JPS59105079A - Treatment of organic material by utilizing hot alkaline water - Google Patents

Treatment of organic material by utilizing hot alkaline water

Info

Publication number
JPS59105079A
JPS59105079A JP57215045A JP21504582A JPS59105079A JP S59105079 A JPS59105079 A JP S59105079A JP 57215045 A JP57215045 A JP 57215045A JP 21504582 A JP21504582 A JP 21504582A JP S59105079 A JPS59105079 A JP S59105079A
Authority
JP
Japan
Prior art keywords
organic material
hydrogen
gas
organic
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57215045A
Other languages
Japanese (ja)
Inventor
Nakamichi Yamazaki
仲道 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURUSHIMA GROUP KYODO GIJUTSU KENKYUSHO KK
Original Assignee
KURUSHIMA GROUP KYODO GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KURUSHIMA GROUP KYODO GIJUTSU KENKYUSHO KK filed Critical KURUSHIMA GROUP KYODO GIJUTSU KENKYUSHO KK
Priority to JP57215045A priority Critical patent/JPS59105079A/en
Publication of JPS59105079A publication Critical patent/JPS59105079A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Abstract

PURPOSE:To recover gas or liquid useful as raw material for fuel or organic synthesis from low-value or waste materials, by placing a mixture of an organic material and a water solution of an alkali at high temperature and pressure so that it may undergo hydrolysis and decarboxylation. CONSTITUTION:A mixture of an organic material such as coal, organic waste such as pulp waste liquor, soil water or sewage sludge, wood, paddy straw and bamboo, and a water solution of an alkali is placed under high temperature and high pressure to cause hydrolysis and decarboxylation. The method accelerates the hydrolysis fo the organic material, addition of hydrogen and hydroxyl group, separation of carbon and oxygen from the organic material in the form of carbon dioxide and increase of the hydrogen content. Liquefaction proceeds without the use of costly hydrogen and composition of the recovered product can be varied by controlling conditions of heating. Thus the condition of reaction may be established according to the aimed product, i.e. 250-350 deg.C for increased yield of oily substance and 400 deg.C for increased yield of natural gas-like gas.

Description

【発明の詳細な説明】 この発明は各種有機材料とアルカリ水溶液の混合体を高
温高圧下におくことによって、これらを気体あるいは液
体に変換せしめる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of converting a mixture of various organic materials and an aqueous alkaline solution into a gas or liquid by subjecting the mixture to high temperature and pressure.

各種有機拐旧を粉砕してアルカリ水溶液で泥状とし高温
高圧下で処理することにより、有機物の加水分解反応を
促進し、含有炭素と酸素を結合せしめて有機拐料から除
去することにより、有機材81−1の分解及び液化を計
り、低価値又は廃棄物とみなされる拐料から燃料又は有
機合成用累月として有用なガス体又は油状液体の物質を
回収するのが目的である。
By pulverizing various organic particles and turning them into a slurry with an alkaline aqueous solution and treating them under high temperature and high pressure, the hydrolysis reaction of organic substances is promoted, and the carbon and oxygen contained are combined and removed from the organic particles. The purpose is to decompose and liquefy the equipment 81-1 to recover gaseous or oily liquid materials useful as fuel or organic synthesis materials from the waste materials considered to be of low value or waste.

従来石炭類のガス化法としては、赤熱した石炭層に水蒸
気を通ずることにより石炭と水を水素及び−酸化炭素の
混合ガスに変換するいわゆる水性ガスの製造法がある。
As a conventional method for gasifying coal, there is a so-called water gas production method in which coal and water are converted into a mixed gas of hydrogen and carbon oxide by passing steam through a red-hot coal seam.

また石炭の液化に関しては油類と石炭粉末の混合スラリ
ーを高温高圧下におくか、あるいは更に水素ガスを導入
添加し液体成分を増す方法が検討されている。
Regarding the liquefaction of coal, methods of increasing the liquid component by subjecting a mixed slurry of oil and coal powder to high temperature and high pressure, or by introducing and adding hydrogen gas are being considered.

水性ガス製造方式は、発熱量の多い炭種には適用できる
か、亜炭等の低発熱素炭や廃棄物については実施かむつ
かしく、石炭液化に関する従来の方法は石炭中の油類可
溶成分を高温高圧処理により増加するか、あるいは油類
可溶成分である飽和炭化水素にかえる目的で水素を添加
する。この方法の問題点はスラリー剤として大量の油類
が必要であり、丑だ水素添加を行う場合は、燃料価値の
高い水素を用いて燃料油を製造する意義が少なく寸た反
応装置等も複雑になりコストが高く々る。
Is the water gas production method applicable to coal types with a high calorific value? It is difficult to implement it with low calorific coal such as lignite or waste, and conventional methods for coal liquefaction are Hydrogen is added for the purpose of increasing through high temperature and high pressure treatment, or converting it into saturated hydrocarbons, which are oil-soluble components. The problem with this method is that it requires a large amount of oil as a slurry agent, and when hydrogenation is carried out, there is no point in producing fuel oil using hydrogen, which has a high fuel value. This results in high costs.

本発明は、有機材料とアルカリ水溶液の混合スラリーを
高温高圧下におくことにより有機材料の加水分解反応を
促進し、水素及び水酸基を附加し元 、ついで成分無索である炭素、酸素1、水素のうち炭素
及び酸素を二酸化炭素の形で有機材料から分離すること
により成分比は相対的に水素含有率が増加する。石油と
石炭の基本的な違いは炭素と水素の組成比であり、無煙
炭等では炭素と水素の組成モル比はほぼ1に近く、石油
では水素がその2倍になる。石炭の水素添加による液化
は、此の水素組成比を高める方法である。
The present invention promotes the hydrolysis reaction of organic materials by placing a mixed slurry of organic materials and alkaline aqueous solution under high temperature and high pressure, adds hydrogen and hydroxyl groups, and then adds carbon, oxygen 1, hydrogen By separating carbon and oxygen from the organic material in the form of carbon dioxide, the hydrogen content relatively increases in the component ratio. The basic difference between petroleum and coal is the composition ratio of carbon to hydrogen; in anthracite, etc., the molar ratio of carbon to hydrogen is close to 1, while in petroleum, the hydrogen content is twice that. Liquefaction of coal by hydrogenation is a method of increasing the hydrogen composition ratio.

しかし炭素含量に比例して水素含量を増加させる/ζめ
には組成中の炭、素と酸素を二酸化炭素として成分中か
ら除去してもよく、その結果として石油状物質である飽
第1」脂肪属系炭化水素が生成する本発明を実施例によ
り説明する。
However, to increase the hydrogen content in proportion to the carbon content, the carbon, element, and oxygen in the composition may be removed from the composition as carbon dioxide, resulting in a petroleum-like substance. The present invention in which aliphatic hydrocarbons are produced will be explained by way of examples.

亜炭を原料とした場合のアルカリ熱水下のガス化・液化
についての実施例を図に従って説明する第1図は120
”−以下に粉砕した亜炭粉末05ノを内容積10°0の
オートクレーブに入れ反応液を夫々5°0加えかきまぜ
ながら10分間加熱した場合の100 ′C以上の高沸
点油状物質の収率を示したグラフである。
Figure 1 is 120
``-The following shows the yield of a high boiling point oily substance of 100'C or more when 05 pieces of crushed lignite powder are placed in an autoclave with an internal volume of 10 degrees, and 5 degrees of reaction liquid is added to each and heated for 10 minutes while stirring. This is a graph.

縦軸に油状物質の収率1をとり横軸に加熱温度をとり反
応溶液の種類毎に加熱温度を変えて油状物質の収量を測
定した。曲線3は1モル水酸化ナトリウz、 5°0を
加えた場合の反応温度別の収率で、約400 ’Cに加
熱した場合、原料亜炭の6量係以上の油状物質が得られ
たことを示している。200〜300℃の低温度では反
応か不充分で油化は充分進行せず、又450 ”C以上
ではカス化反応廿ま が起り油状物質の収干40係程度に減少する。
The yield of an oily substance was measured by taking the yield of 1 on the vertical axis and the heating temperature on the horizontal axis, and changing the heating temperature for each type of reaction solution. Curve 3 shows the yield at different reaction temperatures when 1 mol of sodium hydroxide, 5°0, is added, and when heated to about 400'C, an oily substance with a weight ratio of more than 6% of the raw material lignite was obtained. It shows. At low temperatures of 200 to 300°C, the reaction is insufficient and oil formation does not proceed sufficiently, and at temperatures above 450°C, a cassification reaction occurs and the yield of oily substances decreases to about 40%.

曲線4は上述の水酸化ナトリウム5CC添加した条件に
加え水素ガス封入し、圧力を5 o KqAaとした後
加;鳩を開始した。此の場合水素添加による油状物質の
増加は認められず、逆に加熱各温度共収書は減少してい
る。
In curve 4, in addition to the above-mentioned conditions in which 5 cc of sodium hydroxide was added, hydrogen gas was sealed and the pressure was set to 5° KqAa, and then the pigeons were added. In this case, no increase in oily substances due to hydrogenation was observed, and on the contrary, the co-receivables at each heating temperature decreased.

曲線5は原料亜炭粉末0.5ノに水5 ccを加え、消
石灰0.185 j’を加えた後各温変に加熱した結果
である。油状物質の収量は温度の上昇に従って増加し、
400 ”Cで最大値を示すと共に、亜炭中の炭素と酸
素が二酸化炭素として分離された後、消石灰と反応して
カルザイトとして固定されるため液化率は約80係まで
上昇する。これは脱炭酸による液化の進行も示すもので
ある。
Curve 5 is the result of adding 5 cc of water to 0.5 mm of raw lignite powder, adding 0.185 J' of slaked lime, and then heating to various temperatures. The yield of oil increases with increasing temperature;
The maximum value is reached at 400"C, and the liquefaction rate rises to about 80% because the carbon and oxygen in the lignite are separated as carbon dioxide, react with slaked lime, and are fixed as calzite. This is due to decarboxylation. It also shows the progress of liquefaction due to

曲線6は上記曲線5の条件の配合に加え水素ガスを封入
し、圧力を5’ Q K9/、1 =jで上げた後加熱
を開始した。此の場合も油状物質の呑収率は各温度共曲
線5に示す結果より低く本発明の有利性を実て 証す紗る。
In curve 6, in addition to the combination of the conditions of curve 5, hydrogen gas was sealed, and heating was started after increasing the pressure by 5' Q K9/, 1 = j. In this case as well, the yield of oily substances was lower than the results shown in temperature co-curve 5, proving the advantage of the present invention.

第2図は亜炭粉末05ノを内容積10”ccのオートク
レーブに採り第1図と同一条件で脱炭酸液化実、験を行
っ/こ場合の固体残渣を1量、分析した結果から逆算し
た有機物質のガスと液体入の転換率を示し/ヒ。縦+t
Qf+ 7には残渣から逆算した転換率をとり、横軸8
に反応温度をとった。昇温速度500ノ分、高温保持時
間の10分間は第1図と同じである。
Figure 2 shows the decarboxylation and liquefaction of lignite powder taken into an autoclave with an internal volume of 10"cc under the same conditions as in Figure 1. Indicates the conversion rate of gas and liquid in the substance / H. Vertical + t
The conversion rate calculated backward from the residue is taken as Qf+7, and the horizontal axis is 8.
The reaction temperature was set at . The temperature increase rate of 500 minutes and the high temperature holding time of 10 minutes are the same as in FIG.

曲線9は1モル水酸化すトリウム溶液5ccを加え、初
圧50に7・寸で水素を封入した後に所定温度捷で加熱
反応せしめた結果である。曲線10は1モル水酸叱ナト
l)ラム溶液5ccを加えた加熱結果を示す。曲線11
は消石灰0.185’及び水500を加えた場合て初圧
50に〜−1で水素を封入した結果で、曲線12は消石
灰と水を加えた条件下の反応結果である。曲線13は水
5°0を加えたのみでアルカリ成分は添加せず、水素ガ
スを初圧50に9%前寸で封入した結果である。曲線1
4は水500を添加した場合の反応結果であり、分解率
は790%以上を示し、原料亜炭中の無機成分3〜5係
以外の有機物は殆んどガス又は液体に転換された。
Curve 9 is the result of adding 5 cc of a 1 molar thorium hydroxide solution, sealing in hydrogen at an initial pressure of 50 and 7 mm, and then causing a heating reaction at a predetermined temperature. Curve 10 shows the heating results after adding 5 cc of 1 molar sodium hydroxide solution. curve 11
Curve 12 is the reaction result under the condition where slaked lime and water were added and hydrogen was sealed at an initial pressure of 50 to -1 when 0.185' of slaked lime and 500 ml of water were added. Curve 13 is the result of adding only 5°0 of water, no alkaline component, and filling hydrogen gas at an initial pressure of 50 and 9%. curve 1
4 shows the reaction results when 500% of water was added, and the decomposition rate was 790% or more, and most of the organic substances other than inorganic components 3 to 5 in the lignite raw material were converted to gas or liquid.

第3図には第1図、第2図の反応例中代表的な水と水酸
化すl−IJウム及び消石灰を添加し加熱分解した場合
の発生ガス総量を温度別に示した。縦軸15に発生ガス
総量を、横軸16に反応温度をとり反応液性と反応温度
別のガス発生量を比較′した。曲線17−2亜炭粉末0
5ノに水5°0を添加した場合で、曲線18は1モル水
酸化ナトリウム液5°0を添加し、曲線19は消石灰0
.185ノと水5°0を加えた場合である。ガス成分は
ガスクロマトグラフ分析を行ったところ、水素、メタン
、エタン、プロパン、ブタンを主成分とする混合ガスで
あった。ガス発生量は加熱温度の上昇とともに増加する
が、成分比は温度の上昇に従って炭素数の少ない化合物
の含有量が多くなり、4. OO℃以上では水素ガスが
発生しはじめる。これは反応液中の水分か石炭中の炭素
により直接還元されて水性ガス発生機構と類似の反応が
始まったことを意味している。
FIG. 3 shows the total amount of gas generated when representative water, sulfur hydroxide, and slaked lime were added and thermally decomposed in the reaction examples shown in FIGS. 1 and 2, according to temperature. The total amount of gas generated is plotted on the vertical axis 15 and the reaction temperature is plotted on the horizontal axis 16 to compare the amount of gas generated depending on the reaction liquid properties and reaction temperatures. Curve 17-2 Lignite powder 0
Curve 18 is the case when 5°0 of water is added to 5°C, curve 18 is when 5°0 of 1 molar sodium hydroxide solution is added, and curve 19 is when 0% slaked lime is added.
.. This is the case when 185° and water 5°0 are added. Gas chromatography analysis revealed that the gas was a mixed gas whose main components were hydrogen, methane, ethane, propane, and butane. The amount of gas generated increases as the heating temperature rises, but as for the component ratio, the content of compounds with fewer carbon atoms increases as the temperature rises; 4. At temperatures above OO°C, hydrogen gas begins to be generated. This means that the water in the reaction solution was directly reduced by the carbon in the coal, and a reaction similar to the water gas generation mechanism started.

次表にd、亜炭以外の各種有機化合物の分解実験例を示
す。アニソール、アセトン、酢酸、イソプロピルアルコ
ール等を夫々0.008モル内容積4occのλ−トク
レープに採り水酸化すl−1)ラム1規定液20°0、
又は水2000を加えて400℃及び450℃で加熱分
解した結果である。亜炭分解時と同じようにメタン、エ
タン、プロパン、水素ガスが生成している。亜炭以外の
各種有機物質も同じように分解反応が起ることを示して
いる。
The following table shows examples of decomposition experiments of various organic compounds other than lignite. Anisole, acetone, acetic acid, isopropyl alcohol, etc. were each placed in a λ-tocrepe with a molar volume of 4 occ and hydroxylated.
Or, it is the result of thermal decomposition at 400°C and 450°C with addition of 2000% water. Methane, ethane, propane, and hydrogen gas are produced in the same way as when lignite is decomposed. This shows that decomposition reactions occur in the same way with various organic substances other than lignite.

表 以上の実験例から工業化した場合の効果を類推すると、
0.57の亜炭をアルカリ水溶液5ccを加え400℃
に加熱した場合75C0の混合カス(メタン、エタン、
プロパン)と04ノの2山(沸力、 100′C以上)
を回収できることから、亜炭1 を処理すると150 
nMlのガスと800にりの油状物質が得らノ土、残渣
約3 K9程度発生する計算となる。実際にはこれに1
00℃以下の沸点を有する軽質油が加えられるのて更に
効率は良くなる。
If we infer the effects of industrialization from the experimental examples shown in the table, we can see that
Add 5 cc of alkaline aqueous solution to 0.57 lignite and heat to 400°C.
When heated to 75C0 mixed scum (methane, ethane,
propane) and 04 (boiling power, over 100'C)
can be recovered, so if 1 lignite is processed, 150
It is calculated that 800 nMl of gas and 800 nm of oily substance will be obtained, and a residue of about 3 K9 will be generated. Actually this is 1
Efficiency is further improved by adding light oil with a boiling point below 00°C.

本発明は有機物質をア/l、カリ水溶液てスラl)−状
とし、密閉容器中で850℃前後の高温度に保つことで
有機物がガス化あるいは液化することを見出したことに
よるもので従来の水素添加法に比べてスラリー剤が油に
替る水溶液であり、高価な水素ガスは使用せずに液化が
進行し、加熱条件を制御ずれは回収物の成分組成を変化
させることができるので250〜350″C加熱による
油状物質の増収と400℃:加熱による天然カス類似ガ
スの増収に区分した目的に応した条件設定が可能であり
、反応温度も従来の石炭液化法に比して低いことはエネ
ルギー消費I11.が少なくてよいことや創!媒を使用
1〜ない点も有利であって、各種の有機物質を簡単に有
用なガスや油状物質に変えることには著しい効果がある
The present invention is based on the discovery that organic substances can be gasified or liquefied by forming them into an aqueous potassium solution (slurry) and keeping them at a high temperature of around 850°C in a closed container. Compared to the hydrogenation method of It is possible to set conditions according to the purpose of increasing the yield of oily substances by heating up to 350"C and increasing the yield of natural scum-like gas by heating to 400"C, and the reaction temperature is also lower than that of conventional coal liquefaction methods. It is advantageous in that it consumes less energy and does not use a creating medium, and is extremely effective in easily converting various organic substances into useful gases and oily substances.

示すグラフ図である。第2図は反応残渣から計算した亜
炭のガスと液体への転換率を示すクラブ図である。第3
図は亜炭処理時の加熱温度変イユにともなう生成ガス分
の総量の変化を示すクラブ図である。
FIG. FIG. 2 is a club diagram showing the conversion rate of lignite into gas and liquid calculated from the reaction residue. Third
The figure is a club diagram showing changes in the total amount of generated gas as the heating temperature changes during lignite treatment.

主要部分の名称と符号は、油状物質の収率1、曲線4.
5.6.9.10.11.12.13.17.18.1
9等である。
The names and codes of the main parts are: yield of oily substance 1, curve 4.
5.6.9.10.11.12.13.17.18.1
It is 9th grade.

牙1 図 矛2図Fang 1 diagram Spear 2

Claims (1)

【特許請求の範囲】[Claims] 有機材料例えは石炭、バルブ廃液・汚水・下水汚泥等の
有機質廃棄物、木材、稲わら、竹等と、アルカリ水溶液
の混合物を高温、高圧下におき、加水分解脱炭酸反応を
生ぜしめることによって、これらの有機材料を可燃性の
気体或は液体に変換することを特徴としたアルカリ熱水
を利用した有機物質の処理法。
Examples of organic materials include coal, organic waste such as valve waste fluid, sewage, and sewage sludge, wood, rice straw, bamboo, etc., and a mixture of an alkaline aqueous solution that is exposed to high temperature and pressure to cause a hydrolytic decarboxylation reaction. , a method for treating organic materials using alkaline hot water, which is characterized by converting these organic materials into flammable gases or liquids.
JP57215045A 1982-12-06 1982-12-06 Treatment of organic material by utilizing hot alkaline water Pending JPS59105079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57215045A JPS59105079A (en) 1982-12-06 1982-12-06 Treatment of organic material by utilizing hot alkaline water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57215045A JPS59105079A (en) 1982-12-06 1982-12-06 Treatment of organic material by utilizing hot alkaline water

Publications (1)

Publication Number Publication Date
JPS59105079A true JPS59105079A (en) 1984-06-18

Family

ID=16665837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57215045A Pending JPS59105079A (en) 1982-12-06 1982-12-06 Treatment of organic material by utilizing hot alkaline water

Country Status (1)

Country Link
JP (1) JPS59105079A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255991A (en) * 1985-05-08 1986-11-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Roduction of hydrocarbon-containing liquid from biomass
JPS62136299A (en) * 1985-12-11 1987-06-19 Agency Of Ind Science & Technol Method for liquefying treatment of sewage sludge
JPH02102798A (en) * 1988-10-13 1990-04-16 Agency Of Ind Science & Technol Treatment of sludge of industrial waste water
JPH0551586A (en) * 1991-08-23 1993-03-02 Agency Of Ind Science & Technol Method for converting garbage into oily matter
JPH06287352A (en) * 1993-04-01 1994-10-11 Nakamichi Yamazaki Method for liquefying vulcanized rubber with water in supercritical zone
US5681449A (en) * 1995-01-18 1997-10-28 Director-General Of Agency Of Industrial Science And Technology Process for producing oil from organic material-containing sludge
US5733984A (en) * 1995-11-24 1998-03-31 Masaru Nakahara Process for the preparation of a deuterated compound
CN102127476A (en) * 2010-04-30 2011-07-20 北京油化纵横建设工程有限公司 Technology for treating swill-cooked dirty oil with novel catalyst
CN106520170A (en) * 2016-10-31 2017-03-22 新奥生态环境治理有限公司 Method for converting garbage into carbonization function materials

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126203A (en) * 1978-03-24 1979-10-01 Kunitoshi Shimizu Coal liquefaction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54126203A (en) * 1978-03-24 1979-10-01 Kunitoshi Shimizu Coal liquefaction

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61255991A (en) * 1985-05-08 1986-11-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Roduction of hydrocarbon-containing liquid from biomass
JPS62136299A (en) * 1985-12-11 1987-06-19 Agency Of Ind Science & Technol Method for liquefying treatment of sewage sludge
JPH055560B2 (en) * 1985-12-11 1993-01-22 Kogyo Gijutsu Incho
JPH02102798A (en) * 1988-10-13 1990-04-16 Agency Of Ind Science & Technol Treatment of sludge of industrial waste water
JPH0551586A (en) * 1991-08-23 1993-03-02 Agency Of Ind Science & Technol Method for converting garbage into oily matter
JPH06287352A (en) * 1993-04-01 1994-10-11 Nakamichi Yamazaki Method for liquefying vulcanized rubber with water in supercritical zone
US5681449A (en) * 1995-01-18 1997-10-28 Director-General Of Agency Of Industrial Science And Technology Process for producing oil from organic material-containing sludge
US5733984A (en) * 1995-11-24 1998-03-31 Masaru Nakahara Process for the preparation of a deuterated compound
CN102127476A (en) * 2010-04-30 2011-07-20 北京油化纵横建设工程有限公司 Technology for treating swill-cooked dirty oil with novel catalyst
CN106520170A (en) * 2016-10-31 2017-03-22 新奥生态环境治理有限公司 Method for converting garbage into carbonization function materials
CN106520170B (en) * 2016-10-31 2018-08-14 新奥生态环境治理有限公司 A method of it converts garbage into carbonize functional material

Similar Documents

Publication Publication Date Title
Uddin et al. Potential hydrogen and non-condensable gases production from biomass pyrolysis: insights into the process variables
Demirbas Hydrogen-rich gas from fruit shells via supercritical water extraction
Demirbaş Hydrogen production from biomass by the gasification process
US8617260B2 (en) Multi-purpose renewable fuel for isolating contaminants and storing energy
EP2385091A1 (en) Method for processing organic waste and a device for carrying out said method
EP1315784A1 (en) Process for the production of liquid fuels from biomass
Boocock et al. Direct hydrogenation of hybrid poplar wood to liquid and gaseous fuels
Yan et al. Valorization of sewage sludge through catalytic sub-and supercritical water gasification
AU2005304811A1 (en) Base-facilitated production of hydrogen from carbonaceous matter
Perry The gasification of coal
CN101891149A (en) Continuous method for preparing combustible gas from high concentration slurry of carbon-containing organic matter
JPS59105079A (en) Treatment of organic material by utilizing hot alkaline water
EP2670819B1 (en) Process for improving the energy density of feedstocks using formate salts
JPH11172262A (en) Process for gasifying cellulosic biomass
Louw et al. Supercritical water gasification of Eucalyptus grandis and related pyrolysis char: effect of feedstock composition
US4325707A (en) Coal desulfurization by aqueous chlorination
DK173867B1 (en) Process for partial oxidation of low fuel value petroleum waste products
US4954246A (en) Slurry-phase gasification of carbonaceous materials using ultrasound in an aqueous media
JP2002114986A (en) Method and apparatus for producing gas
Batenin et al. Thermal methods of reprocessing wood and peat for power engineering purposes
Yabe et al. Development of coal partial hydropyrolysis process
US4298452A (en) Coal liquefaction
Singh et al. Hydrogen production from biomass gasification
Houcinat et al. Hydrogen production by supercritical water gasification: a review
JP2001164270A (en) Method of manufacturing gas and equipment