JPH08168800A - Method of efficiently incinerating organic sludge - Google Patents

Method of efficiently incinerating organic sludge

Info

Publication number
JPH08168800A
JPH08168800A JP6227312A JP22731294A JPH08168800A JP H08168800 A JPH08168800 A JP H08168800A JP 6227312 A JP6227312 A JP 6227312A JP 22731294 A JP22731294 A JP 22731294A JP H08168800 A JPH08168800 A JP H08168800A
Authority
JP
Japan
Prior art keywords
sludge
pressure
organic sludge
fluidized
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6227312A
Other languages
Japanese (ja)
Other versions
JP2662687B2 (en
Inventor
Shinya Yokoyama
伸也 横山
Tomoko Ogi
知子 小木
Yutaka Tsuchide
裕 土手
Tomoaki Minowa
智朗 美濃輪
Tokuji Yasunaka
徳二 安中
Kazuaki Sato
和明 佐藤
Takashi Masuda
隆司 増田
Tadashi Nakamura
忠 中村
Akira Suzuki
明 鈴木
Shinji Ito
新治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minister for Public Works for State of New South Wales
Organo Corp
National Institute of Advanced Industrial Science and Technology AIST
National Research and Development Agency Public Works Research Institute
Original Assignee
Minister for Public Works for State of New South Wales
Agency of Industrial Science and Technology
Organo Corp
Public Works Research Institute Ministry of Construction
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minister for Public Works for State of New South Wales, Agency of Industrial Science and Technology, Organo Corp, Public Works Research Institute Ministry of Construction, Japan Organo Co Ltd filed Critical Minister for Public Works for State of New South Wales
Priority to JP6227312A priority Critical patent/JP2662687B2/en
Publication of JPH08168800A publication Critical patent/JPH08168800A/en
Application granted granted Critical
Publication of JP2662687B2 publication Critical patent/JP2662687B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for efficiently incinerating an org. sludge assuming a solid state. CONSTITUTION: In the incinerating method of the org. sludge assuming a solid state, the org. sludge is kept at >=150 deg.C and under a pressure higher than saturated vapor pressure of a temp. concerned to be fluidized, and this fluidized matter under high temp. and high pressure is subjected to flash depressurization and the resultant flash depressurized residue is incinerated.

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

【0001】[0001]

【技術分野】本発明は、固形状態を呈する有機性汚泥の
効率的な焼却方法に関するものである。
TECHNICAL FIELD The present invention relates to an efficient method for incinerating organic sludge in a solid state.

【0002】[0002]

【従来技術及びその問題点】代表的な有機性汚泥である
下水汚泥は、全国で年間約5000万m3(含水率98
%)という莫大な量であり、年々増加の傾向にある。近
年、大都市においては、汚泥の効率的な処理処分を行う
ために、複数の下水処理場から発生した汚泥を、専用の
汚泥処理場に集めて処理を行っている。この場合、汚泥
は、下水処理場から高含水率の濃縮汚泥の形態でパイプ
圧送されるか、あるいは、下水処理場で脱水処理を受
け、脱水汚泥の形態でダンプトラックで輸送される。前
者では、汚泥が高含水率であるために容量が大きく、大
能力のポンプを必要とする、すなわち、輸送コストが高
いという欠点を有している。さらに、この場合、汚泥処
理場にも脱水ろ液または消化脱離液等の生物処理施設の
設置が不可欠となる。一方、後者では、脱水汚泥の空隙
が多く、すなわち、みかけ密度が小さいために、効率的
な輸送ができないとともに、汚泥を入れるコンテナを密
閉構造としにくいために、悪臭、汚泥の落ちこぼれ等の
観点より環境上好ましくない。また、処理場内において
脱水汚泥を輸送させる場合には、主としてベルトコンベ
アが用いられるが、ベルトコンベアは設置に際して空間
的な制約を大きく受け、また、トラック輸送同様密閉構
造としにくいため、環境上の問題を生じる。最近では、
処理場内の脱水汚泥の輸送にパイプ圧送も使用されてい
るが、配管内の圧力損失が非常に大きく、短距離輸送に
限定されている。さらに、脱水汚泥は処理処分の前にタ
ンクあるいは、ホッパーに一時貯留されるが、前述した
ようにみかけ密度が小さいために、効率的な貯留ができ
ず、タンク容積等が大、すなわち設備費の増大につなが
っている。このように、脱水汚泥等の固形状態を呈する
有機性汚泥を輸送及び貯留する方法に関しては多くの問
題点を有しているが、さらにこのような有機性汚泥の処
理についても後述するような問題がある。
2. Description of the Related Art Sewage sludge, which is a typical organic sludge, is about 50 million m 3 (water content of 98
%), Which is increasing year by year. 2. Description of the Related Art In recent years, in a large city, in order to efficiently treat and dispose of sludge, sludge generated from a plurality of sewage treatment plants is collected and treated in a dedicated sludge treatment plant. In this case, the sludge is pipe-pumped from the sewage treatment plant in the form of concentrated sludge having a high moisture content, or is subjected to dehydration treatment at the sewage treatment plant, and is transported by a dump truck in the form of dewatered sludge. The former has a drawback that sludge has a high water content and therefore has a large capacity and requires a large-capacity pump, that is, a high transportation cost. Further, in this case, it is indispensable to install a biological treatment facility such as a dewatered filtrate or a digestion / desorption solution in the sludge treatment plant. On the other hand, in the latter case, there are many voids in the dewatered sludge, that is, because the apparent density is low, efficient transport is not possible, and since the container for containing the sludge is difficult to have a closed structure, the odor and sludge fall from the viewpoint. Environmentally unfavorable. In addition, when transporting dehydrated sludge in the treatment plant, a belt conveyor is mainly used, but the belt conveyor is greatly restricted in space when installed, and it is difficult to have a closed structure like truck transportation, which is an environmental problem. Cause recently,
Although pipe pressure feeding is also used for transporting dehydrated sludge in the treatment plant, the pressure loss in the pipe is extremely large, and the transport is limited to short-distance transport. Furthermore, dewatered sludge is temporarily stored in a tank or a hopper before treatment and disposal. However, as described above, the apparent density is low, so efficient storage is not possible, and the tank volume etc. is large, that is, equipment costs are high. Has led to an increase. As described above, the method of transporting and storing organic sludge in a solid state such as dewatered sludge has many problems, and the treatment of such organic sludge also has the following problems. There is.

【0003】すなわち、有機性汚泥の処理に関しては、
従来各種の方法が知られているが、その無害化及び減容
化を比較的簡単に行える点から、焼却法が広く行われて
いる。従来の焼却法は、有機性汚泥を脱水して得られる
ケーキ状の脱水汚泥を焼却する方法が一般的であるが、
この場合、脱水汚泥は付着性が高く、流動性の悪いもの
であることや、脱水汚泥のケーキ性状が不均一であるこ
と、脱水汚泥が固形の塊であること等が原因となって、
以下に示すような種々の問題を生じている。 (1)脱水汚泥を原料ホッパーを介して焼却炉へ供給す
るに際し、脱水汚泥の流動性が悪いために、定量供給を
行うことが非常に困難である。 (2)脱水汚泥の性状が不均一であることと、定量供給
が困難であること等のために、炉内の温度の制御が非常
に難しい。 (3)脱水汚泥は、固形の塊であることのために、効率
的な燃焼を行うことが困難であり、また、完全燃焼でき
ない場合もある。
[0003] That is, regarding the treatment of organic sludge,
Although various methods have been conventionally known, the incineration method is widely used because it can be made harmless and its volume can be reduced relatively easily. The conventional incineration method is generally a method of incinerating cake-like dehydrated sludge obtained by dehydrating organic sludge,
In this case, the dewatered sludge has high adhesion and poor fluidity, and the cake properties of the dewatered sludge are non-uniform, and the dewatered sludge is a solid mass,
There are various problems as described below. (1) When supplying dewatered sludge to an incinerator via a raw material hopper, it is very difficult to perform quantitative supply because the fluidity of the dewatered sludge is poor. (2) It is very difficult to control the temperature in the furnace because the properties of the dehydrated sludge are non-uniform and it is difficult to supply a fixed amount. (3) Since dewatered sludge is a solid mass, it is difficult to perform efficient combustion, and there are also cases where complete combustion is not possible.

【0004】脱水汚泥の焼却に見られる前記問題を解決
するために、脱水汚泥を直接焼却せずに、いったん乾燥
させた後、焼却処理する方法も提案されている。しか
し、この場合にも、脱水汚泥の持つ付着性の大きいこと
等が原因となって、(1)脱水汚泥を原料供給ホッパー
を介して乾燥器へ供給する際に、脱水汚泥の流動性が悪
く、定量供給を行うことが非常に困難である、(2)脱
水汚泥を乾燥器内で乾燥させるに際し、脱水汚泥の高い
付着性のために、脱水汚泥が器壁に付着乾燥して熱伝導
性の悪い固形物となり、乾燥器の乾燥効率を著しく悪化
させる等の問題を生じている。以上のように、従来の脱
水汚泥の焼却法は、実用上多くの問題を有している。
[0004] In order to solve the above-mentioned problem observed in the incineration of dehydrated sludge, a method has been proposed in which dehydrated sludge is once dried and then incinerated without being directly incinerated. However, also in this case, due to the large adhesion of the dewatered sludge, (1) when the dewatered sludge is supplied to the dryer through the raw material supply hopper, the fluidity of the dewatered sludge is poor. (2) When drying the dewatered sludge in the dryer, the dewatered sludge adheres to the wall of the container and is dried due to the high adhesion of the dewatered sludge. The solids are poor in quality, and the drying efficiency of the dryer is significantly deteriorated. As described above, the conventional incineration method of dewatered sludge has many practical problems.

【0005】[0005]

【発明が解決しようとする課題】本発明は、従来の固形
状態を呈する有機性汚泥の焼却に見られる前記問題を解
決することをその課題とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems found in the conventional incineration of organic sludge having a solid state.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、固形状態を呈する有
機性汚泥を焼却するに際し、該有機性汚泥を150℃以
上の温度及び該温度の飽和水蒸気圧以上の圧力下に保持
して流動化させ、この高温高圧下の流動化物をフラッシ
ュ減圧し、得られたフラッシュ減圧残渣物を焼却するこ
とを特徴とする有機性汚泥の焼却方法が提供される。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. That is, according to the present invention, when incinerating an organic sludge in a solid state, the organic sludge is fluidized while being held at a temperature of 150 ° C. or higher and a pressure of saturated steam pressure of the temperature or higher, There is provided a method for incinerating organic sludge, which comprises flash decompressing a fluidized product under high temperature and high pressure and incinerating the obtained flash decompression residue.

【0007】本発明において被処理原料として用いる固
形状態を呈する有機性汚泥としては、通常の下水処理場
から排出される下水汚泥や各種の有機性廃水の生物処理
装置から排出される余剰汚泥等の各種有機性汚泥の脱水
物や各種の製造工程から排出される固形状の有機性汚泥
等が包含される。有機性汚泥の脱水方法としては、真空
脱水、ベルトプレス脱水、遠心脱水等の機械脱水法が採
用され、特に制約されない。この脱水を行うに際して
は、有機性汚泥には、汚泥の調質薬剤、特に好ましくは
高分子凝集剤の添加が好ましい。本発明で被処理原料と
する固形状態を呈する有機性汚泥中の水分量は、50〜
90重量%、好ましくは70〜80重量%である。以
下、本発明を各プロセスに対応して詳述する。
In the present invention, the solid organic sludge used as a raw material to be treated includes sewage sludge discharged from a normal sewage treatment plant and surplus sludge discharged from various organic wastewater biological treatment apparatuses. Examples include various organic sludge dehydrates and solid organic sludge discharged from various manufacturing processes. As a method of dehydrating the organic sludge, a mechanical dehydration method such as vacuum dehydration, belt press dehydration, and centrifugal dehydration is adopted, and is not particularly limited. When performing this dehydration, it is preferable to add a sludge conditioning agent, particularly preferably a polymer flocculant, to the organic sludge. In the present invention, the amount of water in the solid sludge as the raw material to be treated is 50 to 50%.
It is 90% by weight, preferably 70-80% by weight. Hereinafter, the present invention will be described in detail for each process.

【0008】(固形状態を呈する有機性汚泥の焼却方
法)本発明の方法を実施するには、まず、固形状態を呈
する有機性汚泥を高温高圧に保持して流動化物とする。
この場合、有機性汚泥のその流動化反応を促進させる為
に、有機性汚泥をアルカリ性条件とすることも可能であ
る。この場合、アルカリ性条件の形成には、通常、アル
カリ性物質が用いられるが、アルカリ性物質としては、
例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナト
リウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素
カリウム、ギ酸ナトリウム、ギ酸カリウム等のアルカリ
金属化合物や、酸化カルシウム、水酸化カルシウム、水
酸化マグネシウム等のアルカリ土類金属化合物等があげ
られる。
(Method for Incineration of Organic Sludge in Solid State) To carry out the method of the present invention, first, the organic sludge in solid state is kept at high temperature and high pressure to form a fluidized product.
In this case, it is also possible to set the organic sludge under alkaline conditions in order to promote the fluidization reaction of the organic sludge. In this case, an alkaline substance is usually used to form the alkaline condition, and as the alkaline substance,
For example, alkali metal compounds such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium formate and potassium formate, and alkaline earth compounds such as calcium oxide, calcium hydroxide and magnesium hydroxide. Examples thereof include metal compounds.

【0009】本発明における流動化処理は高温高圧下で
実施されるが、この場合、反応温度は一般には150℃
以上、好ましくは200〜225℃前後であり、反応圧
力は、その反応温度における飽和水蒸気圧以上、例え
ば、200℃の場合、16kg/cm2abs以上であ
ればよい。この時、反応温度での保持時間(反応時間)
は、対象となる汚泥により異なるが、一般には60分以
内で良い。流動性を向上させるには、温度をより高く、
あるいは保持時間をより長くすれば良いが、それにとも
なって固形物が沈降しやすくなる。従って、流動化後の
輸送及び貯留時における固形物の沈降を防止するために
は、適切な温度・保持時間の設定が必要である。本発明
の流動化装置は、間接加熱方式の熱交換器であればよい
が、固形状態を呈する汚泥を扱うことから、内部にスク
レーパを有する掻面式熱交換器やヘリカル翼を有するス
クリュウ型熱交換器の使用が望ましい。
The fluidizing treatment in the present invention is carried out under high temperature and high pressure, in which case the reaction temperature is generally 150 ° C.
The above is preferably about 200 to 225 ° C., and the reaction pressure may be equal to or higher than the saturated vapor pressure at the reaction temperature, for example, at 200 ° C., 16 kg / cm 2 abs or more. At this time, the holding time at the reaction temperature (reaction time)
Is generally 60 minutes or less, though it depends on the target sludge. To improve fluidity, use higher temperature,
Alternatively, the holding time may be longer, but the solids tend to settle accordingly. Therefore, in order to prevent sedimentation of solids during transportation and storage after fluidization, it is necessary to set appropriate temperatures and holding times. The fluidizing device of the present invention may be any heat exchanger of the indirect heating type, but since it handles sludge presenting a solid state, a scraping type heat exchanger having a scraper inside and a screw type heat exchanger having a helical blade are used. The use of exchangers is desirable.

【0010】また、本発明において、圧力は、有機性汚
泥からの水蒸気による自己発生圧を利用することができ
るが、必要に応じ、例えば、窒素ガス、炭酸ガス、アル
ゴンガス等を用いて加圧することもできる。
In the present invention, the pressure may be a self-generated pressure due to water vapor from the organic sludge. However, if necessary, the pressure may be increased by using nitrogen gas, carbon dioxide gas, argon gas or the like. You can also.

【0011】本発明において、有機性汚泥を前記高温高
圧下に保持して得られた生成物は、流動性が著しく良好
となっており、輸送時にポンプ圧送が充分に可能であ
る。従って、その輸送に、トラックの代りにバキューム
カーやタンクローリが使用できることは言うまでもな
い。また、本発明で得られた生成物は、空隙がほとんど
ないために、流動化前の汚泥と比較し、みかけ密度が大
きくなっている。従って、効率的に貯留でき、必要なタ
ンクの容量等を減じることが可能である。流動化物中の
水分含量は、50〜90重量%、好ましくは70〜80
重量%である。
In the present invention, the product obtained by maintaining the organic sludge under the above-mentioned high temperature and high pressure has remarkably good fluidity, and can be sufficiently pumped during transportation. Therefore, it goes without saying that a vacuum car or a tank truck can be used instead of a truck for the transportation. Further, the product obtained in the present invention has an apparent density higher than sludge before fluidization because there are almost no voids. Therefore, the water can be efficiently stored, and the required tank capacity and the like can be reduced. The water content in the fluidized product is 50-90% by weight, preferably 70-80% by weight.
% By weight.

【0012】有機性汚泥の流動化物は、前記のように、
流動性に非常に富むものであるため、流動化装置又は流
動化物貯留容器から焼却炉への輸送をポンプ圧送等によ
り容易に行うことができる上、焼却炉への有機性汚泥の
供給を噴霧ガン等を用いて微細粒子状で供給し得ること
から、その燃焼を効率的に行うことができ、かつその焼
却炉への供給を定量的に行うことができる。また、流動
化された有機性汚泥は、均一な性状を示し、かつ前記の
ように定量供給し得ることから、空気量の制御と組合せ
て、炉内温度のコントロールを容易に行うことができ
る。
[0012] The fluidized organic sludge is, as described above,
Since it is very rich in fluidity, it can be easily transported from the fluidizer or fluidized material storage container to the incinerator by pumping, etc., and the supply of organic sludge to the incinerator is performed by using a spray gun or the like. Since it can be supplied in the form of fine particles, the combustion can be performed efficiently and the supply to the incinerator can be performed quantitatively. Further, the fluidized organic sludge exhibits uniform properties and can be supplied in a fixed amount as described above, so that the furnace temperature can be easily controlled in combination with the control of the air amount.

【0013】次に、本発明の好ましい実施態様につい
て、図1にそのフローシートを示す。図1において、3
1は脱水装置、32は流動化装置、33はフラッシュタ
ンク、34は圧送ポンプ、35は凝縮装置、36は焼却
炉、37は廃熱ボイラを各示す。含水率98%前後の濃
縮状態の有機性汚泥はライン38を通って脱水装置31
に導入される。分離されたろ液はライン39を通って水
処理施設に返送され、脱水された汚泥はライン40によ
り流動化装置32に導入される。この流動化装置は熱交
換型反応装置であり、加熱媒体がライン48から導入さ
れ、装置内の有機性汚泥を流動化温度まで加熱する。こ
こで使われる熱源としては、後段の廃熱ボイラ37で回
収した水蒸気を用いることが望ましい。この時の条件と
して、流動化温度は、150℃以上、好ましくは、20
0〜220℃、反応圧力は、反応温度における飽和水蒸
気圧以上であればよい。反応時間は、通常60分以内で
ある。ここで採用される流動化装置の形式は、掻面式熱
交換器あるいは、スクリュウ型熱交換器が好ましいが、
特に制約されない。流動化物はライン41を通ってフラ
ッシュタンク33に導入され、大気圧下或いは減圧下ま
で急激に減圧される。このとき、流動化物の水分の一部
(約10〜20%)が蒸発するが、この水蒸気は、ライ
ン43を通って凝縮装置35に導入し液状物とする。こ
の液状物はライン45により水処理施設に返送される。
一方、フラッシュタンク33内で蒸発せずに残った流動
化物(蒸発残渣物)42は圧送ポンプ34に入り、ライ
ン44を通って焼却炉36まで配管内を圧送される。焼
却炉36では、ライン46より導入された燃焼用空気と
流動化物が混合され、燃焼状態が形成される。この時、
必要に応じて、重油等の補助燃料の投入が行われる。但
し、流動化物は、液状を呈しているため、微細粒径まで
噴霧が可能であり、かつ、固形物濃度が高いので、自燃
する場合もある。燃焼条件は、600〜1000℃、好
ましくは、750〜800℃である。ここで採用されえ
る焼却炉は、単なる噴霧焼却炉が好ましいが、他の形
式、例えば、流動層炉でも燃焼上は問題ない。燃焼後の
高温排ガスは、ライン47を通って廃熱ボイラ37に導
入され、水蒸気の形で熱回収が行われる。ここで発生し
た水蒸気はライン48を通って流動化装置32の加熱源
とする。また発熱ボイラ37における熱回収後の排ガス
は、ライン49を通って排ガス処理装置(図示せず)を
通り、煙突へと導かれ大気に開放される。
Next, FIG. 1 shows a flow sheet of a preferred embodiment of the present invention. In FIG. 1, 3
Reference numeral 1 denotes a dehydrating device, 32 denotes a fluidizing device, 33 denotes a flash tank, 34 denotes a pressure pump, 35 denotes a condensing device, 36 denotes an incinerator, and 37 denotes a waste heat boiler. The concentrated organic sludge having a water content of about 98% passes through a line 38 and a dewatering device 31.
Will be introduced to. The separated filtrate is returned to a water treatment facility through a line 39, and the dewatered sludge is introduced into a fluidization device 32 by a line 40. The fluidizer is a heat exchange reactor, in which a heating medium is introduced via line 48 and heats the organic sludge in the reactor to the fluidization temperature. As the heat source used here, it is desirable to use steam recovered by the waste heat boiler 37 in the subsequent stage. As the conditions at this time, the fluidization temperature is 150 ° C. or higher, preferably 20 ° C.
The reaction pressure may be 0 to 220 ° C. and the reaction pressure may be higher than the saturated steam pressure at the reaction temperature. The reaction time is usually within 60 minutes. The fluidizing device adopted here is preferably a scraping surface heat exchanger or a screw type heat exchanger,
There is no particular restriction. The fluidized material is introduced into the flash tank 33 through the line 41, and the pressure is rapidly reduced to atmospheric pressure or reduced pressure. At this time, a part (about 10 to 20%) of the moisture of the fluidized material evaporates. This water vapor is introduced into the condenser 35 through the line 43 to be a liquid. This liquid is returned to the water treatment facility via line 45.
On the other hand, the fluidized material (evaporation residue) 42 remaining without evaporating in the flash tank 33 enters the pressure pump 34 and is pressure-fed through the line 44 to the incinerator 36. In the incinerator 36, the combustion air introduced from the line 46 and the fluidized material are mixed to form a combustion state. This time,
If necessary, auxiliary fuel such as heavy oil is added. However, since the fluidized product is in a liquid state, it can be sprayed to a fine particle size and has a high solid content concentration, so it may self-combust. The combustion conditions are 600-1000 ° C, preferably 750-800 ° C. The incinerator that can be used here is preferably a simple spray incinerator, but other types such as a fluidized bed furnace will not cause any problems in combustion. The hot exhaust gas after combustion is introduced into the waste heat boiler 37 through the line 47, and heat is recovered in the form of steam. The steam generated here passes through the line 48 and is used as a heating source of the fluidizer 32. Exhaust gas after heat recovery in the heating boiler 37 passes through an exhaust gas treatment device (not shown) through a line 49, is led to a chimney, and is released to the atmosphere.

【0014】以上説明したごとく本発明によれば、脱水
汚泥等の固形状態を呈する有機性汚泥を液状物として取
扱うことができ、移送上・燃焼上大きなメリットが生ず
る。移送には、ベルトコンベアではなくポンプ圧送が可
能となり、燃焼には、噴霧焼却が採用できる。これらに
より、下記の利点が得られる。 (1)脱水ヤードと焼却ヤードがかなり離れていてもポ
ンプ圧送ができ、空間配置上の制約を受けずに自由に計
画が出来る。 (2)焼却炉までの汚泥の安定供給性、定量移送性及び
分配性が良い。 (3)臭気対策及びメンテナンスが容易。 (4)設置スペースが少ない。 (5)焼却炉が小型化できる。 (6)低空気比燃焼が可能であり、NOxの低減化、排
気ファンの小型化が可能。 (7)汚泥流量の計測が可能であり、焼却量のコントロ
ールが容易。 (8)流動化汚泥は性状が均一であり、炉内温度のコン
トロールが容易。 (9)炉内に駆動部、流動媒体がなく、大型化容易。 以上のことから明らかなように、本発明の固体状態を呈
する有機性汚泥の流動化焼却処理方法は、技術的、経済
的に非常に有利な方法であるということができる。
As described above, according to the present invention, organic sludge having a solid state, such as dehydrated sludge, can be handled as a liquid material, and there is a great merit in transportation and combustion. Pumping can be used for transfer instead of belt conveyor, and spray incineration can be used for combustion. These provide the following advantages. (1) Pumping can be performed even if the dewatering yard and the incineration yard are far apart, and planning can be done freely without restrictions on space arrangement. (2) Stable supply of sludge to the incinerator, quantitative transfer and distribution are good. (3) Easy odor control and maintenance. (4) Installation space is small. (5) The incinerator can be downsized. (6) Low air ratio combustion is possible, NOx can be reduced, and exhaust fan can be downsized. (7) Sludge flow rate can be measured and incineration volume can be easily controlled. (8) Fluidized sludge has uniform properties, and it is easy to control the temperature inside the furnace. (9) There is no drive unit and fluid medium in the furnace, and it is easy to increase the size. As is clear from the above, it can be said that the fluidized incineration method of organic sludge exhibiting a solid state of the present invention is a technically and economically very advantageous method.

【0015】[0015]

【実施例】次に、本発明を実施例によりさらに詳細に説
明する。なお、以下において示す%は重量基準である。
EXAMPLES Next, the present invention will be described in more detail by way of examples. The percentages shown below are based on weight.

【0016】実施例1 有機性汚泥として下水汚泥を選択し、標準活性汚泥法の
処理場から排出された3種類の混合生汚泥の脱水ケーキ
を以下の試験に用いた。これらの汚泥は高分子凝集剤を
添加した後、ベルトプレスにて脱水したものである。そ
の代表的な性状は表1の通りである。
Example 1 Sewage sludge was selected as an organic sludge, and dewatered cakes of three types of mixed raw sludge discharged from a treatment plant of a standard activated sludge method were used in the following tests. These sludges are dehydrated by a belt press after adding a polymer flocculant. The typical properties are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】上記脱水汚泥約80gを、内容量300ml
のオートクレーブに充填・密閉し、N2ガスで充分にパー
ジを行ない、30kg/cm2Gまで加圧した。次い
で、電磁誘導式撹拌機を使用して撹拌を開始し、同時に
電気炉で加熱を始めた。オートクレーブ内の温度が所定
の反応温度(150〜250℃)に到達した後、その温
度を所定の時間保持し、その後、そのオートクレーブの
内部圧を利用して、オートクレーブ内容物をフラッシュ
タンクに流出させ、温度:約100℃、圧力:大気圧の
流動化物(フラッシュ減圧残渣物)を得た。なお、反応
中のオートクレーブ内の圧力は、保圧弁によって、反応
温度における飽和水蒸気圧以上の圧力を維持した。前記
流動化物は、これを一昼夜静置させて固形物沈殿の様子
を確認した後、恒温槽付きの共軸二重円筒型粘度計で、
20℃におけるみかけ粘度を測定した。
Approximately 80 g of the above dehydrated sludge is used, and the content volume is 300 ml
The autoclave of No. 2 was filled and hermetically sealed, purged sufficiently with N 2 gas, and pressurized to 30 kg / cm 2 G. Next, stirring was started using an electromagnetic induction type stirrer, and simultaneously heating was started in an electric furnace. After the temperature in the autoclave reaches a predetermined reaction temperature (150 to 250 ° C.), the temperature is maintained for a predetermined time, and then the internal pressure of the autoclave is used to allow the contents of the autoclave to flow out to a flash tank. A fluidized product (flash reduced pressure residue) having a temperature of about 100 ° C. and a pressure of atmospheric pressure was obtained. The pressure in the autoclave during the reaction was maintained at a pressure equal to or higher than the saturated steam pressure at the reaction temperature by a pressure-holding valve. The fluidized product was allowed to stand for a whole day and night, and after confirming the state of solid matter precipitation, a coaxial double cylindrical viscometer with a thermostat,
The apparent viscosity at 20 ° C was measured.

【0019】表2に、流動化物のみかけ粘度(ずり速度
10s-1)を示す。この表からわかるように、汚泥Aは1
75℃以上、汚泥Bは150℃以上、汚泥Cは200℃
以上の反応温度で流動化が可能であった。また、反応温
度を高く、または保持時間を長くとることにより、みか
け粘度が低下し、流動性が向上した。ちなみに、下水処
理場から、別に採取した濃縮汚泥(含水率96.8%、
有機物比78.4%)の同一の粘度測定条件でのみかけ
粘度は80cPであった。したがって、適当な反応条件
を設定すれば、脱水汚泥の粘性を濃縮汚泥並みに下げら
れ、ポンプによるパイプ輸送が充分に可能であると判断
された。一方、流動化した汚泥を一夜静置すると、25
0℃で流動化した汚泥は固形物の沈殿が観察された。ま
た、流動化した汚泥は液状となっており、スポイトでの
吸引が可能であった。したがって、バキュームカー等へ
の積載、輸送が可能であるものと判断できる。
Table 2 shows the apparent viscosity of the fluidized product (shear rate 10 s -1 ). As you can see from this table, Sludge A is 1
75 ℃ or higher, Sludge B is 150 ℃ or higher, Sludge C is 200 ℃
Fluidization was possible at the above reaction temperature. Also, by increasing the reaction temperature or increasing the holding time, the apparent viscosity was reduced and the fluidity was improved. By the way, concentrated sludge collected separately from the sewage treatment plant (water content 96.8%,
The apparent viscosity was 80 cP under the same viscosity measurement conditions (organic matter ratio 78.4%). Therefore, it was determined that by setting appropriate reaction conditions, the viscosity of the dewatered sludge could be reduced to the same level as that of the concentrated sludge, and pipe transport by a pump was sufficiently possible. On the other hand, if the fluidized sludge is left to stand overnight, 25
Precipitation of solids was observed in the sludge fluidized at 0 ° C. Moreover, the fluidized sludge was in a liquid state and could be sucked with a dropper. Therefore, it can be determined that it can be loaded and transported in a vacuum car or the like.

【0020】[0020]

【表2】 注)−*は汚泥が流動化せず、粘度が測定不能であったことを示す。[Table 2] Note)-* indicates that the sludge did not fluidize and the viscosity could not be measured.

【0021】実施例2(流動化物の焼却) 有機性汚泥として、実施例1で使用した汚泥Cを用い、
200℃で60分の反応条件で流動化させた。具体的な
手順は実施例1と同様のため省略する。減圧後流動化汚
泥(フラッシュ減圧残渣物)を採取し、噴霧焼却テスト
を実施した。その結果、流動化汚泥は効率的に焼却が可
能であることを確認した。
Example 2 (Incineration of Fluidized Product) As the organic sludge, the sludge C used in Example 1 was used.
The mixture was fluidized at 200 ° C. for 60 minutes. The specific procedure is the same as in the first embodiment, and a description thereof will be omitted. After depressurization, fluidized sludge (flash depressurization residue) was collected and subjected to a spray incineration test. As a result, it was confirmed that the fluidized sludge can be incinerated efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】有機性汚泥を脱水し、流動化させた後焼却する
方法の一つの例についてのフローシートを示す。
FIG. 1 shows a flow sheet for one example of a method of dehydrating, fluidizing, and then incinerating organic sludge.

【符号の説明】[Explanation of symbols]

31 脱水装置 32 流動化装置 33 フラッシュタンク 36 焼却炉 37 廃熱ボイラ 31 Dehydrator 32 Fluidizer 33 Flash tank 36 Incinerator 37 Waste heat boiler

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/06 ZAB F23G 5/02 ZAB E 7/00 ZAB 104 A (72)発明者 横山 伸也 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 (72)発明者 小木 知子 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 (72)発明者 土手 裕 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 (72)発明者 美濃輪 智朗 茨城県つくば市小野川16番3 工業技術院 資源環境技術総合研究所内 (72)発明者 安中 徳二 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 佐藤 和明 茨城県つくば市大字旭1番地 建設省土木 研究所内 (72)発明者 増田 隆司 東京都千代田区霞が関2丁目1番3号 建 設省都市局下水道部内 (72)発明者 中村 忠 東京都文京区本郷5丁目5番16号 オルガ ノ株式会社内 (72)発明者 鈴木 明 東京都文京区本郷5丁目5番16号 オルガ ノ株式会社内 (72)発明者 伊藤 新治 東京都文京区本郷5丁目5番16号 オルガ ノ株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location C02F 1/06 ZAB F23G 5/02 ZAB E 7/00 ZAB 104 A (72) Inventor Shinya Yokoyama Ibaraki 16-3 Onogawa, Tsukuba City, Japan Institute of Industrial Science and Technology (72) Inventor Tomoko Ogi 16-3 Onogawa, Tsukuba City, Ibaraki Institute of Industrial Science and Technology (72) Inventor Hiroshi Dote Tsukuba, Ibaraki Prefecture 16-3 Onogawa City, Institute of Industrial Science, National Institute for Resources and Environmental Technology (72) Inventor Tomoaki Minowa, Tsukuba City, Ibaraki Prefecture 16-3, Onogawa Institute, Institute of Advanced Industrial Science and Technology (72) Tokuji Annaka Tsukuba, Ibaraki Prefecture Asahi No. 1 Asahi in the Civil Engineering Research Institute, Ministry of Construction (72) Inventor Kazuaki Sato No. 1 Asahi Civil Engineering Research Institute (72) Inventor Takashi Masuda 2-3-1 Kasumigaseki, Chiyoda-ku, Tokyo Construction Bureau, Ministry of Urban Affairs Sewerage Department (72) Inventor Tadashi Nakamura 5-5-16 Hongo, Bunkyo-ku, Tokyo Organo Stock In-company (72) Inventor Akira Suzuki 5-5-16 Hongo, Bunkyo-ku, Tokyo Organo Co., Ltd. (72) Inventor Shinji Ito 5-5-16 Hongo, Bunkyo-ku, Tokyo Organo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固形状態を呈する有機性汚泥を焼却する
に際し、該有機性汚泥を150℃以上の温度及び該温度
の飽和水蒸気圧以上の圧力下に保持して流動化させ、こ
の高温高圧下の流動化物をフラッシュ減圧し、得られた
フラッシュ減圧残渣物を焼却することを特徴とする有機
性汚泥の焼却方法。
1. When incinerating an organic sludge in a solid state, the organic sludge is fluidized while being kept at a temperature of 150 ° C. or higher and a pressure of saturated steam pressure of the temperature or higher, and under high temperature and high pressure. A method for incinerating organic sludge, which comprises decompressing the fluidized product of No. 2 by flash decompression and incinerating the obtained flash decompression residue.
【請求項2】 該有機性汚泥の流動化に必要な熱量の少
なくとも一部として、該フラッシュ減圧残渣物の焼却廃
熱を用いる請求項1の方法。
2. The method according to claim 1, wherein the incineration waste heat of the flash vacuum residue is used as at least a part of the heat required for fluidizing the organic sludge.
JP6227312A 1994-08-29 1994-08-29 Efficient incineration of organic sludge Expired - Lifetime JP2662687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6227312A JP2662687B2 (en) 1994-08-29 1994-08-29 Efficient incineration of organic sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6227312A JP2662687B2 (en) 1994-08-29 1994-08-29 Efficient incineration of organic sludge

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP4232866A Division JPH0741267B2 (en) 1991-08-09 1992-08-07 Efficient transportation and storage method of organic sludge and efficient incineration method

Publications (2)

Publication Number Publication Date
JPH08168800A true JPH08168800A (en) 1996-07-02
JP2662687B2 JP2662687B2 (en) 1997-10-15

Family

ID=16858834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6227312A Expired - Lifetime JP2662687B2 (en) 1994-08-29 1994-08-29 Efficient incineration of organic sludge

Country Status (1)

Country Link
JP (1) JP2662687B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010064948A (en) * 1999-12-20 2001-07-11 강신탁 Method and device of puffing dry in a organic waste matter
WO2006030510A1 (en) * 2004-09-16 2006-03-23 K.E.M. Corporation Method for dewatering water-containing combustible solid
JP2009202121A (en) * 2008-02-28 2009-09-10 Chugoku Electric Power Co Inc:The Method and system for preparing slurry
JP2010284622A (en) * 2009-06-15 2010-12-24 Chugoku Electric Power Co Inc:The Method for setting production condition of organic sludge slurry and method for producing organic sludge slurry
US8557004B2 (en) 2003-07-18 2013-10-15 Yukuo Katayama Method for dewatering water-containing coal
JP2016087552A (en) * 2014-11-06 2016-05-23 稲田 修司 Method for drying sludge, method for reducing the volume of sludge, sludge drying apparatus and sludge volume reduction system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116500A (en) * 1979-03-02 1980-09-08 Kogyo Kaihatsu Kenkyusho Treating method for sludge
JPS62136299A (en) * 1985-12-11 1987-06-19 Agency Of Ind Science & Technol Method for liquefying treatment of sewage sludge
JPS63235395A (en) * 1987-03-24 1988-09-30 Agency Of Ind Science & Technol Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55116500A (en) * 1979-03-02 1980-09-08 Kogyo Kaihatsu Kenkyusho Treating method for sludge
JPS62136299A (en) * 1985-12-11 1987-06-19 Agency Of Ind Science & Technol Method for liquefying treatment of sewage sludge
JPS63235395A (en) * 1987-03-24 1988-09-30 Agency Of Ind Science & Technol Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010064948A (en) * 1999-12-20 2001-07-11 강신탁 Method and device of puffing dry in a organic waste matter
US8557004B2 (en) 2003-07-18 2013-10-15 Yukuo Katayama Method for dewatering water-containing coal
WO2006030510A1 (en) * 2004-09-16 2006-03-23 K.E.M. Corporation Method for dewatering water-containing combustible solid
US8556998B2 (en) 2004-09-16 2013-10-15 Yukuo Katayama Method for dewatering a water-containing combustible solid
JP2009202121A (en) * 2008-02-28 2009-09-10 Chugoku Electric Power Co Inc:The Method and system for preparing slurry
JP2010284622A (en) * 2009-06-15 2010-12-24 Chugoku Electric Power Co Inc:The Method for setting production condition of organic sludge slurry and method for producing organic sludge slurry
JP2016087552A (en) * 2014-11-06 2016-05-23 稲田 修司 Method for drying sludge, method for reducing the volume of sludge, sludge drying apparatus and sludge volume reduction system

Also Published As

Publication number Publication date
JP2662687B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US3304991A (en) Apparatus and process for dehydrating waste solids concentrates
US4872998A (en) Apparatus and process for forming uniform, pelletizable sludge product
US5069801A (en) Indirect heat drying and simultaneous pelletization of sludge
US3272740A (en) Sewage sludge treatment process
CN101343137A (en) Method for innocent treatment of bottom oil sludge, scruff and active sludge in petro-chemical industry
JPH02237700A (en) Sludge drying method
KR102037447B1 (en) manufacturing system of refuse derived fuel using sewage sludge
JP2011163648A (en) Method and facility for drying organic aqueous waste
CN103822213A (en) Integrated technology and system for urban sludge heat dehydration, waste heat drying and fluidized incineration
LT5179B (en) Atlieku apdorojimo budas ir apdorojimo iranga
JP2662687B2 (en) Efficient incineration of organic sludge
JP3344448B2 (en) Sludge treatment method
JP2008100218A (en) Method and apparatus for treating sludge
CN108911466A (en) A kind of the high-efficiency dehydration processing system and method for industrial sludge hydro-thermal reaction
US11000777B1 (en) Apparatus and process for treating water
JPH05337497A (en) Method for efficiently transporting, storing and incinerating organic sludge
JP5127064B2 (en) Polymer wax peeling waste liquid treatment method
CN203823763U (en) Integrated system of thermal dehydration, waste-heat drying and fluidized incineration of urban sludge
KR101352064B1 (en) Wastewater sludge treating method and apparatus for natural resources reuse
USRE26352E (en) Apparatus and process for uhiynrating waste solids concentrates
CN213388312U (en) Synthesize sludge treatment system
CN215250368U (en) Cement kiln is mud system of dealing with in coordination
JP6351039B2 (en) Sludge drying method, sludge volume reduction method, sludge drying apparatus and sludge volume reduction system
KR101250757B1 (en) system for manufacturing solid fual
JP2000239050A (en) Treatment of plant waste fluid

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080620

Year of fee payment: 11

EXPY Cancellation because of completion of term