatment.

一方、脱水処理された水分85重量%以下、通常70〜
80重量%の下水汚泥はうイン8によりアルカリ性物質
が添加された後、ライン7を通って反応装置2に導入さ
れる。この反応装置は、熱交換型反応装置であり、加熱
媒体がライン9から導入され、ライン10から排出され
、その間に反応装置内の内容物を加熱する。
On the other hand, the dehydrated water content is 85% by weight or less, usually 70~
The 80% by weight sewage sludge is introduced into the reactor 2 through line 7 after addition of alkaline substances via inlet 8 . This reactor is a heat exchange type reactor, in which a heating medium is introduced through line 9 and discharged through line 10, during which time the contents within the reactor are heated.

反応装置2内に導入された下水汚泥及びアルカリ性物質
は反応装置内を、押出流れとして、所定速度で流通し、
ライン11より抜出されるが、その間に下水汚泥は反応
処理を受け、油状物質に液化される。ライン11によっ
て抜出された反応処理生成物は、冷却装置3内に導入さ
れ、ここで100°C以下に冷却された後、ライン12
を通って第1分離装置4に導入される。この第1分離装
置4としては、密度差を利用するものが好ましく用いら
れ、静置槽や、遠心分離機等が用いられる。第1分離装
置4からは、密度の小さな水相がライン13を通って抜
出され、一方、密度の大きなスラリー相がライン14を
通って抜出され、第2分離装[5に導入される。
The sewage sludge and alkaline substances introduced into the reactor 2 flow through the reactor as an extrusion flow at a predetermined speed,
The sewage sludge is extracted through line 11, during which time it undergoes a reaction treatment and is liquefied into an oily substance. The reaction product extracted through line 11 is introduced into cooling device 3, where it is cooled to below 100°C, and then through line 12
is introduced into the first separation device 4 through. As this first separation device 4, one that utilizes a density difference is preferably used, and a static tank, a centrifugal separator, or the like is used. From the first separator 4, a water phase with a lower density is extracted through a line 13, while a slurry phase with a higher density is extracted through a line 14 and introduced into a second separator [5]. .

第2分離装置としては、スクリュープレスや、加圧濾過
機等の固液分離装置が好ましく用いられ、この第2分離
装置5に導入されたスラリー相は、ここで固形分と油状
物質とに分離され、固形分はライン16を通って抜出さ
れ、一方、油状物質はライン15を通って回収される。
As the second separator, a solid-liquid separator such as a screw press or a pressure filter is preferably used, and the slurry phase introduced into the second separator 5 is separated here into solids and oily substances. The solids are removed through line 16, while the oil is recovered through line 15.

〔効  果〕〔effect〕

本発明によれば、従来産業廃棄物として取扱われていた
下水汚泥を、液体燃料(発熱量約8000kca l 
7kg)として有用な油状物質に変換させることができ
る。
According to the present invention, sewage sludge, which was conventionally treated as industrial waste, can be converted into liquid fuel (with a calorific value of approximately 8,000 kcal).
7 kg) can be converted into a useful oil.

しかも、この場合、油状物質の収率は、乾燥有機物基準
でほぼ50%もの高い値に達する。下水汚泥がこのよう
な液体燃料として有用な油状物質に高収率で変換される
ことは本発明者らが初めて見出した意外な事実である。
Moreover, in this case the yield of oily substances reaches a value as high as approximately 50% based on dry organic matter. It is an unexpected fact discovered for the first time by the present inventors that sewage sludge can be converted into an oily substance useful as a liquid fuel in high yield.

その上、本発明により得られる油状物質を含むスラリー
相は水相がら容易に相分離し、またスラリー相からの油
状物質の分離回収も容易であるため、生成物がらの油状
物質の分離回収は容易である。それ故、本発明の下水汚
泥処理法は、技術的、経済的に非常に有利な方法である
ということができる。
Furthermore, the slurry phase containing an oily substance obtained by the present invention is easily separated from the aqueous phase, and the oily substance can be easily separated and recovered from the slurry phase. It's easy. Therefore, the sewage sludge treatment method of the present invention can be said to be a technically and economically very advantageous method.

〔実施例〕〔Example〕

次に本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 下水汚泥として標準活性汚泥法の処理場から排出された
混合生汚泥を選び、高分子凝集剤を1.0%DS(乾燥
物)基準添加し、ベルトプレスにて脱水し、試験に用い
た。この場合、その脱水汚泥の性状は表−1の通りであ
る。なお、表−1に示したV、S、は有機物比を示す。
Example 1 Mixed raw sludge discharged from a treatment plant using the standard activated sludge method was selected as sewage sludge, a polymer flocculant was added to it on a 1.0% DS (dry matter) basis, it was dewatered using a belt press, and it was tested. Using. In this case, the properties of the dehydrated sludge are as shown in Table 1. Note that V and S shown in Table 1 indicate the organic matter ratio.

表−1 含水率ニア5% V、S、:8/1% 発熱量:  4130kca Q /kg、DS上記脱
水汚泥100gに、5%DS基準のNa 2 Co 3
 1.3gを添加し、内容量300m mのオートクレ
ーブに充填し、300°Cまで加熱した。この際、圧力
はあらかじめN2ガスで120kg/cJGまで加圧し
ておき、温度上昇にともなう圧力増加を圧力調整弁を用
いて、120kg/CIITGに制御した。温度が30
0℃に到達後、ただちに100℃以下まで冷却し、反応
を終了させた。
Table-1 Moisture content near 5% V, S,: 8/1% Calorific value: 4130 kca Q / kg, DS To 100 g of the above dehydrated sludge, 5% DS standard Na 2 Co 3
1.3 g was added, filled into an autoclave with an internal capacity of 300 mm, and heated to 300°C. At this time, the pressure was previously increased to 120 kg/cJG with N2 gas, and the pressure increase due to temperature rise was controlled to 120 kg/CIITG using a pressure regulating valve. temperature is 30
After reaching 0°C, the reaction was immediately cooled to below 100°C to complete the reaction.

その後、反応物を室温まで冷却し、ガラス製のサンプル
ビンに採取して一昼夜静置した。
Thereafter, the reaction product was cooled to room temperature, collected in a glass sample bottle, and allowed to stand overnight.

静置後1反応物は上部に水相、下部にスラリー相の2相
に分離した。両相に存在する油状物質の量を測定するた
め、両相とも別々に有機溶媒(CH2CD、2)で抽出
処理し、油分を分離し、その重量を測定した。その結果
、水相には1.1g及びスラリー相には9.0gの油状
物質が含まれていた。下水汚泥の乾燥有機物基準で、油
状物質の回収率は全体で48.1%。
After standing, one reaction product was separated into two phases: an aqueous phase in the upper part and a slurry phase in the lower part. In order to measure the amount of oily substances present in both phases, both phases were extracted separately with an organic solvent (CH2CD, 2), the oil was separated, and its weight was measured. As a result, the water phase contained 1.1 g of oily substance and the slurry phase contained 9.0 g of oily substance. Based on the dry organic matter standard of sewage sludge, the overall recovery rate of oily substances was 48.1%.

スラリー相からだけで42.9%であった。このスラリ
ー相から回収された油状物質は、7800kca Q 
/kgの発熱量を示し、室温で流動性があり燃料油とし
て充分使用可能のものであった。
The amount from the slurry phase alone was 42.9%. The oil recovered from this slurry phase was 7800 kca Q
It showed a calorific value of 1.2 kg, was fluid at room temperature, and could be used as a fuel oil.

実施例2 実施例1と同じ脱水汚泥を100gとり、これにNa 
2 Co 3を1.3g添加して、オートクレーブに充
填し、300℃まで加熱し、その温度にて30分間保持
した。圧力は実施例1と同様に120kg/cJGに制
御した。反応後、反応物を室温まで冷却し、サンプルビ
ンに採取して一昼夜静置した。
Example 2 100g of the same dehydrated sludge as in Example 1 was taken, and Na
1.3g of 2Co3 was added, the autoclave was filled, heated to 300°C, and held at that temperature for 30 minutes. The pressure was controlled at 120 kg/cJG as in Example 1. After the reaction, the reaction product was cooled to room temperature, collected in a sample bottle, and allowed to stand overnight.

静置後、反応物は、上部に浮上相(油状物質)、中間に
水相、下部にスラリー相の3相に分離した。
After standing still, the reaction product was separated into three phases: a floating phase (oil substance) in the upper part, an aqueous phase in the middle, and a slurry phase in the lower part.

各相を別々に有機溶媒で抽出し、抽出された各油状物質
量を語定した結果、浮上相に4.5g、水相に0.7g
、スラリー相に5.9gの油状物質が含まれていた。油
状物質の回収率は全体で52.9%であり、浮上相から
だけで21.4%、スラリー相からだけで28.0%で
あり、浮上相+スラリー和から、49.4%が回収され
た。浮上相とスラリー相から回収された油状物質の混合
物の発熱量は、8000kca Q /kgと高く、燃
料油として充分使用可能なものであった。
As a result of extracting each phase separately with an organic solvent and determining the amount of each extracted oily substance, the floating phase was 4.5g and the aqueous phase was 0.7g.
, the slurry phase contained 5.9 g of oily material. The overall recovery rate of oily substances was 52.9%, 21.4% from the floating phase alone, 28.0% from the slurry phase alone, and 49.4% from the floating phase + slurry sum. It was done. The calorific value of the mixture of oily substances recovered from the floating phase and the slurry phase was as high as 8000 kca Q /kg, and could be sufficiently used as fuel oil.

実施例3 実施例1と全く同様にして下水汚泥を反応処理し1反応
後、得られた反応物を室温まで冷却し、実験室用遠心分
離機を用いて2相に分離した。その後、スラリー相を分
けとり、加熱しながら圧搾したところ6gの油状物質が
得られた。この油状物質の回収率は28.6%であり、
その発熱量は7500kca Q /kgと高く、燃料
として用いるに充分であった。
Example 3 Sewage sludge was subjected to reaction treatment in exactly the same manner as in Example 1. After one reaction, the obtained reaction product was cooled to room temperature and separated into two phases using a laboratory centrifuge. Thereafter, the slurry phase was separated and compressed while heating to obtain 6 g of an oily substance. The recovery rate of this oily substance was 28.6%,
Its calorific value was as high as 7,500 kca Q /kg, which was sufficient for use as fuel.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明を実施する場合のフローシートの1例を示
す。 1・・・脱水装置、2・・・反応装置、3・・・冷却装
置、4・・・第1分離装置、5・・・第2分離装置。 指定代理人 工業技術院公害資源研究所長大場重美 復代理人  弁理士 池 浦 敏 明 手続補正帯 昭和62年3月 11日 特許庁長官  黒 1)明 雄  殿 1、事件の表示 昭和60年特許願第279679号 2、発明の名称 下水汚泥の液化処理方法 3、補正をする者 事件との関係  特許出願人 (ほか2名) 4、復代理人  〒151 5、補正命令の日付   自  発 6、補正により増加する発明の数    08、補正の
内容 本願明細書において次の通り補正を行います。 (1)特許請求の範囲を別紙の通り補正します。 (2)第3頁第2行−第4行の「下水汚泥を、・・・反
応処理した後、」を1次のように訂正します。 「下水汚泥にアルカリ性物質を加え、加熱温度における
飽和水蒸気圧以上の加圧下で加熱反応処理した後、」 (3)第3頁下から第7行〜第4行の「下水汚泥を、・
・・用いられるが、」を1次のように訂正します。 「下水汚泥にアルカリ性物質を加えて高温高圧条件に保
持すればよい。」 (4)第4頁第13行の「・・・である。」の後に、次
の文を付加します。 「反応温度は反応時間との関連で決められ、反応時間を
長することにより反応温度を下げることができ、また1
反応部度を高くすることにより反応時間を短かくするこ
とができる。本発明の場合。 反応時間によっては150℃の反応温度や400℃の反
応温度を採用することも可能である。」「特許請求の範
囲 (1)下水汚泥にアルカリ性物質を加え、加熱温度にお
ける飽和水蒸気圧以上の加圧下で加熱反応処理した後、
得られた反応処理生成物を冷却処理することを特徴とす
る下水汚泥の液化処理方法。 (2)下水汚泥にアルカリ性物質を加え、加熱温度にお
ける飽和水蒸気圧以上の加圧下で加熱反応処理した後、
得られた反応処理生成物を冷却処理し、得られた冷却処
理生成物を水相とスラリー相とに分離し、次いで分離さ
れたスラリー相をさらに固形分と油状物質とに分離する
ことを特徴とする下水汚泥の液化処理方法。」
The drawing shows an example of a flow sheet for implementing the present invention. DESCRIPTION OF SYMBOLS 1... Dehydration device, 2... Reactor, 3... Cooling device, 4... First separation device, 5... Second separation device. Designated agent Director of the Institute of Pollution Resources Research, Agency of Industrial Science and Technology Shigeyoshi Oba Patent attorney Toshiaki Ikeura Proceedings amendment date March 11, 1985 Commissioner of the Japan Patent Office Kuro 1) Yu Akira 1, Indication of the case 1985 patent Application No. 279679 2. Name of the invention: Sewage sludge liquefaction treatment method 3. Person making the amendment Relationship to the case: Patent applicant (2 others) 4. Sub-agent 151 5. Date of amendment order: Initiator 6. Number of inventions increased by amendment 08. Contents of amendment The following amendments will be made to the specification of the application. (1) Amend the claims as shown in the attached sheet. (2) On page 3, lines 2 to 4, ``After the sewage sludge is subjected to reaction treatment,'' should be corrected as follows: 1. "After adding an alkaline substance to sewage sludge and subjecting it to a heating reaction treatment under pressure equal to or higher than the saturated water vapor pressure at the heating temperature," (3) "The sewage sludge is...
``It is used, but'' is corrected as follows. "Just add an alkaline substance to sewage sludge and hold it under high temperature and high pressure conditions." (4) Add the following sentence after "..." on page 4, line 13. "The reaction temperature is determined in relation to the reaction time, and the reaction temperature can be lowered by increasing the reaction time, and
By increasing the number of reaction sites, the reaction time can be shortened. In the case of the present invention. Depending on the reaction time, it is also possible to employ a reaction temperature of 150°C or 400°C. ” “Claims (1) After adding an alkaline substance to sewage sludge and subjecting it to a heating reaction treatment under pressure equal to or higher than the saturated water vapor pressure at the heating temperature,
A method for liquefying sewage sludge, which comprises cooling the obtained reaction product. (2) After adding an alkaline substance to sewage sludge and subjecting it to a heating reaction treatment under pressure equal to or higher than the saturated water vapor pressure at the heating temperature,
The obtained reaction product is cooled, the obtained cooled product is separated into an aqueous phase and a slurry phase, and the separated slurry phase is further separated into a solid content and an oily substance. A liquefaction treatment method for sewage sludge. ”

Claims (2)

【特許請求の範囲】[Claims] (1)下水汚泥を、アルカリ性条件下、反応温度250
〜350℃において、該反応温度の飽和水蒸気圧以上の
加圧下で反応処理した後、得られた反応処理生成物を冷
却処理することを特徴とする下水汚泥の液化処理方法。
(1) Sewage sludge is heated under alkaline conditions at a reaction temperature of 250℃.
A method for liquefying sewage sludge, which comprises carrying out a reaction treatment at a temperature of 350°C to 350°C under a pressure higher than the saturated water vapor pressure of the reaction temperature, and then cooling the obtained reaction product.
(2)下水汚泥を、アルカリ性条件下、反応温度250
〜350℃において、該反応温度の飽和水蒸気圧以上の
加圧下で反応処理した後、得られた反応処理生成物を冷
却処理し、得られた冷却処理生成物を水相とスラリー相
とに分離し、次いで分離されたスラリー相をさらに固形
分と油状物質とに分離することを特徴とする下水汚泥の
液化処理方法。
(2) Sewage sludge is reacted under alkaline conditions at a reaction temperature of 250℃.
After reaction treatment at ~350°C under pressure higher than the saturated water vapor pressure of the reaction temperature, the obtained reaction product is cooled, and the obtained cooled product is separated into an aqueous phase and a slurry phase. A method for liquefying sewage sludge, which comprises: and then further separating the separated slurry phase into a solid content and an oily substance.
JP60279679A 1985-12-11 1985-12-11 Method for liquefying treatment of sewage sludge Granted JPS62136299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60279679A JPS62136299A (en) 1985-12-11 1985-12-11 Method for liquefying treatment of sewage sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60279679A JPS62136299A (en) 1985-12-11 1985-12-11 Method for liquefying treatment of sewage sludge

Publications (2)

Publication Number Publication Date
JPS62136299A true JPS62136299A (en) 1987-06-19
JPH055560B2 JPH055560B2 (en) 1993-01-22

Family

ID=17614356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60279679A Granted JPS62136299A (en) 1985-12-11 1985-12-11 Method for liquefying treatment of sewage sludge

Country Status (1)

Country Link
JP (1) JPS62136299A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270999A (en) * 1988-04-25 1989-10-30 Agency Of Ind Science & Technol Liquefaction treatment process of sewage
JPH02102798A (en) * 1988-10-13 1990-04-16 Agency Of Ind Science & Technol Treatment of sludge of industrial waste water
JPH02261597A (en) * 1989-03-31 1990-10-24 Agency Of Ind Science & Technol Method for continuously converting sludge into oil
JPH08168800A (en) * 1994-08-29 1996-07-02 Agency Of Ind Science & Technol Method of efficiently incinerating organic sludge
JP2006282858A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Method for producing high-quality liquid fuel from organic waste and liquid fuel produced therefrom
CN102718384A (en) * 2012-06-26 2012-10-10 深圳市环源科技发展有限公司 Alkali adding catalytic thermal hydrolysis treatment method for sludge
JP2013532991A (en) * 2010-07-26 2013-08-22 サファイア エナジー,インコーポレイティド Method for recovering oily compounds from biomass
US8556998B2 (en) 2004-09-16 2013-10-15 Yukuo Katayama Method for dewatering a water-containing combustible solid
US8557004B2 (en) 2003-07-18 2013-10-15 Yukuo Katayama Method for dewatering water-containing coal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011534A (en) * 2011-09-23 2013-04-03 中国石油化工股份有限公司 Municipal sludge treatment method and system for treating municipal sludge

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544903A (en) * 1977-06-14 1979-01-16 Agency Of Ind Science & Technol Method of recovering oils from condensed water formed on thermal decomposition of municipal waste
JPS59105079A (en) * 1982-12-06 1984-06-18 Kurushima Group Kyodo Gijutsu Kenkyusho:Kk Treatment of organic material by utilizing hot alkaline water
JPS61238399A (en) * 1985-04-15 1986-10-23 Japan Organo Co Ltd Apparatus for converting sludge to oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544903A (en) * 1977-06-14 1979-01-16 Agency Of Ind Science & Technol Method of recovering oils from condensed water formed on thermal decomposition of municipal waste
JPS59105079A (en) * 1982-12-06 1984-06-18 Kurushima Group Kyodo Gijutsu Kenkyusho:Kk Treatment of organic material by utilizing hot alkaline water
JPS61238399A (en) * 1985-04-15 1986-10-23 Japan Organo Co Ltd Apparatus for converting sludge to oil

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01270999A (en) * 1988-04-25 1989-10-30 Agency Of Ind Science & Technol Liquefaction treatment process of sewage
JPH02102798A (en) * 1988-10-13 1990-04-16 Agency Of Ind Science & Technol Treatment of sludge of industrial waste water
JPH02261597A (en) * 1989-03-31 1990-10-24 Agency Of Ind Science & Technol Method for continuously converting sludge into oil
JPH08168800A (en) * 1994-08-29 1996-07-02 Agency Of Ind Science & Technol Method of efficiently incinerating organic sludge
US8557004B2 (en) 2003-07-18 2013-10-15 Yukuo Katayama Method for dewatering water-containing coal
US8556998B2 (en) 2004-09-16 2013-10-15 Yukuo Katayama Method for dewatering a water-containing combustible solid
JP2006282858A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Method for producing high-quality liquid fuel from organic waste and liquid fuel produced therefrom
JP2013532991A (en) * 2010-07-26 2013-08-22 サファイア エナジー,インコーポレイティド Method for recovering oily compounds from biomass
CN102718384A (en) * 2012-06-26 2012-10-10 深圳市环源科技发展有限公司 Alkali adding catalytic thermal hydrolysis treatment method for sludge

Also Published As

Publication number Publication date
JPH055560B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
JP2729744B2 (en) Sewage sludge treatment method
Itoh et al. Production of heavy oil from sewage sludge by direct thermochemical liquefaction
JPS62136299A (en) Method for liquefying treatment of sewage sludge
EP3372560A1 (en) Method and apparatus for drying biological solid material employing both microwave irradiation and solvent extraction
JP2007203213A (en) Method and apparatus for treating highly wet waste before hydration, and dehydration system equipped with this apparatus
TW201008650A (en) Method and apparatus for removing unburned carbon from fly ash
JPWO2004037731A1 (en) Methane gas manufacturing method
AU666833B2 (en) Thermal treated coal, and process and apparatus for preparing the same
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
CN106915891A (en) A kind of oil plant oily sludge is innoxious and processing method of resource
JPH01270999A (en) Liquefaction treatment process of sewage
JPS62109891A (en) Treatment of alcohol fermentation residue
JPS5723682A (en) Compound gasification for heavy oil
JPS5946995B2 (en) Improvements in aqueous effluent purification
JPH0347600A (en) Oil recovering from organic sludge
WO2019201313A1 (en) Method and device for treating aqueous substance
JPS63235395A (en) Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter
US4440544A (en) Process for the conversion of ground hydrous lignite into a pumpable dehydrated suspension of fine-ground lignite and oil
JPH02102798A (en) Treatment of sludge of industrial waste water
JPS6054798A (en) Dehydrating method of sludge
CN109652153A (en) A kind of processing method of agriculture and forestry organic waste material alkaline pretreatment coupling marsh gas purifying
JPS58205594A (en) Anaerobic digestion method
SU1090972A1 (en) Process for recovering waste containing oil and scale
JPS6133480B2 (en)
JPH072240B2 (en) Oil treatment method for sewage sludge

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term