JPS63235395A - Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter - Google Patents

Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter

Info

Publication number
JPS63235395A
JPS63235395A JP6963587A JP6963587A JPS63235395A JP S63235395 A JPS63235395 A JP S63235395A JP 6963587 A JP6963587 A JP 6963587A JP 6963587 A JP6963587 A JP 6963587A JP S63235395 A JPS63235395 A JP S63235395A
Authority
JP
Japan
Prior art keywords
reaction
sewage sludge
pressure
sludge
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6963587A
Other languages
Japanese (ja)
Inventor
Shinya Yokoyama
横山 伸也
Katsuya Oguchi
小口 勝也
Tomoko Ogi
知子 小木
Tadashi Nakamura
忠 中村
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6963587A priority Critical patent/JPS63235395A/en
Publication of JPS63235395A publication Critical patent/JPS63235395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To economically recover an oleaginous material useful as a liq. fuel from sewage sludge, by heat treating sewage sludge at a particular reaction temp. under a particular pressure without addition of any alkaline material. CONSTITUTION:In conducting treatment of sewage sludge for conversion into an oleaginous material, the sewage sludge is heat treated at a reaction temp. of 150-350 deg.C under a pressure above the saturated aq. vapor pressure at the reaction temp. without previous addition of any alkaline material for accelerating the reaction. The time for which the sludge is maintained at the reaction temp. (reaction time) is pref. at least 60min when the temp. is 150-250 deg.C and 60min or less when the temp. is 250 deg.C or above. An autogenic pressure derived from steam from sewage sludge may be utilized for the application of pressure for reaction. If necessary, the application of pressure may also be conducted by using nitrogen gas, carbon dioxide gas, or the like. The reaction treatment product is allowed to cool to separate into an aq. phase constituting the upper phase and a slurry phase constituting the lower phase. A liq. oleaginous material is separated and recovered from the slurry phase constituting the lower phase.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、下水汚泥の油化処理方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for treating sewage sludge into oil.

〔従来技術〕[Prior art]

下水処理場から排出される汚泥(下水汚泥)は、全国で
年間約5000万イ(含水率98%)という莫大な量で
あり、年々増加の傾向にある。従来、このような下水汚
泥の処理に関しては、その80%前後が脱水後、埋立処
分されているが、しかし、この場合には埋立地確保の問
題があり、都市化の発展により、その埋立地確保は年々
困難になってきている。また、下水汚泥は焼却処理する
ことも可能であり、この方法は、その処廟生成物が被処
理原料である下水汚泥の量に比して著しく減容化された
焼却灰であり、被処理原料の減容化という点からは非常
に有効な方法である。しかしながら、この方法の場合、
下水汚泥中の水分の蒸発に多大の熱エネルギーを要する
ために、ランニングコストが高く、経済的でないという
問題を有している。このような現状に対し、本発明者ら
は、特願昭60−279679号において、下水汚泥の
液化処理方法を提案している。この方法は、下水汚泥中
の有機物をアルカリ性条件下、高められた温度において
、該温度の飽和水蒸気圧以上の加圧下で加熱反応処理し
た後、得られた反応処理生成物を冷却処理するというも
のである、しかしながら、この方法は、汚泥に対して、
アルカリ性条件の形成のため、あらかじめ、外部から炭
酸ナトリウム等のアルカリ金属化合物を添加する方法の
ものであるため、ランニングコストの増大、更には、設
備投資の増大を導き、実用上、大きな問題である。
The amount of sludge (sewage sludge) discharged from sewage treatment plants is a huge amount, approximately 50 million units (water content: 98%), annually nationwide, and is increasing year by year. Conventionally, around 80% of such sewage sludge is dehydrated and then disposed of in a landfill.However, in this case, there is a problem in securing a landfill, and with the development of urbanization, the landfill is becoming more and more Securing it is becoming more difficult every year. In addition, sewage sludge can also be incinerated, and in this method, the product is incinerated ash whose volume is significantly reduced compared to the amount of sewage sludge that is the raw material to be treated. This is a very effective method from the point of view of reducing the volume of raw materials. However, with this method,
Since a large amount of thermal energy is required to evaporate water in the sewage sludge, the running cost is high and it is not economical. In response to this current situation, the present inventors have proposed a method for liquefying sewage sludge in Japanese Patent Application No. 60-279679. In this method, organic matter in sewage sludge is subjected to a heat reaction treatment under alkaline conditions at an elevated temperature under pressure higher than the saturated water vapor pressure at that temperature, and then the resulting reaction treatment product is subjected to a cooling treatment. However, for sludge, this method
In order to create alkaline conditions, an alkali metal compound such as sodium carbonate is added externally in advance, which leads to increased running costs and further increases in equipment investment, which is a major problem in practice. .

〔目   的〕〔the purpose〕

本発明は、前記下水汚泥処理に兄られる問題を解決する
ことを目的とする。
The purpose of the present invention is to solve the problems encountered in sewage sludge treatment.

〔構   成〕〔composition〕

本発明によれば、下水汚泥を油化処理する方法において
、あらかじめ反応を促進させるアルカリ物質を添加する
ことなく、反応温度を150〜350℃とし、該反応温
度の飽和水蒸気圧以上の加圧下で処理することを特徴と
する下水汚泥の最適油化処理方法が提供される。
According to the present invention, in a method for treating sewage sludge into oil, the reaction temperature is set at 150 to 350°C without adding an alkaline substance to promote the reaction in advance, and the reaction temperature is set at a pressure higher than the saturated water vapor pressure at the reaction temperature. An optimal method for treating sewage sludge into oil is provided.

本発明において被処理原料として用いる下水汚泥として
は、通常の下水処理場から排出される各種の汚泥があり
、このようなものには、例えば、最初沈殿池汚泥や、余
剰汚泥及びそれらの混合汚泥等が包含される。下水の処
理方式には、特別な限定はないが、滞留時間(酸化時間
)の長い長時間エアレーション法等より、通常採用され
ている標準活性汚泥法等の方が望ましい。また、下水汚
泥は、消化処理後のものでもよいが、好ましくは消化処
理を受けていない生汚泥の使用が有利である。
The sewage sludge used as the raw material to be treated in the present invention includes various types of sludge discharged from ordinary sewage treatment plants, such as primary sedimentation tank sludge, surplus sludge, and mixed sludge thereof. etc. are included. There are no particular limitations on the sewage treatment method, but the commonly used standard activated sludge method is preferable to the long-term aeration method, which requires a long residence time (oxidation time). The sewage sludge may be one that has been subjected to digestion treatment, but it is advantageous to use raw sludge that has not undergone digestion treatment.

本発明で用いる下水汚泥の有機物比は、通常40〜90
%、好ましくは60%以上である。
The organic matter ratio of the sewage sludge used in the present invention is usually 40 to 90.
%, preferably 60% or more.

本発明の方法を実施するには、単に、高温高圧に保持す
ればよい、下水汚泥の場合、汚泥中にもともと含まれて
いるアルカリ金属等の無機物が、油化反応を促進する触
媒として働くためである。
In order to carry out the method of the present invention, it is sufficient to simply maintain the sewage sludge at high temperature and pressure. In the case of sewage sludge, inorganic substances such as alkali metals originally contained in the sludge act as catalysts to promote the oil conversion reaction. It is.

反応温度は150−350℃で十分であり、反応圧力は
、その反応温度における飽和水蒸気圧以上1例えば、2
50℃の場合、50)cg/aJ、300℃の場合、9
0kg/at以上であればよい。この時1反応温度での
保持時間(反応時間)は、iso〜250℃の場合、6
0分以上、250℃以上の場合、60分以内で良いが、
水相に移行する有機物量を減らすためには、なるべく高
い温度で長時間反応させることが望ましい。但し、反応
温度を高くすることや、長い時間反応を行わせるという
ことは、イニシャルコストの増大をまねくので、反応温
度は300℃以下、保持時間は60分以下が望ましい。
A reaction temperature of 150-350°C is sufficient, and a reaction pressure of 1, for example, 2 or more than the saturated water vapor pressure at that reaction temperature.
At 50℃, 50) cg/aJ, at 300℃, 9
It is sufficient if it is 0 kg/at or more. At this time, the holding time (reaction time) at one reaction temperature is 6
0 minutes or more, and if the temperature is 250℃ or more, it may be within 60 minutes, but
In order to reduce the amount of organic matter transferred to the aqueous phase, it is desirable to carry out the reaction at as high a temperature as possible for a long time. However, since raising the reaction temperature or carrying out the reaction for a long time leads to an increase in initial cost, it is desirable that the reaction temperature is 300° C. or less and the holding time is 60 minutes or less.

本発明において、圧力は、下水汚泥からの水蒸気により
自己発生圧を利用することができるが。
In the present invention, the pressure can be self-generated by water vapor from sewage sludge.

必要に応じ、例えば、窒素ガス、炭酸ガス、アルゴンガ
ス等を用いて加圧することもできる。
If necessary, pressurization can be performed using, for example, nitrogen gas, carbon dioxide gas, argon gas, or the like.

本発明においては、前記のようにして得られた反応処理
生成物を冷却処理するが、そこで得られた冷却処理生成
物は、相分離性の良好なもので、上部の水性相と下部の
スラリー相とに容易に分離される。この生成物の相分離
性の良いこと及び水性相の透明度の高いことは、本発明
の大きな特徴の1つである。この冷却処理生成物の分離
処理には、通常の固液分離手段が適用されるが、一般に
は、スラリー相と一水性相との間の密度差を利用した分
離手段、例えば、前記静置による重力分離の他、遠心分
離等を採用することができる。
In the present invention, the reaction product obtained as described above is subjected to a cooling treatment, and the resulting cooling treatment product has good phase separation, with an upper aqueous phase and a lower slurry. It is easily separated into phases. The good phase separation property of this product and the high transparency of the aqueous phase are one of the major features of the present invention. Normal solid-liquid separation means are applied to the separation treatment of this cooling treatment product, but in general, separation means that utilize the density difference between the slurry phase and the monoaqueous phase, such as the above-mentioned standing method, are used. In addition to gravity separation, centrifugal separation or the like can be employed.

本発明において、生成された油状物質は、下水汚泥中に
初めから含まれていた無機物等と共にスラリー相を形成
、する、このスラリー相から液状の油状物質を分離面取
するには、通常の固液分離手段が用いられるが、油状物
質の回収率を高めるためには、スクリュウプレスや加圧
濾過等の加圧を伴った固液分離処理や、遠心分離等の加
重を伴った固液分離処理に付すのがよい、この場合、必
要に応じ、温度30−100℃程度の加熱を併用するこ
とができる。
In the present invention, the produced oily substance forms a slurry phase together with the inorganic substances originally contained in the sewage sludge. Liquid separation means are used, but in order to increase the recovery rate of oily substances, solid-liquid separation processing that involves pressurization such as screw press or pressure filtration, or solid-liquid separation processing that involves weight such as centrifugation is recommended. In this case, heating at a temperature of about 30 to 100° C. can be used in combination, if necessary.

〔効   果〕〔effect〕

本発明によれば、従来産業廃棄物として取り扱われてい
た下水汚泥を、液体燃料(発熱量的8000kcal/
#)として有用な油状物質に変換させることができる。
According to the present invention, sewage sludge, which was conventionally treated as industrial waste, can be converted into liquid fuel (calorific value of 8000 kcal/
It can be converted into an oily substance useful as #).

しかも、この場合、油状物質の収率は、乾燥有機物基準
でほぼ40〜50%もの高い値に達する。
Moreover, in this case, the yield of oily substances reaches a high value of approximately 40-50% based on dry organic matter.

その上、本発明では、水相に移行する有機物の割合が少
なく、かつ透明性が高いので、下水処理場の水処理工程
に与える影響が少ないと言える。さらに、本発明におい
ては、汚泥中にもともと含まれていた無機物自身が触媒
作用を示すので、特別に触媒を必要とせず、経済的にも
非常に有利である。それ故1本発明の下水汚泥処理方法
は、技術的、経済的に非常に有利な方法であるというこ
とができる。
Furthermore, in the present invention, the proportion of organic matter transferred to the aqueous phase is small and the transparency is high, so it can be said that there is little influence on the water treatment process of a sewage treatment plant. Furthermore, in the present invention, since the inorganic substances originally contained in the sludge themselves exhibit a catalytic action, no special catalyst is required, which is very economically advantageous. Therefore, it can be said that the sewage sludge treatment method of the present invention is a technically and economically advantageous method.

〔実 施 例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例1 下水汚泥として、標準活性汚泥法の処理場から排出され
た混合生汚泥の脱水ケーキを選び、試験に用いた。この
汚泥は高分子凝集剤を添加された後、ベルトプレスにて
脱水されたものである。その代表的な性状は表−1の通
りである。
Example 1 As sewage sludge, a dehydrated cake of mixed raw sludge discharged from a treatment plant using the standard activated sludge method was selected and used in the test. This sludge was dehydrated using a belt press after adding a polymer flocculant. Its typical properties are shown in Table-1.

表−1 上記脱水汚泥100gにアルカリ触媒として所定量のN
a2Go3を添加した後、内容量300m1のオートク
レーブに充填し、300℃まで加熱した。この際。
Table-1 A predetermined amount of N as an alkaline catalyst is added to 100 g of the above dehydrated sludge.
After adding a2Go3, it was filled into an autoclave with an internal capacity of 300 ml and heated to 300°C. On this occasion.

圧力はあらかじめ窒素ガスで120kg/(iまで加圧
しておき、温度上昇に伴う圧力増加を圧力5整弁を用い
て、120kg/dに制御した。反応は温度が300℃
に到達後ただちに100℃以下まで冷却し、終了させた
。加熱前に添加したアルカリ触媒の量はOg(無添加、
0重量部)、 0.27 g (0,01重量部)、0
.54 g (0,02重量部)、0.81 g (0
,03重量部)、1.08 g (0,04重量部)、
1.35 g (0,05重量部)、2.7g(0,1
重j+f、部)、4.05 g (0,15重量部)及
び5.4g(0,2重量部)と変えて、計9通りの実験
を行った。
The pressure was previously increased to 120 kg/d with nitrogen gas, and the pressure increase due to temperature rise was controlled to 120 kg/d using a pressure 5 regulating valve.The reaction was carried out at a temperature of 300°C.
Immediately after reaching 100°C, the temperature was cooled to 100°C or lower to complete the process. The amount of alkaline catalyst added before heating was Og (no additive,
0 parts by weight), 0.27 g (0.01 parts by weight), 0
.. 54 g (0.02 parts by weight), 0.81 g (0
,03 parts by weight), 1.08 g (0.04 parts by weight),
1.35 g (0.05 parts by weight), 2.7 g (0.1
A total of 9 experiments were conducted by changing the weight (weight j+f, parts), 4.05 g (0.15 parts by weight), and 5.4 g (0.2 parts by weight).

反応終了後、各々の生成物を塩化メチレンを用いた溶媒
抽出法で分離し、油状物質、残渣固形物及び水性相の三
相とした。実験結果を第1図に示す。
After the reaction was completed, each product was separated by solvent extraction using methylene chloride to form three phases: an oily substance, a residual solid, and an aqueous phase. The experimental results are shown in Figure 1.

油状物質の生成は触媒を加えなくとも円滑に進行したが
、添加率が0.05重量部を越えると、油化反応は反対
に阻害された。更に、水性相に移行した有機物の量は触
媒の添加率が増えるにつれて。
The production of oil proceeded smoothly even without the addition of a catalyst, but when the addition rate exceeded 0.05 parts by weight, the oil-forming reaction was inhibited. Furthermore, the amount of organic matter transferred to the aqueous phase increased as the catalyst addition rate increased.

増大しており、前述の油状物質の収率からみても。Even in terms of the yield of the oily substance mentioned above.

水性相の性状から言っても触媒を使用しない時が最適で
ある。
Considering the properties of the aqueous phase, it is best when no catalyst is used.

実施例2 下水汚泥として、実施例1とは異なる複数の処理場から
混合生汚泥の脱水ケーキを採取し、試験に用いた。これ
らの汚泥はすべて高分子凝集剤を添加された後、ベルト
プレスにて脱水されたものである。これらの汚泥に対し
、実施例1と同様の油化処理を行ない表−2に示す結果
を得た。但し。
Example 2 As sewage sludge, dehydrated cakes of mixed raw sludge were collected from a plurality of treatment plants different from those in Example 1 and used in the test. All of these sludges were dehydrated using a belt press after adding a polymer flocculant. These sludges were subjected to the same oil conversion treatment as in Example 1, and the results shown in Table 2 were obtained. however.

触媒の添加率は乾燥固形物に対し、0および0.05重
量部とした。
The addition rate of the catalyst was 0 and 0.05 parts by weight based on the dry solid matter.

表−2油化結果(オイル収率) 上表に示したごとく、すべての汚泥において、アルカリ
触媒陶加えなくとも、油化反応は円滑に進行した。
Table 2 Results of oil conversion (oil yield) As shown in the table above, the oil conversion reaction proceeded smoothly in all sludges even without the addition of an alkali catalyst.

実施例3 実施例2の汚泥口を触媒を使用しないで、オートクレー
ブに充填し、所定の温度まで加熱した。この時、圧力は
、反応温度における飽和水蒸気圧+30kg/cdに制
御した0反応温度は200,225,250゜275、
300及び325℃の6通りとして、その他は実施例1
と同様とした。実験結果を第2図に示す。
Example 3 The sludge port of Example 2 was filled into an autoclave without using a catalyst and heated to a predetermined temperature. At this time, the pressure was controlled to the saturated water vapor pressure at the reaction temperature + 30 kg/cd, and the reaction temperature was 200, 225, 250° 275,
Six different temperatures at 300 and 325°C, and the others were as in Example 1.
The same is true. The experimental results are shown in Figure 2.

その結果、油状物質の生成は反応温度を高く操作すると
共に上昇したが、300℃以上で飽和傾向を示した。こ
の時、水性相に移行した有機物量は300℃以上におい
ても徐々に減少したが、顕著な差は見られなかった。従
って、反応温度での保持時間をもたない油化処理では、
300℃が反応温度として最適である。
As a result, the production of oily substances increased as the reaction temperature was raised, but showed a tendency to saturation at temperatures above 300°C. At this time, the amount of organic matter transferred to the aqueous phase gradually decreased even at temperatures above 300°C, but no significant difference was observed. Therefore, in oil processing that does not have a holding time at the reaction temperature,
300°C is the optimum reaction temperature.

実施例4 実施例3と同じ脱水汚泥を触媒を使用しないでオートク
レーブに充填し、200.225.250,275及び
300℃まで加熱、その温度で60分間保持した。
Example 4 The same dehydrated sludge as in Example 3 was charged into an autoclave without using a catalyst, heated to 200, 225, 250, 275 and 300°C, and held at that temperature for 60 minutes.

この時、圧力は反応温度における飽和水蒸気圧+30k
g/dに制御した。その後の操作は実施例1と同様とし
た。実験結果を第3図に示す。
At this time, the pressure is the saturated water vapor pressure at the reaction temperature + 30k
g/d. The subsequent operations were the same as in Example 1. The experimental results are shown in Figure 3.

その結果、油状物質の生成は保持時間を持たない時と比
べ著しく改善され、250℃以上において、オイル収率
は40%にも達し、飽和傾向を示した。
As a result, the production of oily substances was significantly improved compared to the case without holding time, and at temperatures above 250°C, the oil yield reached as much as 40%, showing a tendency to saturation.

実施例5 実施例3と同じ脱水汚泥を触媒を使用しないでオートク
レーブに充填し、 150.175.200.225℃
まで加熱し、その温度で120分間保持した。この時、
圧力は反応温度における飽和水蒸気圧+30kg1dに
制御した。その後の操作は実施例1と同様とした。実験
結果を第4図に示す。
Example 5 The same dehydrated sludge as in Example 3 was charged into an autoclave without using a catalyst, and the temperature was 150.175.200.225°C.
and held at that temperature for 120 minutes. At this time,
The pressure was controlled to saturated water vapor pressure at the reaction temperature +30 kg1d. The subsequent operations were the same as in Example 1. The experimental results are shown in Figure 4.

その結果、150℃の場合、はとんど油化反応は進行し
なかったが、175℃以上では、オイル収率は30%以
上を示した。この事より、低い反応温度においてもある
程度の保持時間をもつことにより、油化反応が円滑に進
行することが明らかとなった。
As a result, at 150°C, the oil-forming reaction hardly proceeded, but at 175°C or higher, the oil yield was 30% or more. From this, it has become clear that the oil-forming reaction proceeds smoothly even at low reaction temperatures by allowing a certain amount of holding time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は、それぞれ、実施例1、実施例3、実
施例4及び実施例5の実験結果を示すグラフである。 第1図 触媒添加率 反応温度(℃) 反応温度(℃)
1 to 4 are graphs showing the experimental results of Example 1, Example 3, Example 4, and Example 5, respectively. Figure 1 Catalyst addition rate Reaction temperature (℃) Reaction temperature (℃)

Claims (2)

【特許請求の範囲】[Claims] (1)下水汚泥を油化処理する方法において、あらかじ
め反応を促進させるアルカリ物質を添加することなく、
反応温度を150〜350℃とし、該反応温度の飽和水
蒸気圧以上の加圧下で処理することを特徴とする下水汚
泥の最適油化処理方法。
(1) In the method of treating sewage sludge to oil, without adding an alkaline substance to accelerate the reaction in advance,
An optimal method for treating sewage sludge into oil, characterized in that the reaction temperature is 150 to 350°C, and the treatment is carried out under pressure higher than the saturated water vapor pressure at the reaction temperature.
(2)下水汚泥を、油化処理する方法において、反応温
度を150〜250℃とした時、該反応温度における保
持時間を60分以上とする特許請求の範囲第1項記載の
下水汚泥の最適油化処理方法。
(2) In the method of treating sewage sludge to oil, when the reaction temperature is 150 to 250°C, the optimum sewage sludge according to claim 1, wherein the holding time at the reaction temperature is 60 minutes or more. Oil treatment method.
JP6963587A 1987-03-24 1987-03-24 Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter Pending JPS63235395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6963587A JPS63235395A (en) 1987-03-24 1987-03-24 Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6963587A JPS63235395A (en) 1987-03-24 1987-03-24 Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter

Publications (1)

Publication Number Publication Date
JPS63235395A true JPS63235395A (en) 1988-09-30

Family

ID=13408517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6963587A Pending JPS63235395A (en) 1987-03-24 1987-03-24 Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter

Country Status (1)

Country Link
JP (1) JPS63235395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168800A (en) * 1994-08-29 1996-07-02 Agency Of Ind Science & Technol Method of efficiently incinerating organic sludge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238399A (en) * 1985-04-15 1986-10-23 Japan Organo Co Ltd Apparatus for converting sludge to oil
JPS61255991A (en) * 1985-05-08 1986-11-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Roduction of hydrocarbon-containing liquid from biomass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238399A (en) * 1985-04-15 1986-10-23 Japan Organo Co Ltd Apparatus for converting sludge to oil
JPS61255991A (en) * 1985-05-08 1986-11-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Roduction of hydrocarbon-containing liquid from biomass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168800A (en) * 1994-08-29 1996-07-02 Agency Of Ind Science & Technol Method of efficiently incinerating organic sludge

Similar Documents

Publication Publication Date Title
Yokoyama et al. Liquid fuel production from sewage sludge by catalytic conversion using sodium carbonate
US4441437A (en) Process for thermic treatment of sludges, particularly treatment of clarification sludges
EP1141177B1 (en) Gasification of biosludge
JPWO2004037731A1 (en) Methane gas manufacturing method
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
JPS62136299A (en) Method for liquefying treatment of sewage sludge
US4056466A (en) Method of dewatering material containing solid matter and bound and unbound water
JPS63235395A (en) Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter
JP2005169329A (en) Treatment method for organic waste
JP4231739B2 (en) Sludge recycling method
JPH0819428B2 (en) Method for producing fuel by simultaneous treatment of sludge and waste oil
EP3065786A1 (en) Thermal treatment system and method for efficient processing of organic material
JP3376551B2 (en) Method for producing useful charcoal from food lees
JPH0347600A (en) Oil recovering from organic sludge
JPS62109891A (en) Treatment of alcohol fermentation residue
EP0719177B1 (en) Porous granular material obtained from wool scouring liquor, method for the manufacture thereof and applications
SU1090972A1 (en) Process for recovering waste containing oil and scale
JPS59397A (en) Treatment of effluent from heat-treated sludge
JPS6054798A (en) Dehydrating method of sludge
US1949181A (en) Sewage disposal
JP2007253100A (en) Sludge dehydration method
JP3156894B2 (en) Method and apparatus for treating organic sludge
JPS5721999A (en) Thermal treating method for organic sludge
JPH072240B2 (en) Oil treatment method for sewage sludge
JPS6251680B2 (en)