JPH02261597A - Method for continuously converting sludge into oil - Google Patents

Method for continuously converting sludge into oil

Info

Publication number
JPH02261597A
JPH02261597A JP8233289A JP8233289A JPH02261597A JP H02261597 A JPH02261597 A JP H02261597A JP 8233289 A JP8233289 A JP 8233289A JP 8233289 A JP8233289 A JP 8233289A JP H02261597 A JPH02261597 A JP H02261597A
Authority
JP
Japan
Prior art keywords
sludge
reaction
tower
reaction product
reaction tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8233289A
Other languages
Japanese (ja)
Other versions
JPH0794040B2 (en
Inventor
Shinya Yokoyama
横山 伸也
Tomoko Ogi
知子 小木
Tomoaki Minowa
智朗 美濃輪
Tadashi Nakamura
忠 中村
Akio Urata
浦田 昭雄
Akira Suzuki
明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKUA RUNESANSU GIJUTSU KENKYU KUMIAI, Agency of Industrial Science and Technology filed Critical AKUA RUNESANSU GIJUTSU KENKYU KUMIAI
Priority to JP1082332A priority Critical patent/JPH0794040B2/en
Publication of JPH02261597A publication Critical patent/JPH02261597A/en
Publication of JPH0794040B2 publication Critical patent/JPH0794040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To increase the rate of recovery and to prevent the lowering of the efficiency of heat transmission and the occurrence of trouble such as blocking by moving a reaction product of org. sludge to the top of a reaction tower at a specified linear velocity of rising. CONSTITUTION:When raw material to be treated is continuously fed into a vertical reaction tower 2 from the bottom and brought into a reaction in the tower 2 and the resulting reaction product is drawn out of the top, the linear velocity of rising of the reaction product is kept at >=0.4mm/sec and the precipitation of solid matter is prevented. Dehydrated sludge in the tower 2 is heated, subjected to reactive treatment and converted into oily matter. The rate of conversion into the oily matter is very high. Since no solid matter precipitates in the tower 2, a high rate of recovery can be maintained and the lowering in the efficiency of heat transmission and the occurrence of trouble such as blocking can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、有機性廃水の生物処理装置等から発生する余
剰汚泥等の有機性汚泥を、高温高圧の条件下で熱化学的
に反応させて処理する汚泥の連続油化方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a method for thermochemically reacting organic sludge such as surplus sludge generated from organic wastewater biological treatment equipment under high temperature and high pressure conditions. This paper relates to a method for continuously converting sludge into oil.

〔従来技術〕[Prior art]

代表的な有機性汚泥である下水汚泥は、全国で年間約5
000万ボ(含水率98%)という膨大な量であり1年
々増加の傾向にある。従来、このような下水汚泥の処理
に関しては、その80%前後が脱水後。
Sewage sludge, a typical type of organic sludge, is produced at a rate of approximately 5% per year nationwide.
It is a huge amount of 0 million bottles (moisture content 98%) and is increasing year by year. Conventionally, around 80% of the processing of sewage sludge is done after dewatering.

埋立処分されているが、しかし、この場合には埋立地確
保の問題があり、都市化の発展により、その埋立地確保
は年々困難になってきている。また、下水汚泥は焼却処
理することも可能であり、この方法は、その処理生成物
が被処理原料である下水汚泥の量に比して著しく減容化
された焼却灰であり、被処理原料の減容化という点から
は非常に有効な方法である。しかしながら、この方法の
場合、下水汚泥中の水分の蒸発に多大の熱エネルギーを
要するために、ランニングコストが高く、経済的でない
という問題を有している。このような現状に対し5本発
明者らは、例えば、特開昭62−136299号公報に
おいて、下水汚泥の液化処理方法を提案している。この
方法は、下水汚泥中の有機物をアルカリ性条件下、高め
られた反応温度において、該反応温度の飽和水蒸気圧以
上の加圧下で反応処理した後、得られた反応生成物を冷
却処理するというものである。
However, in this case, there is the problem of securing a landfill site, and with the development of urbanization, it is becoming more difficult to secure a landfill site every year. In addition, sewage sludge can also be incinerated, and in this method, the treated product is incinerated ash whose volume is significantly reduced compared to the amount of sewage sludge that is the raw material to be treated, This is a very effective method in terms of volume reduction. However, this method has the problem that it requires a large amount of thermal energy to evaporate water in the sewage sludge, resulting in high running costs and being uneconomical. In response to this current situation, the present inventors have proposed a method for liquefying sewage sludge, for example, in Japanese Patent Application Laid-open No. 136299/1983. This method involves reacting organic matter in sewage sludge under alkaline conditions at an elevated reaction temperature under pressure higher than the saturated water vapor pressure at the reaction temperature, and then cooling the resulting reaction product. It is.

この方法で得られる反応生成物は、水相と固形物相との
分離性が良好となり、固形物が沈殿しやすいものとなる
。本発明者らの研究によれば、被処理原料を縦型の反応
塔の下方部から連続的に供給して、反応塔内で反応させ
1反応生成物を上方部から取り出すようにした場合に、
反応生成物中の沈降速度の大きな固形物が反応塔内部で
沈殿し、回収率が低下するばかりでなく、伝熱効率が低
下したり、また閉塞により圧力が上昇する等の問題があ
ることが判明した。
The reaction product obtained by this method has good separability between the aqueous phase and the solid phase, and the solids tend to precipitate. According to the research of the present inventors, when the raw material to be treated is continuously supplied from the lower part of a vertical reaction tower, reacted within the reaction tower, and one reaction product is taken out from the upper part. ,
It has been found that solids in the reaction product with a high sedimentation rate precipitate inside the reaction tower, which not only reduces the recovery rate, but also causes problems such as a decrease in heat transfer efficiency and an increase in pressure due to blockage. did.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、従来の下水汚泥等の有機性汚泥処理に見られ
る前記問題を解決することをその課題ととする。
An object of the present invention is to solve the above-mentioned problems encountered in conventional treatment of organic sludge such as sewage sludge.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、有機性汚泥を縦型の反応塔の下方部か
ら連続的に供給して、反応塔内の下方から上方に移動さ
せる間に、該反応塔内を高温高圧に保持することにより
、有機性汚泥を油状物質に変化させ、該油状物質を反応
塔の上方部から取り出すようにした汚泥の連続油化方法
において、該有機性汚泥反応生成物を0.4mm/se
c以上の上昇線流速で該反応塔上方に移動させることを
特徴とする汚泥の連続油化方法が提供される。
According to the present invention, while organic sludge is continuously supplied from the lower part of the vertical reaction tower and moved from the lower part to the upper part of the reaction tower, the inside of the reaction tower is maintained at high temperature and high pressure. In a continuous sludge oil conversion method in which organic sludge is changed into an oily substance and the oily substance is taken out from the upper part of a reaction tower, the organic sludge reaction product is
Provided is a continuous method for converting sludge into oil, characterized in that the sludge is moved upward through the reaction tower at an upward linear flow rate of c or more.

本発明において被処理原料として用いる有機性汚泥とし
ては1通常の下水処理場から排出される下水汚泥や各種
の有機性廃水の生物処理装置から排出される余剰汚泥等
が包含されるが、有機性の汚泥であれば特に制約されな
い。
The organic sludge used as the raw material to be treated in the present invention includes sewage sludge discharged from ordinary sewage treatment plants, surplus sludge discharged from various organic wastewater biological treatment equipment, etc. There are no particular restrictions as long as it is sludge.

本発明の方法を実施するには、有機性汚泥を高温高圧に
保持する。この場合、有機性汚泥にあまり多量の水分が
含まれていると、熱化学反応に必要な温度の形成までに
多量の熱エネルキーを消費するので、含水率85重貴顕
以下にまで脱水することが望ましい、さらに、必要に応
じて熱化学的反応を促進させるために、有機性汚泥をア
ルカリ性条件とすることも可能であるが、このことは必
須ではない、アルカリ性条件の形成には、通常、アルカ
リ性物質が用いられるが、アルカリ性物質としては、例
えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリ
ウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カ
リウム、ギ酸ナトリウム。
To carry out the method of the invention, organic sludge is maintained at high temperature and pressure. In this case, if the organic sludge contains too much water, it will consume a large amount of thermal energy to reach the temperature required for the thermochemical reaction, so it is necessary to dehydrate the organic sludge to a water content of 85% or less. In addition, it is possible to subject the organic sludge to alkaline conditions in order to accelerate thermochemical reactions if necessary, but this is not essential. An alkaline substance is used, and examples of the alkaline substance include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and sodium formate.

ギ酸カリウム等のアルカリ金属化合物や、酸化カルシウ
ム、水酸化カルシウム、水酸化マグネシウム等のアルカ
リ土類金属化合物等があげられる。
Examples include alkali metal compounds such as potassium formate, and alkaline earth metal compounds such as calcium oxide, calcium hydroxide, and magnesium hydroxide.

本発明における反応処理は高温高圧下で実施されるが、
この場合、反応温度は一般には250〜350℃、好ま
しくは300〜320℃であり1反応圧力は。
Although the reaction treatment in the present invention is carried out at high temperature and high pressure,
In this case, the reaction temperature is generally 250 to 350°C, preferably 300 to 320°C, and the reaction pressure is 1.

その反応湿度における飽和水蒸気圧以上、例えば、25
0℃の場合、40kg/cd以上、300℃の場合、9
0kg/d以上であればよい。この時1反応温度の保持
時間は、250℃の場合、60分以上、300℃の場合
、5分以上であればよいが、水相に移行する有機物量を
減らすためには、なるべく高い温度で長時間反応させる
ことが望ましい、ただし1反応温度を高くすることや、
保持時間を長くすることは、イニシャルコストの増大を
まねくので、反応温度は、300℃以下、保持時間は6
0分以下が適当である。
More than the saturated water vapor pressure at the reaction humidity, for example, 25
At 0℃, 40kg/cd or more, at 300℃, 9
It is sufficient if it is 0 kg/d or more. At this time, the holding time for one reaction temperature may be at least 60 minutes at 250°C and at least 5 minutes at 300°C, but in order to reduce the amount of organic matter transferred to the aqueous phase, the temperature should be as high as possible. It is desirable to react for a long time, however, raising the reaction temperature or
Since increasing the holding time increases the initial cost, the reaction temperature should be 300°C or less and the holding time should be 6.
0 minutes or less is appropriate.

本発明において、圧力は、下水汚泥からの水蒸気による
自己発生圧を利用することができるが。
In the present invention, self-generated pressure due to water vapor from sewage sludge can be used as the pressure.

必要に応じ1例えば、窒素ガス、炭酸ガス、アルゴンガ
ス等を用いて加圧することもできる。
If necessary, for example, nitrogen gas, carbon dioxide gas, argon gas, etc. can be used for pressurization.

本発明における反応では、反応生成物は水相と固形物相
との分離性が良好となり、固形物が沈殿しやすくなる。
In the reaction according to the present invention, the reaction product exhibits good separability between the aqueous phase and the solid phase, making it easier for the solids to precipitate.

被処理原料を縦型の反応塔の下方部から連続的に供給し
て、反応塔内で反応させ。
The raw material to be treated is continuously supplied from the lower part of the vertical reaction tower and reacted within the reaction tower.

反応生成物を上方部から取り出すようにした場合に、反
応塔内での反応生成物の上昇線流速が小さい条件では1
反応生成物中の沈降速度の大きな固形物が反応塔内部で
沈殿するという問題がある。
When the reaction product is taken out from the upper part, under the condition that the upward linear flow velocity of the reaction product in the reaction column is small, 1
There is a problem in that solids in the reaction product that have a high sedimentation rate precipitate inside the reaction column.

この問題に対処するため、本発明は、被処理原料を縦型
の反応塔の下方部から連続的に供給して、反応塔内で反
応させ、反応生成物を上方部から取り出す際に1反応生
成物の上昇線流速を0.4mm/ssc以上に保持し、
固形物の沈殿を防止する。上昇線流速の設定値について
は、後記参考例に示したように、0.3m/sec以下
で行なった実験においては固形物が全量回収できず、実
施例に示したように、0.4rntm/secで行なっ
た実験においては固形物が全量回収できたため、0.4
mm/sec以上が適当である。
In order to deal with this problem, the present invention aims at continuously supplying the raw material to be treated from the lower part of a vertical reaction tower, allowing it to react in the reaction tower, and then taking out the reaction product from the upper part for one reaction. Maintaining the upward linear flow rate of the product at 0.4 mm/ssc or higher,
Prevents precipitation of solids. Regarding the set value of the ascending linear flow velocity, as shown in the reference example below, in experiments conducted at 0.3 m/sec or less, all solids could not be recovered, and as shown in the example, the set value was 0.4 rntm/sec. In the experiment conducted at sec, all the solids were recovered, so 0.4
A value of mm/sec or more is appropriate.

この反応生成物の上昇線流速は1反応塔に圧入供給する
被処理原料の供給量により調節することができる。さら
に、実際の装置設計においては、被処理原料の処理量に
応じて、反応生成物の上昇線流速が0.4mm/sec
以上となるように反応塔内部の断面積を設定することが
できる。
The upward linear flow rate of the reaction product can be adjusted by adjusting the amount of raw material to be treated that is fed under pressure into one reaction column. Furthermore, in actual equipment design, the upward linear flow velocity of the reaction product is 0.4 mm/sec depending on the processing amount of the raw material to be treated.
The cross-sectional area inside the reaction tower can be set so as to be as above.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来産業廃棄物として取扱われていた
有機性汚泥を、液体燃料として有用な油状物質に変換す
ることができる。この場合の油状物質への転換率は、乾
燥有機物基準で約40〜50%と大変高い、しかも、反
応塔内で固形物の沈殿が起こらないために、高い回収率
を維持できるばかりでなく、伝熱効率の低下や閉塞等の
問題を防止することもできる。したがって、本発明は経
済的でありかつ安全面からも優れた有機性汚泥の処理方
法である。
According to the present invention, organic sludge, which has conventionally been treated as industrial waste, can be converted into an oily substance useful as liquid fuel. In this case, the conversion rate to oily substances is very high at approximately 40 to 50% on a dry organic matter basis.Moreover, since precipitation of solids does not occur in the reaction tower, not only can a high recovery rate be maintained, but also a high recovery rate can be maintained. It is also possible to prevent problems such as a decrease in heat transfer efficiency and blockage. Therefore, the present invention is an economical and safe method for treating organic sludge.

〔実施例〕〔Example〕

次に、本発明を実施例によりさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

参考例1 有機性汚泥として下水汚泥を選択し、標準活性汚泥法の
処理場から排出された混合生汚泥の脱水汚泥Aを実験に
使用した。この汚泥は高分子凝集剤を添加した後、ベル
トプレスにて脱水されたものであり、代表的な性状とし
ては、含水率80.0%、有機物比81.8%であった
。汚泥連続油化実験装置のフローシートを第1図に示す
、第1図において、1は汚泥圧入装置、2は反応装置、
3は冷却装置、4は減圧装置、5は電気ボイラーを各示
す。上記脱水汚泥を、汚泥圧入装置1に充填した後、汚
泥圧入装置1を使用してライン6を介して反応装置2に
120kg/cdの圧力で圧入した0反応装置2は、熱
交換型反応装置であり、電気ボイラーで加熱された熱媒
がライン7から導入されライン8から排出されて電気ボ
イラーに戻り、その間に反応装置2内の脱水汚泥は30
0℃まで加熱され1反応処理を受け、油状物質に変換さ
れた。その際、反応装置2内での反応生成物の上昇線流
速は、脱水汚泥Aの反応表W2への供給量を調節して0
.2+am/secとした。ライン9を介して取り出さ
れた反応生成物は、これを冷却装置3で100℃以下に
まで冷却し、さらにライン10を介して減圧装置4に導
入し、ここで反応ガスを分離し、ライン11を介して取
り出した後、大気圧にまで減圧した。減圧後反応生成物
(プロダクト)はライン12を介して取り出され、ジク
ロロメタンを用いた抽出法により、油状物質、残渣固形
物、水性相の3相に分離した。
Reference Example 1 Sewage sludge was selected as the organic sludge, and dehydrated sludge A of mixed raw sludge discharged from a treatment plant using the standard activated sludge method was used in the experiment. This sludge was dehydrated using a belt press after adding a polymer flocculant, and its typical properties were a water content of 80.0% and an organic matter ratio of 81.8%. The flow sheet of the sludge continuous oil conversion experimental device is shown in Fig. 1. In Fig. 1, 1 is the sludge injection device, 2 is the reaction device,
3 is a cooling device, 4 is a pressure reducing device, and 5 is an electric boiler. After filling the sludge injection device 1 with the dehydrated sludge, the sludge injection device 1 was used to pressurize the sludge into the reaction device 2 via the line 6 at a pressure of 120 kg/cd.The reaction device 2 is a heat exchange type reaction device. The heat medium heated by the electric boiler is introduced from line 7 and discharged from line 8 to return to the electric boiler, while the dehydrated sludge in the reactor 2 is
It was heated to 0°C and underwent one reaction process, converting it into an oil. At that time, the upward linear flow rate of the reaction product in the reaction device 2 is adjusted to 0 by adjusting the amount of dehydrated sludge A supplied to the reaction table W2.
.. 2+am/sec. The reaction product taken out through line 9 is cooled to below 100°C in cooling device 3, and further introduced into pressure reducing device 4 through line 10, where the reaction gas is separated. The pressure was then reduced to atmospheric pressure. After depressurization, the reaction product was removed via line 12 and separated into three phases: an oil, a residual solid, and an aqueous phase by extraction with dichloromethane.

また、対照実験として、オートクレーブを使用したバッ
チ実験を行なった。具体的には、前記の脱水汚泥Aをオ
ートクレーブ(容量300 m1ll )に充填し。
In addition, as a control experiment, a batch experiment using an autoclave was conducted. Specifically, the dehydrated sludge A was filled into an autoclave (capacity: 300 ml).

電気炉で300℃まで加熱し、その温度を60分間保持
した。その際、圧力はあらかじめ窒素ガスで120kg
/cdまで加圧しておき、温度上昇にともなう圧力増加
を圧力調整弁を用いて120kg/ cdに制御した。
It was heated to 300°C in an electric furnace and held at that temperature for 60 minutes. At that time, the pressure was set to 120 kg with nitrogen gas in advance.
The pressure was increased to 120 kg/cd using a pressure regulating valve to control the pressure increase due to temperature rise to 120 kg/cd.

温度保持後、送風機を用いて室温附近まで急冷し、反応
ガス及びプロダクトを回収した。得られたプロダクトは
ジクロロメタンを用いた抽出法により、油状物質、残渣
固形物、水性相の3相に分離した。
After maintaining the temperature, it was rapidly cooled to around room temperature using a blower, and the reaction gas and products were collected. The obtained product was separated into three phases: an oily substance, a residual solid substance, and an aqueous phase by an extraction method using dichloromethane.

表−1にそれぞれの実験のプロダクト各相の有機物回収
率を、表−2に同様に無機物回収率を各示す。
Table 1 shows the organic matter recovery rate for each phase of the product in each experiment, and Table 2 shows the inorganic matter recovery rate.

表−1より、連続実験とバッチ実験の回収率に差が認め
られ、特に残渣固形物については連続実験での回収率(
3,2%)はバッチ実験(9,9%)の約173であっ
た。また、表−2より、バッチ実験ではほぼ100%の
無機物が回収され、そのほとんどが残渣固形物として回
収されているのに対し、連続実験では無機物の全回収率
は46.6%であった。これは、沈降速度の大きな固形
物(主に残渣固形物)が装置内で沈殿したことが原因で
あろうと推測された。
From Table 1, there is a difference in the recovery rate between continuous experiments and batch experiments, and especially for residual solids, the recovery rate in continuous experiments (
3.2%) was about 173 for batch experiments (9.9%). Additionally, from Table 2, almost 100% of inorganic substances were recovered in the batch experiment, and most of them were recovered as residual solids, whereas in the continuous experiment, the total recovery rate of inorganic substances was 46.6%. . It was speculated that this was caused by solid matter (mainly residual solid matter) having a high sedimentation rate settling in the apparatus.

表−I 有機物回収率 表−2無機物回収率 参考例2 参考例1と同一の下水処理場から脱水汚泥Bを採取し、
実験に使用した。この脱水汚泥Bの代表的な性状として
は、含水率78.1%、有機物比72.2%であった。
Table-I Organic matter recovery rate Table-2 Inorganic matter recovery rate Reference example 2 Dehydrated sludge B was collected from the same sewage treatment plant as in Reference example 1.
Used for experiments. Typical properties of this dehydrated sludge B were a water content of 78.1% and an organic matter ratio of 72.2%.

実験方法は参考例1とほぼ同様である。The experimental method was almost the same as in Reference Example 1.

ただし、連続実験において、反応装置2内での反応生成
物の上昇線流速は、脱水汚泥Bの反応装置2への供給量
を調節して0.3m+m/secとした。また、バッチ
実験において保持時間を30分とした。
However, in the continuous experiment, the upward linear flow velocity of the reaction product in the reactor 2 was set to 0.3 m+m/sec by adjusting the amount of dehydrated sludge B supplied to the reactor 2. Further, in the batch experiment, the holding time was set to 30 minutes.

表−3にそれぞれの実験のプロダクト各相の有機物回収
率を1表−4に同様に無機物回収率を各示す。
Table 3 shows the organic matter recovery rate of each phase of the product for each experiment, and Table 4 shows the inorganic matter recovery rate.

表−3、表−4より、連続実験での残渣固形物の回収率
は向上したものの、未だ低く、依然として装置内での固
形物の沈殿が起きているものと推測された。
From Tables 3 and 4, although the recovery rate of residual solids in continuous experiments improved, it was still low, and it was assumed that precipitation of solids still occurred within the apparatus.

表−3有機物回収率 表−4無機物回収率 実施例1 参考例1と同一の下水処理場から脱水汚泥Cを採取し、
実験に使用した。この脱水汚泥Cの代表的な性状として
は、含水率80.3%、有機物比79.5%であった。
Table-3 Organic matter recovery rate Table-4 Inorganic matter recovery rate Example 1 Dehydrated sludge C was collected from the same sewage treatment plant as in Reference Example 1.
Used for experiments. Typical properties of this dehydrated sludge C were a water content of 80.3% and an organic matter ratio of 79.5%.

実験方法は参考例1とほぼ同様である。The experimental method was almost the same as in Reference Example 1.

ただし、反応装置2内での反応生成物の上昇線流速は、
脱水汚泥Cの反応装置2への供給量を調節して0.4m
m/secとした。また、バッチ実験において保持時間
を0分とした。
However, the upward linear flow rate of the reaction product in the reactor 2 is
0.4 m by adjusting the amount of dehydrated sludge C supplied to the reaction device 2.
m/sec. Further, in the batch experiment, the holding time was set to 0 minutes.

表−5にそれぞれの実験のプロダクト各相の有機物回収
率を1表−6に同様に無機物回収率を各示す。
Table 5 shows the organic matter recovery rate for each phase of the product for each experiment, and Table 6 shows the inorganic matter recovery rate.

表−5より、連続実験においてバッチ実験とほぼ同程度
の有機物回収率が得られ、この時、乾燥有機物基準で5
1.6%の油状物質が回収された。また。
From Table 5, in the continuous experiment, almost the same organic matter recovery rate as in the batch experiment was obtained, and at this time, the recovery rate of organic matter was 5% on a dry organic matter basis.
1.6% oil was recovered. Also.

表−6より、連続実験での無機物の全回収率は116.
3%であり、バッチ実験の無機物の全回収率は114.
5%と同程度の無機物が回収された。したがって、装置
内で固形物を沈殿させることなく、汚泥連続油化装置を
運転することができたと判断された。
From Table 6, the total recovery rate of inorganic substances in continuous experiments is 116.
3%, and the total recovery of inorganics for the batch experiment was 114.
Inorganics as high as 5% were recovered. Therefore, it was determined that the continuous sludge conversion equipment could be operated without precipitating solid matter within the equipment.

表−5有機物回収率 表−6無機物回収率Table-5 Organic matter recovery rate Table-6 Inorganic recovery rate

【図面の簡単な説明】[Brief explanation of drawings]

第1図は汚泥連続油化実験装置のフローシートを示す。 1・・・汚泥圧入装置、2・・・反応装置、3・・・冷
却装置。 4・・・減圧装置、5・・・電気ボイラー復代理人 弁
理士 池 浦 敏 明
Figure 1 shows the flow sheet of the sludge continuous oil conversion experimental equipment. 1... Sludge injection device, 2... Reaction device, 3... Cooling device. 4...Pressure reducing device, 5...Electric boiler Sub-agent Patent attorney Toshiaki Ikeura

Claims (1)

【特許請求の範囲】[Claims] (1)有機性汚泥を縦型の反応塔の下方部から連続的に
供給して、反応塔内の下方から上方に移動させる間に、
該反応塔内を高温高圧に保持することにより、有機性汚
泥を油状物質に変化させ、該油状物質を反応塔の上方部
から取り出すようにした汚泥の連続油化方法において、
該有機性汚泥反応生成物を0.4mm/sec以上の上
昇線流速で該反応塔上方に移動させることを特徴とする
汚泥の連続油化方法。
(1) While organic sludge is continuously supplied from the lower part of the vertical reaction tower and moved from the lower part to the upper part of the reaction tower,
In a continuous method for turning sludge into oil, the organic sludge is changed into an oily substance by maintaining the inside of the reaction tower at high temperature and pressure, and the oily substance is taken out from the upper part of the reaction tower,
A method for continuously converting sludge into oil, characterized in that the organic sludge reaction product is moved above the reaction tower at an upward linear flow rate of 0.4 mm/sec or more.
JP1082332A 1989-03-31 1989-03-31 Sludge continuous oil conversion method Expired - Lifetime JPH0794040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1082332A JPH0794040B2 (en) 1989-03-31 1989-03-31 Sludge continuous oil conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1082332A JPH0794040B2 (en) 1989-03-31 1989-03-31 Sludge continuous oil conversion method

Publications (2)

Publication Number Publication Date
JPH02261597A true JPH02261597A (en) 1990-10-24
JPH0794040B2 JPH0794040B2 (en) 1995-10-11

Family

ID=13771607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1082332A Expired - Lifetime JPH0794040B2 (en) 1989-03-31 1989-03-31 Sludge continuous oil conversion method

Country Status (1)

Country Link
JP (1) JPH0794040B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136299A (en) * 1985-12-11 1987-06-19 Agency Of Ind Science & Technol Method for liquefying treatment of sewage sludge

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62136299A (en) * 1985-12-11 1987-06-19 Agency Of Ind Science & Technol Method for liquefying treatment of sewage sludge

Also Published As

Publication number Publication date
JPH0794040B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
Yokoyama et al. Liquid fuel production from sewage sludge by catalytic conversion using sodium carbonate
AU739040B2 (en) Apparatus and method for oxidizing undigested wastewater sludges
EP0607644A1 (en) Partial oxidation of sewage sludge
EP0245910A1 (en) A process for purifying waste water
CA2606319A1 (en) Organic waste disposal facility and method of disposal
CA1228939A (en) Split feed for the anaerobic biological purification of wastewater
US6436157B1 (en) Gasification of biosludge
JPH02261597A (en) Method for continuously converting sludge into oil
JP3318483B2 (en) Supercritical water oxidation method of organic sludge and organic sludge supply device used for the method
KR20010066777A (en) Process for the production of hydrogen from a gas coming from a waste treatment unit
JPH055560B2 (en)
US5681449A (en) Process for producing oil from organic material-containing sludge
JP3528023B2 (en) How to treat wet waste
JPH0347600A (en) Oil recovering from organic sludge
CN108502903B (en) Gasification detoxification system and method for pre-concentrated salt residue fluidized bed
JPS63235395A (en) Method of conducting optimum treatment of sewage sludge to convert it into oleaginous matter
CA1051566A (en) Raw liquid waste treatment system and process
JPH0567360B2 (en)
AU7940401A (en) Apparatus and method for oxidizing undigested wastewater sludges
JP2007253100A (en) Sludge dehydration method
JPH01258800A (en) Treatment of organic sludge for conversion to oil
JP3700845B2 (en) Organic waste heat treatment equipment
KR20020072051A (en) Method to manufacture substitute fuel using food wastes
JPH02102798A (en) Treatment of sludge of industrial waste water
JPS63235396A (en) Method for treating sewage slude to convert it into oleaginous matter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071011

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term